rust-secp256k1-unsafe-fast/src/key.rs

589 lines
21 KiB
Rust
Raw Normal View History

// Bitcoin secp256k1 bindings
// Written in 2014 by
// Dawid Ciężarkiewicz
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
2015-10-09 16:39:42 +00:00
//! # Public and secret keys
2017-12-19 20:49:01 +00:00
#[cfg(any(test, feature = "rand"))] use rand::Rng;
use std::mem;
use super::{Secp256k1, ContextFlag};
use super::Error::{self, IncapableContext, InvalidPublicKey, InvalidSecretKey};
2014-09-05 01:21:09 +00:00
use constants;
use ffi;
/// Secret 256-bit key used as `x` in an ECDSA signature
pub struct SecretKey([u8; constants::SECRET_KEY_SIZE]);
impl_array_newtype!(SecretKey, u8, constants::SECRET_KEY_SIZE);
impl_pretty_debug!(SecretKey);
/// The number 1 encoded as a secret key
/// Deprecated; `static` is not what I want; use `ONE_KEY` instead
pub static ONE: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1]);
/// The number 0 encoded as a secret key
pub const ZERO_KEY: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0]);
/// The number 1 encoded as a secret key
pub const ONE_KEY: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1]);
/// A Secp256k1 public key, used for verification of signatures
2018-05-22 09:33:11 +00:00
#[derive(Copy, Clone, PartialEq, Eq, Debug, PartialOrd, Ord, Hash)]
pub struct PublicKey(ffi::PublicKey);
2017-12-19 20:49:01 +00:00
#[cfg(any(test, feature = "rand"))]
fn random_32_bytes<R: Rng>(rng: &mut R) -> [u8; 32] {
let mut ret = [0u8; 32];
rng.fill_bytes(&mut ret);
2014-08-16 09:21:35 +00:00
ret
}
impl SecretKey {
/// Creates a new random secret key
#[inline]
2017-12-19 20:49:01 +00:00
#[cfg(any(test, feature = "rand"))]
pub fn new<R: Rng>(secp: &Secp256k1, rng: &mut R) -> SecretKey {
let mut data = random_32_bytes(rng);
unsafe {
while ffi::secp256k1_ec_seckey_verify(secp.ctx, data.as_ptr()) == 0 {
data = random_32_bytes(rng);
}
}
SecretKey(data)
}
/// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key
#[inline]
pub fn from_slice(secp: &Secp256k1, data: &[u8])
-> Result<SecretKey, Error> {
match data.len() {
constants::SECRET_KEY_SIZE => {
let mut ret = [0; constants::SECRET_KEY_SIZE];
unsafe {
if ffi::secp256k1_ec_seckey_verify(secp.ctx, data.as_ptr()) == 0 {
return Err(InvalidSecretKey);
}
}
ret[..].copy_from_slice(data);
Ok(SecretKey(ret))
}
_ => Err(InvalidSecretKey)
}
}
#[inline]
/// Adds one secret key to another, modulo the curve order
pub fn add_assign(&mut self, secp: &Secp256k1, other: &SecretKey)
-> Result<(), Error> {
unsafe {
if ffi::secp256k1_ec_privkey_tweak_add(secp.ctx, self.as_mut_ptr(), other.as_ptr()) != 1 {
Err(InvalidSecretKey)
} else {
Ok(())
}
}
}
2016-08-20 17:00:39 +00:00
#[inline]
/// Multiplies one secret key by another, modulo the curve order
pub fn mul_assign(&mut self, secp: &Secp256k1, other: &SecretKey)
-> Result<(), Error> {
unsafe {
if ffi::secp256k1_ec_privkey_tweak_mul(secp.ctx, self.as_mut_ptr(), other.as_ptr()) != 1 {
Err(InvalidSecretKey)
} else {
Ok(())
}
}
}
}
impl PublicKey {
/// Creates a new zeroed out public key
#[inline]
pub fn new() -> PublicKey {
PublicKey(ffi::PublicKey::new())
}
/// Determines whether a pubkey is valid
#[inline]
pub fn is_valid(&self) -> bool {
// The only invalid pubkey the API should be able to create is
// the zero one.
self.0[..].iter().any(|&x| x != 0)
}
/// Obtains a raw pointer suitable for use with FFI functions
#[inline]
pub fn as_ptr(&self) -> *const ffi::PublicKey {
&self.0 as *const _
}
/// Creates a new public key from a secret key.
#[inline]
pub fn from_secret_key(secp: &Secp256k1,
sk: &SecretKey)
-> Result<PublicKey, Error> {
if secp.caps == ContextFlag::VerifyOnly || secp.caps == ContextFlag::None {
return Err(IncapableContext);
}
let mut pk = unsafe { ffi::PublicKey::blank() };
unsafe {
// We can assume the return value because it's not possible to construct
// an invalid `SecretKey` without transmute trickery or something
let res = ffi::secp256k1_ec_pubkey_create(secp.ctx, &mut pk, sk.as_ptr());
debug_assert_eq!(res, 1);
}
Ok(PublicKey(pk))
}
/// Creates a public key directly from a slice
#[inline]
pub fn from_slice(secp: &Secp256k1, data: &[u8])
-> Result<PublicKey, Error> {
let mut pk = unsafe { ffi::PublicKey::blank() };
unsafe {
if ffi::secp256k1_ec_pubkey_parse(secp.ctx, &mut pk, data.as_ptr(),
2015-09-20 19:52:29 +00:00
data.len() as ::libc::size_t) == 1 {
Ok(PublicKey(pk))
} else {
Err(InvalidPublicKey)
}
}
}
#[inline]
/// Serialize the key as a byte-encoded pair of values. In compressed form
/// the y-coordinate is represented by only a single bit, as x determines
/// it up to one bit.
pub fn serialize(&self) -> [u8; constants::PUBLIC_KEY_SIZE] {
let secp = Secp256k1::with_caps(ContextFlag::None);
let mut ret = [0; constants::PUBLIC_KEY_SIZE];
unsafe {
let mut ret_len = constants::PUBLIC_KEY_SIZE as ::libc::size_t;
let err = ffi::secp256k1_ec_pubkey_serialize(
secp.ctx,
ret.as_mut_ptr(),
&mut ret_len,
self.as_ptr(),
ffi::SECP256K1_SER_COMPRESSED,
);
debug_assert_eq!(err, 1);
debug_assert_eq!(ret_len, ret.len());
}
ret
}
/// Serialize the key as a byte-encoded pair of values, in uncompressed form
pub fn serialize_uncompressed(&self) -> [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] {
let secp = Secp256k1::with_caps(ContextFlag::None);
let mut ret = [0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE];
unsafe {
let mut ret_len = constants::UNCOMPRESSED_PUBLIC_KEY_SIZE as ::libc::size_t;
let err = ffi::secp256k1_ec_pubkey_serialize(
secp.ctx,
ret.as_mut_ptr(),
&mut ret_len,
self.as_ptr(),
ffi::SECP256K1_SER_UNCOMPRESSED,
);
debug_assert_eq!(err, 1);
debug_assert_eq!(ret_len, ret.len());
}
ret
}
#[inline]
/// Adds the pk corresponding to `other` to the pk `self` in place
pub fn add_exp_assign(&mut self, secp: &Secp256k1, other: &SecretKey)
-> Result<(), Error> {
if secp.caps == ContextFlag::SignOnly || secp.caps == ContextFlag::None {
return Err(IncapableContext);
}
unsafe {
if ffi::secp256k1_ec_pubkey_tweak_add(secp.ctx, &mut self.0 as *mut _,
other.as_ptr()) == 1 {
Ok(())
} else {
Err(InvalidSecretKey)
}
}
}
2016-08-20 17:00:39 +00:00
#[inline]
/// Muliplies the pk `self` in place by the scalar `other`
pub fn mul_assign(&mut self, secp: &Secp256k1, other: &SecretKey)
-> Result<(), Error> {
if secp.caps == ContextFlag::SignOnly || secp.caps == ContextFlag::None {
return Err(IncapableContext);
}
unsafe {
if ffi::secp256k1_ec_pubkey_tweak_mul(secp.ctx, &mut self.0 as *mut _,
other.as_ptr()) == 1 {
Ok(())
} else {
Err(InvalidSecretKey)
}
}
}
/// Adds a second key to this one, returning the sum. Returns an error if
/// the result would be the point at infinity, i.e. we are adding this point
/// to its own negation
pub fn combine(&self, secp: &Secp256k1, other: &PublicKey) -> Result<PublicKey, Error> {
unsafe {
let mut ret = mem::uninitialized();
let ptrs = [self.as_ptr(), other.as_ptr()];
if ffi::secp256k1_ec_pubkey_combine(secp.ctx, &mut ret, ptrs.as_ptr(), 2) == 1 {
Ok(PublicKey(ret))
} else {
Err(InvalidPublicKey)
}
}
}
}
/// Creates a new public key from a FFI public key
impl From<ffi::PublicKey> for PublicKey {
#[inline]
fn from(pk: ffi::PublicKey) -> PublicKey {
PublicKey(pk)
}
}
#[cfg(test)]
mod test {
use super::super::{Secp256k1, ContextFlag};
use super::super::Error::{InvalidPublicKey, InvalidSecretKey, IncapableContext};
use super::{PublicKey, SecretKey};
use super::super::constants;
use rand::{Rng, thread_rng};
2014-08-10 02:02:09 +00:00
2018-03-21 22:01:08 +00:00
macro_rules! hex {
($hex:expr) => {
{
let mut vec = Vec::new();
let mut b = 0;
for (idx, c) in $hex.as_bytes().iter().enumerate() {
b <<= 4;
match *c {
b'A'...b'F' => b |= c - b'A' + 10,
b'a'...b'f' => b |= c - b'a' + 10,
b'0'...b'9' => b |= c - b'0',
_ => panic!("Bad hex"),
}
if (idx & 1) == 1 {
vec.push(b);
b = 0;
}
}
vec
}
}
}
2014-08-10 02:02:09 +00:00
#[test]
fn skey_from_slice() {
let s = Secp256k1::new();
let sk = SecretKey::from_slice(&s, &[1; 31]);
assert_eq!(sk, Err(InvalidSecretKey));
let sk = SecretKey::from_slice(&s, &[1; 32]);
assert!(sk.is_ok());
2014-08-10 02:02:09 +00:00
}
#[test]
fn pubkey_from_slice() {
let s = Secp256k1::new();
assert_eq!(PublicKey::from_slice(&s, &[]), Err(InvalidPublicKey));
assert_eq!(PublicKey::from_slice(&s, &[1, 2, 3]), Err(InvalidPublicKey));
let uncompressed = PublicKey::from_slice(&s, &[4, 54, 57, 149, 239, 162, 148, 175, 246, 254, 239, 75, 154, 152, 10, 82, 234, 224, 85, 220, 40, 100, 57, 121, 30, 162, 94, 156, 135, 67, 74, 49, 179, 57, 236, 53, 162, 124, 149, 144, 168, 77, 74, 30, 72, 211, 229, 110, 111, 55, 96, 193, 86, 227, 183, 152, 195, 155, 51, 247, 123, 113, 60, 228, 188]);
assert!(uncompressed.is_ok());
let compressed = PublicKey::from_slice(&s, &[3, 23, 183, 225, 206, 31, 159, 148, 195, 42, 67, 115, 146, 41, 248, 140, 11, 3, 51, 41, 111, 180, 110, 143, 114, 134, 88, 73, 198, 174, 52, 184, 78]);
assert!(compressed.is_ok());
}
#[test]
fn keypair_slice_round_trip() {
let s = Secp256k1::new();
let (sk1, pk1) = s.generate_keypair(&mut thread_rng()).unwrap();
assert_eq!(SecretKey::from_slice(&s, &sk1[..]), Ok(sk1));
assert_eq!(PublicKey::from_slice(&s, &pk1.serialize()[..]), Ok(pk1));
assert_eq!(PublicKey::from_slice(&s, &pk1.serialize_uncompressed()[..]), Ok(pk1));
}
2014-08-10 02:02:09 +00:00
#[test]
fn invalid_secret_key() {
let s = Secp256k1::new();
// Zero
assert_eq!(SecretKey::from_slice(&s, &[0; 32]), Err(InvalidSecretKey));
// -1
assert_eq!(SecretKey::from_slice(&s, &[0xff; 32]), Err(InvalidSecretKey));
// Top of range
assert!(SecretKey::from_slice(&s,
&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]).is_ok());
// One past top of range
assert!(SecretKey::from_slice(&s,
&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]).is_err());
}
#[test]
fn test_pubkey_from_slice_bad_context() {
let s = Secp256k1::without_caps();
let sk = SecretKey::new(&s, &mut thread_rng());
assert_eq!(PublicKey::from_secret_key(&s, &sk), Err(IncapableContext));
let s = Secp256k1::with_caps(ContextFlag::VerifyOnly);
assert_eq!(PublicKey::from_secret_key(&s, &sk), Err(IncapableContext));
let s = Secp256k1::with_caps(ContextFlag::SignOnly);
assert!(PublicKey::from_secret_key(&s, &sk).is_ok());
let s = Secp256k1::with_caps(ContextFlag::Full);
assert!(PublicKey::from_secret_key(&s, &sk).is_ok());
}
#[test]
fn test_add_exp_bad_context() {
let s = Secp256k1::with_caps(ContextFlag::Full);
let (sk, mut pk) = s.generate_keypair(&mut thread_rng()).unwrap();
assert!(pk.add_exp_assign(&s, &sk).is_ok());
let s = Secp256k1::with_caps(ContextFlag::VerifyOnly);
assert!(pk.add_exp_assign(&s, &sk).is_ok());
let s = Secp256k1::with_caps(ContextFlag::SignOnly);
assert_eq!(pk.add_exp_assign(&s, &sk), Err(IncapableContext));
let s = Secp256k1::with_caps(ContextFlag::None);
assert_eq!(pk.add_exp_assign(&s, &sk), Err(IncapableContext));
}
#[test]
fn test_out_of_range() {
struct BadRng(u8);
impl Rng for BadRng {
fn next_u32(&mut self) -> u32 { unimplemented!() }
// This will set a secret key to a little over the
// group order, then decrement with repeated calls
// until it returns a valid key
fn fill_bytes(&mut self, data: &mut [u8]) {
let group_order: [u8; 32] = [
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41];
assert_eq!(data.len(), 32);
data.copy_from_slice(&group_order[..]);
data[31] = self.0;
self.0 -= 1;
}
}
let s = Secp256k1::new();
s.generate_keypair(&mut BadRng(0xff)).unwrap();
}
#[test]
fn test_pubkey_from_bad_slice() {
let s = Secp256k1::new();
// Bad sizes
assert_eq!(PublicKey::from_slice(&s, &[0; constants::PUBLIC_KEY_SIZE - 1]),
Err(InvalidPublicKey));
assert_eq!(PublicKey::from_slice(&s, &[0; constants::PUBLIC_KEY_SIZE + 1]),
Err(InvalidPublicKey));
assert_eq!(PublicKey::from_slice(&s, &[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE - 1]),
Err(InvalidPublicKey));
assert_eq!(PublicKey::from_slice(&s, &[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE + 1]),
Err(InvalidPublicKey));
// Bad parse
assert_eq!(PublicKey::from_slice(&s, &[0xff; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]),
Err(InvalidPublicKey));
assert_eq!(PublicKey::from_slice(&s, &[0x55; constants::PUBLIC_KEY_SIZE]),
Err(InvalidPublicKey));
}
#[test]
fn test_debug_output() {
struct DumbRng(u32);
impl Rng for DumbRng {
fn next_u32(&mut self) -> u32 {
self.0 = self.0.wrapping_add(1);
self.0
}
}
let s = Secp256k1::new();
let (sk, _) = s.generate_keypair(&mut DumbRng(0)).unwrap();
assert_eq!(&format!("{:?}", sk),
"SecretKey(0200000001000000040000000300000006000000050000000800000007000000)");
}
#[test]
fn test_pubkey_serialize() {
struct DumbRng(u32);
impl Rng for DumbRng {
fn next_u32(&mut self) -> u32 {
self.0 = self.0.wrapping_add(1);
self.0
}
}
let s = Secp256k1::new();
let (_, pk1) = s.generate_keypair(&mut DumbRng(0)).unwrap();
assert_eq!(&pk1.serialize_uncompressed()[..],
&[4, 149, 16, 196, 140, 38, 92, 239, 179, 65, 59, 224, 230, 183, 91, 238, 240, 46, 186, 252, 175, 102, 52, 249, 98, 178, 123, 72, 50, 171, 196, 254, 236, 1, 189, 143, 242, 227, 16, 87, 247, 183, 162, 68, 237, 140, 92, 205, 151, 129, 166, 58, 111, 96, 123, 64, 180, 147, 51, 12, 209, 89, 236, 213, 206][..]);
assert_eq!(&pk1.serialize()[..],
&[2, 149, 16, 196, 140, 38, 92, 239, 179, 65, 59, 224, 230, 183, 91, 238, 240, 46, 186, 252, 175, 102, 52, 249, 98, 178, 123, 72, 50, 171, 196, 254, 236][..]);
}
#[test]
fn test_addition() {
let s = Secp256k1::new();
let (mut sk1, mut pk1) = s.generate_keypair(&mut thread_rng()).unwrap();
let (mut sk2, mut pk2) = s.generate_keypair(&mut thread_rng()).unwrap();
assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1);
assert!(sk1.add_assign(&s, &sk2).is_ok());
assert!(pk1.add_exp_assign(&s, &sk2).is_ok());
assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1);
assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2);
assert!(sk2.add_assign(&s, &sk1).is_ok());
assert!(pk2.add_exp_assign(&s, &sk1).is_ok());
assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2);
}
2016-01-09 03:45:20 +00:00
2016-08-20 17:00:39 +00:00
#[test]
fn test_multiplication() {
let s = Secp256k1::new();
let (mut sk1, mut pk1) = s.generate_keypair(&mut thread_rng()).unwrap();
let (mut sk2, mut pk2) = s.generate_keypair(&mut thread_rng()).unwrap();
assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1);
assert!(sk1.mul_assign(&s, &sk2).is_ok());
assert!(pk1.mul_assign(&s, &sk2).is_ok());
assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1);
assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2);
assert!(sk2.mul_assign(&s, &sk1).is_ok());
assert!(pk2.mul_assign(&s, &sk1).is_ok());
assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2);
}
2016-01-09 03:45:20 +00:00
#[test]
fn pubkey_hash() {
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
2016-01-09 03:45:20 +00:00
use std::collections::HashSet;
fn hash<T: Hash>(t: &T) -> u64 {
let mut s = DefaultHasher::new();
2016-01-09 03:45:20 +00:00
t.hash(&mut s);
s.finish()
}
let s = Secp256k1::new();
let mut set = HashSet::new();
const COUNT : usize = 1024;
let count = (0..COUNT).map(|_| {
let (_, pk) = s.generate_keypair(&mut thread_rng()).unwrap();
let hash = hash(&pk);
assert!(!set.contains(&hash));
set.insert(hash);
}).count();
assert_eq!(count, COUNT);
}
#[test]
fn pubkey_combine() {
let s = Secp256k1::with_caps(ContextFlag::None);
let compressed1 = PublicKey::from_slice(
&s,
&hex!("0241cc121c419921942add6db6482fb36243faf83317c866d2a28d8c6d7089f7ba"),
).unwrap();
let compressed2 = PublicKey::from_slice(
&s,
&hex!("02e6642fd69bd211f93f7f1f36ca51a26a5290eb2dd1b0d8279a87bb0d480c8443"),
).unwrap();
let exp_sum = PublicKey::from_slice(
&s,
&hex!("0384526253c27c7aef56c7b71a5cd25bebb66dddda437826defc5b2568bde81f07"),
).unwrap();
let sum1 = compressed1.combine(&s, &compressed2);
assert!(sum1.is_ok());
let sum2 = compressed2.combine(&s, &compressed1);
assert!(sum2.is_ok());
assert_eq!(sum1, sum2);
assert_eq!(sum1.unwrap(), exp_sum);
}
2018-05-29 11:11:18 +00:00
#[test]
fn pubkey_equal() {
let s = Secp256k1::new();
let pk1 = PublicKey::from_slice(
&s,
&hex!("0241cc121c419921942add6db6482fb36243faf83317c866d2a28d8c6d7089f7ba"),
).unwrap();
let pk2 = pk1.clone();
let pk3 = PublicKey::from_slice(
&s,
&hex!("02e6642fd69bd211f93f7f1f36ca51a26a5290eb2dd1b0d8279a87bb0d480c8443"),
).unwrap();
assert!(pk1 == pk2);
assert!(pk1 <= pk2);
assert!(pk2 <= pk1);
assert!(!(pk2 < pk1));
assert!(!(pk1 < pk2));
assert!(pk3 < pk1);
assert!(pk1 > pk3);
assert!(pk3 <= pk1);
assert!(pk1 >= pk3);
}
}