["Fast constant-time gcd computation and modular inversion"](https://gcd.cr.yp.to/papers.html#safegcd)
by Daniel J. Bernstein and Bo-Yin Yang. The references below are for the Date: 2019.04.13 version.
The actual implementation is in C of course, but for demonstration purposes Python3 is used here.
Most implementation aspects and optimizations are explained, except those that depend on the specific
number representation used in the C code.
## 1. Computing the Greatest Common Divisor (GCD) using divsteps
The algorithm from the paper (section 11), at a very high level, is this:
```python
def gcd(f, g):
"""Compute the GCD of an odd integer f and another integer g."""
assert f & 1 # require f to be odd
delta = 1 # additional state variable
while g != 0:
assert f & 1 # f will be odd in every iteration
if delta > 0 and g & 1:
delta, f, g = 1 - delta, g, (g - f) // 2
elif g & 1:
delta, f, g = 1 + delta, f, (g + f) // 2
else:
delta, f, g = 1 + delta, f, (g ) // 2
return abs(f)
```
It computes the greatest common divisor of an odd integer *f* and any integer *g*. Its inner loop
keeps rewriting the variables *f* and *g* alongside a state variable *δ* that starts at *1*, until
*g=0* is reached. At that point, *|f|* gives the GCD. Each of the transitions in the loop is called a
"division step" (referred to as divstep in what follows).
For example, *gcd(21, 14)* would be computed as:
- Start with *δ=1 f=21 g=14*
- Take the third branch: *δ=2 f=21 g=7*
- Take the first branch: *δ=-1 f=7 g=-7*
- Take the second branch: *δ=0 f=7 g=0*
- The answer *|f| = 7*.
Why it works:
- Divsteps can be decomposed into two steps (see paragraph 8.2 in the paper):
- (a) If *g* is odd, replace *(f,g)* with *(g,g-f)* or (f,g+f), resulting in an even *g*.
- (b) Replace *(f,g)* with *(f,g/2)* (where *g* is guaranteed to be even).
- Neither of those two operations change the GCD:
- For (a), assume *gcd(f,g)=c*, then it must be the case that *f=a c* and *g=b c* for some integers *a*
and *b*. As *(g,g-f)=(b c,(b-a)c)* and *(f,f+g)=(a c,(a+b)c)*, the result clearly still has
common factor *c*. Reasoning in the other direction shows that no common factor can be added by
doing so either.
- For (b), we know that *f* is odd, so *gcd(f,g)* clearly has no factor *2*, and we can remove
it from *g*.
- The algorithm will eventually converge to *g=0*. This is proven in the paper (see theorem G.3).
- It follows that eventually we find a final value *f'* for which *gcd(f,g) = gcd(f',0)*. As the
gcd of *f'* and *0* is *|f'|* by definition, that is our answer.
Compared to more [traditional GCD algorithms](https://en.wikipedia.org/wiki/Euclidean_algorithm), this one has the property of only ever looking at
the low-order bits of the variables to decide the next steps, and being easy to make
constant-time (in more low-level languages than Python). The *δ* parameter is necessary to
guide the algorithm towards shrinking the numbers' magnitudes without explicitly needing to look
at high order bits.
Properties that will become important later:
- Performing more divsteps than needed is not a problem, as *f* does not change anymore after *g=0*.
- Only even numbers are divided by *2*. This means that when reasoning about it algebraically we
do not need to worry about rounding.
- At every point during the algorithm's execution the next *N* steps only depend on the bottom *N*
bits of *f* and *g*, and on *δ*.
## 2. From GCDs to modular inverses
We want an algorithm to compute the inverse *a* of *x* modulo *M*, i.e. the number a such that *a x=1
mod M*. This inverse only exists if the GCD of *x* and *M* is *1*, but that is always the case if *M* is
prime and *0 < x < M*. In what follows, assume that the modular inverse exists.
It turns out this inverse can be computed as a side effect of computing the GCD by keeping track
of how the internal variables can be written as linear combinations of the inputs at every step
(see the [extended Euclidean algorithm](https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm)).
Since the GCD is *1*, such an algorithm will compute numbers *a* and *b* such that a x + b M = 1*.
Taking that expression *mod M* gives *a x mod M = 1*, and we see that *a* is the modular inverse of *x
mod M*.
A similar approach can be used to calculate modular inverses using the divsteps-based GCD
algorithm shown above, if the modulus *M* is odd. To do so, compute *gcd(f=M,g=x)*, while keeping
track of extra variables *d* and *e*, for which at every step *d = f/x (mod M)* and *e = g/x (mod M)*.
*f/x* here means the number which multiplied with *x* gives *f mod M*. As *f* and *g* are initialized to *M*
and *x* respectively, *d* and *e* just start off being *0* (*M/x mod M = 0/x mod M = 0*) and *1* (*x/x mod M
= 1*).
```python
def div2(M, x):
"""Helper routine to compute x/2 mod M (where M is odd)."""
assert M & 1
if x & 1: # If x is odd, make it even by adding M.
x += M
# x must be even now, so a clean division by 2 is possible.
return x // 2
def modinv(M, x):
"""Compute the inverse of x mod M (given that it exists, and M is odd)."""
assert M & 1
delta, f, g, d, e = 1, M, x, 0, 1
while g != 0:
# Note that while division by two for f and g is only ever done on even inputs, this is
# not true for d and e, so we need the div2 helper function.
if delta > 0 and g & 1:
delta, f, g, d, e = 1 - delta, g, (g - f) // 2, e, div2(M, e - d)
elif g & 1:
delta, f, g, d, e = 1 + delta, f, (g + f) // 2, d, div2(M, e + d)
else:
delta, f, g, d, e = 1 + delta, f, (g ) // 2, d, div2(M, e )
# Verify that the invariants d=f/x mod M, e=g/x mod M are maintained.
assert f % M == (d * x) % M
assert g % M == (e * x) % M
assert f == 1 or f == -1 # |f| is the GCD, it must be 1
# Because of invariant d = f/x (mod M), 1/x = d/f (mod M). As |f|=1, d/f = d*f.
return (d * f) % M
```
Also note that this approach to track *d* and *e* throughout the computation to determine the inverse
is different from the paper. There (see paragraph 12.1 in the paper) a transition matrix for the
entire computation is determined (see section 3 below) and the inverse is computed from that.
The approach here avoids the need for 2x2 matrix multiplications of various sizes, and appears to
be faster at the level of optimization we're able to do in C.
## 3. Batching multiple divsteps
Every divstep can be expressed as a matrix multiplication, applying a transition matrix *(1/2 t)*
to both vectors *[f, g]* and *[d, e]* (see paragraph 8.1 in the paper):
```
t = [ u, v ]
[ q, r ]
[ out_f ] = (1/2 * t) * [ in_f ]
[ out_g ] = [ in_g ]
[ out_d ] = (1/2 * t) * [ in_d ] (mod M)
[ out_e ] [ in_e ]
```
where *(u, v, q, r)* is *(0, 2, -1, 1)*, *(2, 0, 1, 1)*, or *(2, 0, 0, 1)*, depending on which branch is
taken. As above, the resulting *f* and *g* are always integers.
Performing multiple divsteps corresponds to a multiplication with the product of all the
individual divsteps' transition matrices. As each transition matrix consists of integers
divided by *2*, the product of these matrices will consist of integers divided by *2<sup>N</sup>* (see also
theorem 9.2 in the paper). These divisions are expensive when updating *d* and *e*, so we delay
them: we compute the integer coefficients of the combined transition matrix scaled by *2<sup>N</sup>*, and
do one division by *2<sup>N</sup>* as a final step:
```python
def divsteps_n_matrix(delta, f, g):
"""Compute delta and transition matrix t after N divsteps (multiplied by 2^N)."""
u, v, q, r = 1, 0, 0, 1 # start with identity matrix
for _ in range(N):
if delta > 0 and g & 1:
delta, f, g, u, v, q, r = 1 - delta, g, (g - f) // 2, 2*q, 2*r, q-u, r-v
elif g & 1:
delta, f, g, u, v, q, r = 1 + delta, f, (g + f) // 2, 2*u, 2*v, q+u, r+v
else:
delta, f, g, u, v, q, r = 1 + delta, f, (g ) // 2, 2*u, 2*v, q , r
return delta, (u, v, q, r)
```
As the branches in the divsteps are completely determined by the bottom *N* bits of *f* and *g*, this
function to compute the transition matrix only needs to see those bottom bits. Furthermore all
intermediate results and outputs fit in *(N+1)*-bit numbers (unsigned for *f* and *g*; signed for *u*, *v*,
*q*, and *r*) (see also paragraph 8.3 in the paper). This means that an implementation using 64-bit
integers could set *N=62* and compute the full transition matrix for 62 steps at once without any
big integer arithmetic at all. This is the reason why this algorithm is efficient: it only needs
to update the full-size *f*, *g*, *d*, and *e* numbers once every *N* steps.
We still need functions to compute:
```
[ out_f ] = (1/2^N * [ u, v ]) * [ in_f ]
[ out_g ] ( [ q, r ]) [ in_g ]
[ out_d ] = (1/2^N * [ u, v ]) * [ in_d ] (mod M)
[ out_e ] ( [ q, r ]) [ in_e ]
```
Because the divsteps transformation only ever divides even numbers by two, the result of *t [f,g]* is always even. When *t* is a composition of *N* divsteps, it follows that the resulting *f*
and *g* will be multiple of *2<sup>N</sup>*, and division by *2<sup>N</sup>* is simply shifting them down:
```python
def update_fg(f, g, t):
"""Multiply matrix t/2^N with [f, g]."""
u, v, q, r = t
cf, cg = u*f + v*g, q*f + r*g
# (t / 2^N) should cleanly apply to [f,g] so the result of t*[f,g] should have N zero
# bottom bits.
assert cf % 2**N == 0
assert cg % 2**N == 0
return cf >> N, cg >> N
```
The same is not true for *d* and *e*, and we need an equivalent of the `div2` function for division by *2<sup>N</sup> mod M*.
This is easy if we have precomputed *1/M mod 2<sup>N</sup>* (which always exists for odd *M*):
```python
def div2n(M, Mi, x):
"""Compute x/2^N mod M, given Mi = 1/M mod 2^N."""
assert (M * Mi) % 2**N == 1
# Find a factor m such that m*M has the same bottom N bits as x. We want:
# (m * M) mod 2^N = x mod 2^N
# <=> m mod 2^N = (x / M) mod 2^N
# <=> m mod 2^N = (x * Mi) mod 2^N
m = (Mi * x) % 2**N
# Subtract that multiple from x, cancelling its bottom N bits.
x -= m * M
# Now a clean division by 2^N is possible.
assert x % 2**N == 0
return (x >> N) % M
def update_de(d, e, t, M, Mi):
"""Multiply matrix t/2^N with [d, e], modulo M."""
u, v, q, r = t
cd, ce = u*d + v*e, q*d + r*e
return div2n(M, Mi, cd), div2n(M, Mi, ce)
```
With all of those, we can write a version of `modinv` that performs *N* divsteps at once:
```python3
def modinv(M, Mi, x):
"""Compute the modular inverse of x mod M, given Mi=1/M mod 2^N."""
assert M & 1
delta, f, g, d, e = 1, M, x, 0, 1
while g != 0:
# Compute the delta and transition matrix t for the next N divsteps (this only needs
# (N+1)-bit signed integer arithmetic).
delta, t = divsteps_n_matrix(delta, f % 2**N, g % 2**N)
# Apply the transition matrix t to [f, g]:
f, g = update_fg(f, g, t)
# Apply the transition matrix t to [d, e]:
d, e = update_de(d, e, t, M, Mi)
return (d * f) % M
```
This means that in practice we'll always perform a multiple of *N* divsteps. This is not a problem
because once *g=0*, further divsteps do not affect *f*, *g*, *d*, or *e* anymore (only *δ* keeps
increasing). For variable time code such excess iterations will be mostly optimized away in later
sections.
## 4. Avoiding modulus operations
So far, there are two places where we compute a remainder of big numbers modulo *M*: at the end of
`div2n` in every `update_de`, and at the very end of `modinv` after potentially negating *d* due to the
sign of *f*. These are relatively expensive operations when done generically.
To deal with the modulus operation in `div2n`, we simply stop requiring *d* and *e* to be in range
*[0,M)* all the time. Let's start by inlining `div2n` into `update_de`, and dropping the modulus
operation at the end:
```python
def update_de(d, e, t, M, Mi):
"""Multiply matrix t/2^N with [d, e] mod M, given Mi=1/M mod 2^N."""
u, v, q, r = t
cd, ce = u*d + v*e, q*d + r*e
# Cancel out bottom N bits of cd and ce.
md = -((Mi * cd) % 2**N)
me = -((Mi * ce) % 2**N)
cd += md * M
ce += me * M
# And cleanly divide by 2**N.
return cd >> N, ce >> N
```
Let's look at bounds on the ranges of these numbers. It can be shown that *|u|+|v|* and *|q|+|r|*
never exceed *2<sup>N</sup>* (see paragraph 8.3 in the paper), and thus a multiplication with *t* will have
outputs whose absolute values are at most *2<sup>N</sup>* times the maximum absolute input value. In case the
inputs *d* and *e* are in *(-M,M)*, which is certainly true for the initial values *d=0* and *e=1* assuming
*M > 1*, the multiplication results in numbers in range *(-2<sup>N</sup>M,2<sup>N</sup>M)*. Subtracting less than *2<sup>N</sup>*
times *M* to cancel out *N* bits brings that up to *(-2<sup>N+1</sup>M,2<sup>N</sup>M)*, and
dividing by *2<sup>N</sup>* at the end takes it to *(-2M,M)*. Another application of `update_de` would take that
to *(-3M,2M)*, and so forth. This progressive expansion of the variables' ranges can be
counteracted by incrementing *d* and *e* by *M* whenever they're negative:
```python
...
if d <0:
d += M
if e <0:
e += M
cd, ce = u*d + v*e, q*d + r*e
# Cancel out bottom N bits of cd and ce.
...
```
With inputs in *(-2M,M)*, they will first be shifted into range *(-M,M)*, which means that the
output will again be in *(-2M,M)*, and this remains the case regardless of how many `update_de`
invocations there are. In what follows, we will try to make this more efficient.
Note that increasing *d* by *M* is equal to incrementing *cd* by *u M* and *ce* by *q M*. Similarly,
increasing *e* by *M* is equal to incrementing *cd* by *v M* and *ce* by *r M*. So we could instead write:
```python
...
cd, ce = u*d + v*e, q*d + r*e
# Perform the equivalent of incrementing d, e by M when they're negative.
if d <0:
cd += u*M
ce += q*M
if e <0:
cd += v*M
ce += r*M
# Cancel out bottom N bits of cd and ce.
md = -((Mi * cd) % 2**N)
me = -((Mi * ce) % 2**N)
cd += md * M
ce += me * M
...
```
Now note that we have two steps of corrections to *cd* and *ce* that add multiples of *M*: this
increment, and the decrement that cancels out bottom bits. The second one depends on the first
one, but they can still be efficiently combined by only computing the bottom bits of *cd* and *ce*
at first, and using that to compute the final *md*, *me* values:
```python
def update_de(d, e, t, M, Mi):
"""Multiply matrix t/2^N with [d, e], modulo M."""
u, v, q, r = t
md, me = 0, 0
# Compute what multiples of M to add to cd and ce.