Move recovery to its own module
This commit is contained in:
parent
b843f72955
commit
264b368ee0
290
src/lib.rs
290
src/lib.rs
|
@ -152,16 +152,13 @@ pub mod constants;
|
|||
pub mod ecdh;
|
||||
pub mod ffi;
|
||||
pub mod key;
|
||||
pub mod recovery;
|
||||
|
||||
pub use key::SecretKey;
|
||||
pub use key::PublicKey;
|
||||
use core::marker::PhantomData;
|
||||
use core::ops::Deref;
|
||||
|
||||
/// A tag used for recovering the public key from a compact signature
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
||||
pub struct RecoveryId(i32);
|
||||
|
||||
/// An ECDSA signature
|
||||
#[derive(Copy, Clone, PartialEq, Eq)]
|
||||
pub struct Signature(ffi::Signature);
|
||||
|
@ -210,10 +207,6 @@ fn from_str(s: &str) -> Result<Signature, Error> {
|
|||
}
|
||||
}
|
||||
|
||||
/// An ECDSA signature with a recovery ID for pubkey recovery
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
||||
pub struct RecoverableSignature(ffi::RecoverableSignature);
|
||||
|
||||
/// Trait describing something that promises to be a 32-byte random number; in particular,
|
||||
/// it has negligible probability of being zero or overflowing the group order. Such objects
|
||||
/// may be converted to `Message`s without any error paths.
|
||||
|
@ -222,23 +215,6 @@ pub trait ThirtyTwoByteHash {
|
|||
fn into_32(self) -> [u8; 32];
|
||||
}
|
||||
|
||||
impl RecoveryId {
|
||||
#[inline]
|
||||
/// Allows library users to create valid recovery IDs from i32.
|
||||
pub fn from_i32(id: i32) -> Result<RecoveryId, Error> {
|
||||
match id {
|
||||
0 | 1 | 2 | 3 => Ok(RecoveryId(id)),
|
||||
_ => Err(Error::InvalidRecoveryId)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Allows library users to convert recovery IDs to i32.
|
||||
pub fn to_i32(self) -> i32 {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl SerializedSignature {
|
||||
/// Get a pointer to the underlying data with the specified capacity.
|
||||
pub(crate) fn get_data_mut_ptr(&mut self) -> *mut u8 {
|
||||
|
@ -420,79 +396,6 @@ impl From<ffi::Signature> for Signature {
|
|||
}
|
||||
|
||||
|
||||
impl RecoverableSignature {
|
||||
#[inline]
|
||||
/// Converts a compact-encoded byte slice to a signature. This
|
||||
/// representation is nonstandard and defined by the libsecp256k1
|
||||
/// library.
|
||||
pub fn from_compact(data: &[u8], recid: RecoveryId) -> Result<RecoverableSignature, Error> {
|
||||
let mut ret = unsafe { ffi::RecoverableSignature::blank() };
|
||||
|
||||
unsafe {
|
||||
if data.len() != 64 {
|
||||
Err(Error::InvalidSignature)
|
||||
} else if ffi::secp256k1_ecdsa_recoverable_signature_parse_compact(
|
||||
ffi::secp256k1_context_no_precomp,
|
||||
&mut ret,
|
||||
data.as_ptr(),
|
||||
recid.0,
|
||||
) == 1
|
||||
{
|
||||
Ok(RecoverableSignature(ret))
|
||||
} else {
|
||||
Err(Error::InvalidSignature)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Obtains a raw pointer suitable for use with FFI functions
|
||||
#[inline]
|
||||
pub fn as_ptr(&self) -> *const ffi::RecoverableSignature {
|
||||
&self.0 as *const _
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Serializes the recoverable signature in compact format
|
||||
pub fn serialize_compact(&self) -> (RecoveryId, [u8; 64]) {
|
||||
let mut ret = [0u8; 64];
|
||||
let mut recid = 0i32;
|
||||
unsafe {
|
||||
let err = ffi::secp256k1_ecdsa_recoverable_signature_serialize_compact(
|
||||
ffi::secp256k1_context_no_precomp,
|
||||
ret.as_mut_ptr(),
|
||||
&mut recid,
|
||||
self.as_ptr(),
|
||||
);
|
||||
assert!(err == 1);
|
||||
}
|
||||
(RecoveryId(recid), ret)
|
||||
}
|
||||
|
||||
/// Converts a recoverable signature to a non-recoverable one (this is needed
|
||||
/// for verification
|
||||
#[inline]
|
||||
pub fn to_standard(&self) -> Signature {
|
||||
let mut ret = unsafe { ffi::Signature::blank() };
|
||||
unsafe {
|
||||
let err = ffi::secp256k1_ecdsa_recoverable_signature_convert(
|
||||
ffi::secp256k1_context_no_precomp,
|
||||
&mut ret,
|
||||
self.as_ptr(),
|
||||
);
|
||||
assert!(err == 1);
|
||||
}
|
||||
Signature(ret)
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a new recoverable signature from a FFI one
|
||||
impl From<ffi::RecoverableSignature> for RecoverableSignature {
|
||||
#[inline]
|
||||
fn from(sig: ffi::RecoverableSignature) -> RecoverableSignature {
|
||||
RecoverableSignature(sig)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "serde")]
|
||||
impl ::serde::Serialize for Signature {
|
||||
fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
|
||||
|
@ -767,31 +670,6 @@ impl<C: Signing> Secp256k1<C> {
|
|||
Signature::from(ret)
|
||||
}
|
||||
|
||||
/// Constructs a signature for `msg` using the secret key `sk` and RFC6979 nonce
|
||||
/// Requires a signing-capable context.
|
||||
pub fn sign_recoverable(&self, msg: &Message, sk: &key::SecretKey)
|
||||
-> RecoverableSignature {
|
||||
|
||||
let mut ret = unsafe { ffi::RecoverableSignature::blank() };
|
||||
unsafe {
|
||||
// We can assume the return value because it's not possible to construct
|
||||
// an invalid signature from a valid `Message` and `SecretKey`
|
||||
assert_eq!(
|
||||
ffi::secp256k1_ecdsa_sign_recoverable(
|
||||
self.ctx,
|
||||
&mut ret,
|
||||
msg.as_ptr(),
|
||||
sk.as_ptr(),
|
||||
ffi::secp256k1_nonce_function_rfc6979,
|
||||
ptr::null()
|
||||
),
|
||||
1
|
||||
);
|
||||
}
|
||||
|
||||
RecoverableSignature::from(ret)
|
||||
}
|
||||
|
||||
/// Generates a random keypair. Convenience function for `key::SecretKey::new`
|
||||
/// and `key::PublicKey::from_secret_key`; call those functions directly for
|
||||
/// batch key generation. Requires a signing-capable context. Requires compilation
|
||||
|
@ -807,23 +685,6 @@ impl<C: Signing> Secp256k1<C> {
|
|||
}
|
||||
|
||||
impl<C: Verification> Secp256k1<C> {
|
||||
|
||||
/// Determines the public key for which `sig` is a valid signature for
|
||||
/// `msg`. Requires a verify-capable context.
|
||||
pub fn recover(&self, msg: &Message, sig: &RecoverableSignature)
|
||||
-> Result<key::PublicKey, Error> {
|
||||
|
||||
let mut pk = unsafe { ffi::PublicKey::blank() };
|
||||
|
||||
unsafe {
|
||||
if ffi::secp256k1_ecdsa_recover(self.ctx, &mut pk,
|
||||
sig.as_ptr(), msg.as_ptr()) != 1 {
|
||||
return Err(Error::InvalidSignature);
|
||||
}
|
||||
};
|
||||
Ok(key::PublicKey::from(pk))
|
||||
}
|
||||
|
||||
/// Checks that `sig` is a valid ECDSA signature for `msg` using the public
|
||||
/// key `pubkey`. Returns `Ok(true)` on success. Note that this function cannot
|
||||
/// be used for Bitcoin consensus checking since there may exist signatures
|
||||
|
@ -877,7 +738,7 @@ mod tests {
|
|||
use key::{SecretKey, PublicKey};
|
||||
use super::from_hex;
|
||||
use super::constants;
|
||||
use super::{Secp256k1, Signature, RecoverableSignature, Message, RecoveryId};
|
||||
use super::{Secp256k1, Signature, Message};
|
||||
use super::Error::{InvalidMessage, IncorrectSignature, InvalidSignature};
|
||||
|
||||
macro_rules! hex {
|
||||
|
@ -903,22 +764,12 @@ mod tests {
|
|||
|
||||
// Try signing
|
||||
assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk));
|
||||
assert_eq!(sign.sign_recoverable(&msg, &sk), full.sign_recoverable(&msg, &sk));
|
||||
let sig = full.sign(&msg, &sk);
|
||||
let sigr = full.sign_recoverable(&msg, &sk);
|
||||
|
||||
// Try verifying
|
||||
assert!(vrfy.verify(&msg, &sig, &pk).is_ok());
|
||||
assert!(full.verify(&msg, &sig, &pk).is_ok());
|
||||
|
||||
// Try pk recovery
|
||||
assert!(vrfy.recover(&msg, &sigr).is_ok());
|
||||
assert!(full.recover(&msg, &sigr).is_ok());
|
||||
|
||||
assert_eq!(vrfy.recover(&msg, &sigr),
|
||||
full.recover(&msg, &sigr));
|
||||
assert_eq!(full.recover(&msg, &sigr), Ok(pk));
|
||||
|
||||
// Check that we can produce keys from slices with no precomputation
|
||||
let (pk_slice, sk_slice) = (&pk.serialize(), &sk[..]);
|
||||
let new_pk = PublicKey::from_slice(pk_slice).unwrap();
|
||||
|
@ -927,35 +778,6 @@ mod tests {
|
|||
assert_eq!(pk, new_pk);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn recid_sanity_check() {
|
||||
let one = RecoveryId(1);
|
||||
assert_eq!(one, one.clone());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sign() {
|
||||
let mut s = Secp256k1::new();
|
||||
s.randomize(&mut thread_rng());
|
||||
let one = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];
|
||||
|
||||
let sk = SecretKey::from_slice(&one).unwrap();
|
||||
let msg = Message::from_slice(&one).unwrap();
|
||||
|
||||
let sig = s.sign_recoverable(&msg, &sk);
|
||||
assert_eq!(Ok(sig), RecoverableSignature::from_compact(&[
|
||||
0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f,
|
||||
0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6,
|
||||
0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65,
|
||||
0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98,
|
||||
0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8,
|
||||
0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f,
|
||||
0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06,
|
||||
0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89],
|
||||
RecoveryId(1)))
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn signature_serialize_roundtrip() {
|
||||
let mut s = Secp256k1::new();
|
||||
|
@ -1093,47 +915,12 @@ mod tests {
|
|||
|
||||
let (sk, pk) = s.generate_keypair(&mut thread_rng());
|
||||
|
||||
let sigr = s.sign_recoverable(&msg, &sk);
|
||||
let sig = sigr.to_standard();
|
||||
let sig = s.sign(&msg, &sk);
|
||||
|
||||
let mut msg = [0u8; 32];
|
||||
thread_rng().fill_bytes(&mut msg);
|
||||
let msg = Message::from_slice(&msg).unwrap();
|
||||
assert_eq!(s.verify(&msg, &sig, &pk), Err(IncorrectSignature));
|
||||
|
||||
let recovered_key = s.recover(&msg, &sigr).unwrap();
|
||||
assert!(recovered_key != pk);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sign_with_recovery() {
|
||||
let mut s = Secp256k1::new();
|
||||
s.randomize(&mut thread_rng());
|
||||
|
||||
let mut msg = [0u8; 32];
|
||||
thread_rng().fill_bytes(&mut msg);
|
||||
let msg = Message::from_slice(&msg).unwrap();
|
||||
|
||||
let (sk, pk) = s.generate_keypair(&mut thread_rng());
|
||||
|
||||
let sig = s.sign_recoverable(&msg, &sk);
|
||||
|
||||
assert_eq!(s.recover(&msg, &sig), Ok(pk));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bad_recovery() {
|
||||
let mut s = Secp256k1::new();
|
||||
s.randomize(&mut thread_rng());
|
||||
|
||||
let msg = Message::from_slice(&[0x55; 32]).unwrap();
|
||||
|
||||
// Zero is not a valid sig
|
||||
let sig = RecoverableSignature::from_compact(&[0; 64], RecoveryId(0)).unwrap();
|
||||
assert_eq!(s.recover(&msg, &sig), Err(InvalidSignature));
|
||||
// ...but 111..111 is
|
||||
let sig = RecoverableSignature::from_compact(&[1; 64], RecoveryId(0)).unwrap();
|
||||
assert!(s.recover(&msg, &sig).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -1154,62 +941,6 @@ mod tests {
|
|||
assert!(Message::from_slice(&[1; constants::MESSAGE_SIZE]).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_debug_output() {
|
||||
let sig = RecoverableSignature::from_compact(&[
|
||||
0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f,
|
||||
0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6,
|
||||
0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65,
|
||||
0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98,
|
||||
0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8,
|
||||
0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f,
|
||||
0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06,
|
||||
0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89],
|
||||
RecoveryId(1)).unwrap();
|
||||
assert_eq!(&format!("{:?}", sig), "RecoverableSignature(98882e09f4ed6dc3659e43fc771e0cafa60b1f926f2b77041f744721adff7366898cb609d0ee128d06ae9aa3c48020ff9f705e02f80e1280a8ade05216971a4c01)");
|
||||
|
||||
let msg = Message([1, 2, 3, 4, 5, 6, 7, 8,
|
||||
9, 10, 11, 12, 13, 14, 15, 16,
|
||||
17, 18, 19, 20, 21, 22, 23, 24,
|
||||
25, 26, 27, 28, 29, 30, 31, 255]);
|
||||
assert_eq!(&format!("{:?}", msg), "Message(0102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1fff)");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_recov_sig_serialize_compact() {
|
||||
let recid_in = RecoveryId(1);
|
||||
let bytes_in = &[
|
||||
0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f,
|
||||
0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6,
|
||||
0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65,
|
||||
0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98,
|
||||
0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8,
|
||||
0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f,
|
||||
0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06,
|
||||
0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89];
|
||||
let sig = RecoverableSignature::from_compact(
|
||||
bytes_in,
|
||||
recid_in,
|
||||
).unwrap();
|
||||
let (recid_out, bytes_out) = sig.serialize_compact();
|
||||
assert_eq!(recid_in, recid_out);
|
||||
assert_eq!(&bytes_in[..], &bytes_out[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_recov_id_conversion_between_i32() {
|
||||
assert!(RecoveryId::from_i32(-1).is_err());
|
||||
assert!(RecoveryId::from_i32(0).is_ok());
|
||||
assert!(RecoveryId::from_i32(1).is_ok());
|
||||
assert!(RecoveryId::from_i32(2).is_ok());
|
||||
assert!(RecoveryId::from_i32(3).is_ok());
|
||||
assert!(RecoveryId::from_i32(4).is_err());
|
||||
let id0 = RecoveryId::from_i32(0).unwrap();
|
||||
assert_eq!(id0.to_i32(), 0);
|
||||
let id1 = RecoveryId(1);
|
||||
assert_eq!(id1.to_i32(), 1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_low_s() {
|
||||
// nb this is a transaction on testnet
|
||||
|
@ -1304,19 +1035,4 @@ mod benches {
|
|||
black_box(res);
|
||||
});
|
||||
}
|
||||
|
||||
#[bench]
|
||||
pub fn bench_recover(bh: &mut Bencher) {
|
||||
let s = Secp256k1::new();
|
||||
let mut msg = [0u8; 32];
|
||||
thread_rng().fill_bytes(&mut msg);
|
||||
let msg = Message::from_slice(&msg).unwrap();
|
||||
let (sk, _) = s.generate_keypair(&mut thread_rng());
|
||||
let sig = s.sign_recoverable(&msg, &sk);
|
||||
|
||||
bh.iter(|| {
|
||||
let res = s.recover(&msg, &sig).unwrap();
|
||||
black_box(res);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,359 @@
|
|||
// TODO header
|
||||
// Bitcoin secp256k1 bindings
|
||||
// Written in 2014 by
|
||||
// Dawid Ciężarkiewicz
|
||||
// Andrew Poelstra
|
||||
//
|
||||
// To the extent possible under law, the author(s) have dedicated all
|
||||
// copyright and related and neighboring rights to this software to
|
||||
// the public domain worldwide. This software is distributed without
|
||||
// any warranty.
|
||||
//
|
||||
// You should have received a copy of the CC0 Public Domain Dedication
|
||||
// along with this software.
|
||||
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
|
||||
//
|
||||
|
||||
//! # Recovery module
|
||||
//! Provides a signing function that allows recovering the public key from the
|
||||
//! signature.
|
||||
|
||||
use core::ptr;
|
||||
use ffi;
|
||||
use key;
|
||||
use super::{Secp256k1, Message, Error, Signature, Verification, Signing};
|
||||
pub use key::SecretKey;
|
||||
pub use key::PublicKey;
|
||||
|
||||
/// A tag used for recovering the public key from a compact signature
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
||||
pub struct RecoveryId(i32);
|
||||
|
||||
/// An ECDSA signature with a recovery ID for pubkey recovery
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
||||
pub struct RecoverableSignature(ffi::RecoverableSignature);
|
||||
|
||||
impl RecoveryId {
|
||||
#[inline]
|
||||
/// Allows library users to create valid recovery IDs from i32.
|
||||
/// TODO
|
||||
pub fn from_i32(id: i32) -> Result<RecoveryId, Error> {
|
||||
match id {
|
||||
0 | 1 | 2 | 3 => Ok(RecoveryId(id)),
|
||||
_ => Err(Error::InvalidRecoveryId)
|
||||
}
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Allows library users to convert recovery IDs to i32.
|
||||
pub fn to_i32(self) -> i32 {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
impl RecoverableSignature {
|
||||
#[inline]
|
||||
/// Converts a compact-encoded byte slice to a signature. This
|
||||
/// representation is nonstandard and defined by the libsecp256k1
|
||||
/// library.
|
||||
pub fn from_compact(data: &[u8], recid: RecoveryId) -> Result<RecoverableSignature, Error> {
|
||||
let mut ret = unsafe { ffi::RecoverableSignature::blank() };
|
||||
|
||||
unsafe {
|
||||
if data.len() != 64 {
|
||||
Err(Error::InvalidSignature)
|
||||
} else if ffi::secp256k1_ecdsa_recoverable_signature_parse_compact(
|
||||
ffi::secp256k1_context_no_precomp,
|
||||
&mut ret,
|
||||
data.as_ptr(),
|
||||
recid.0,
|
||||
) == 1
|
||||
{
|
||||
Ok(RecoverableSignature(ret))
|
||||
} else {
|
||||
Err(Error::InvalidSignature)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Obtains a raw pointer suitable for use with FFI functions
|
||||
#[inline]
|
||||
pub fn as_ptr(&self) -> *const ffi::RecoverableSignature {
|
||||
&self.0 as *const _
|
||||
}
|
||||
|
||||
#[inline]
|
||||
/// Serializes the recoverable signature in compact format
|
||||
pub fn serialize_compact(&self) -> (RecoveryId, [u8; 64]) {
|
||||
let mut ret = [0u8; 64];
|
||||
let mut recid = 0i32;
|
||||
unsafe {
|
||||
let err = ffi::secp256k1_ecdsa_recoverable_signature_serialize_compact(
|
||||
ffi::secp256k1_context_no_precomp,
|
||||
ret.as_mut_ptr(),
|
||||
&mut recid,
|
||||
self.as_ptr(),
|
||||
);
|
||||
assert!(err == 1);
|
||||
}
|
||||
(RecoveryId(recid), ret)
|
||||
}
|
||||
|
||||
/// Converts a recoverable signature to a non-recoverable one (this is needed
|
||||
/// for verification
|
||||
#[inline]
|
||||
pub fn to_standard(&self) -> Signature {
|
||||
let mut ret = unsafe { ffi::Signature::blank() };
|
||||
unsafe {
|
||||
let err = ffi::secp256k1_ecdsa_recoverable_signature_convert(
|
||||
ffi::secp256k1_context_no_precomp,
|
||||
&mut ret,
|
||||
self.as_ptr(),
|
||||
);
|
||||
assert!(err == 1);
|
||||
}
|
||||
Signature(ret)
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a new recoverable signature from a FFI one
|
||||
impl From<ffi::RecoverableSignature> for RecoverableSignature {
|
||||
#[inline]
|
||||
fn from(sig: ffi::RecoverableSignature) -> RecoverableSignature {
|
||||
RecoverableSignature(sig)
|
||||
}
|
||||
}
|
||||
|
||||
impl<C: Signing> Secp256k1<C> {
|
||||
/// Constructs a signature for `msg` using the secret key `sk` and RFC6979 nonce
|
||||
/// Requires a signing-capable context.
|
||||
pub fn sign_recoverable(&self, msg: &Message, sk: &key::SecretKey)
|
||||
-> RecoverableSignature {
|
||||
|
||||
let mut ret = unsafe { ffi::RecoverableSignature::blank() };
|
||||
unsafe {
|
||||
// We can assume the return value because it's not possible to construct
|
||||
// an invalid signature from a valid `Message` and `SecretKey`
|
||||
assert_eq!(
|
||||
ffi::secp256k1_ecdsa_sign_recoverable(
|
||||
self.ctx,
|
||||
&mut ret,
|
||||
msg.as_ptr(),
|
||||
sk.as_ptr(),
|
||||
ffi::secp256k1_nonce_function_rfc6979,
|
||||
ptr::null()
|
||||
),
|
||||
1
|
||||
);
|
||||
}
|
||||
|
||||
RecoverableSignature::from(ret)
|
||||
}
|
||||
}
|
||||
|
||||
impl<C: Verification> Secp256k1<C> {
|
||||
/// Determines the public key for which `sig` is a valid signature for
|
||||
/// `msg`. Requires a verify-capable context.
|
||||
pub fn recover(&self, msg: &Message, sig: &RecoverableSignature)
|
||||
-> Result<key::PublicKey, Error> {
|
||||
|
||||
let mut pk = unsafe { ffi::PublicKey::blank() };
|
||||
|
||||
unsafe {
|
||||
if ffi::secp256k1_ecdsa_recover(self.ctx, &mut pk,
|
||||
sig.as_ptr(), msg.as_ptr()) != 1 {
|
||||
return Err(Error::InvalidSignature);
|
||||
}
|
||||
};
|
||||
Ok(key::PublicKey::from(pk))
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use rand::{RngCore, thread_rng};
|
||||
|
||||
use key::{SecretKey, PublicKey};
|
||||
use super::{RecoveryId, RecoverableSignature};
|
||||
use super::super::{Secp256k1, Message};
|
||||
use super::super::Error::{IncorrectSignature, InvalidSignature};
|
||||
|
||||
#[test]
|
||||
fn capabilities() {
|
||||
let sign = Secp256k1::signing_only();
|
||||
let vrfy = Secp256k1::verification_only();
|
||||
let full = Secp256k1::new();
|
||||
|
||||
let mut msg = [0u8; 32];
|
||||
thread_rng().fill_bytes(&mut msg);
|
||||
let msg = Message::from_slice(&msg).unwrap();
|
||||
|
||||
// Try key generation
|
||||
let (sk, pk) = full.generate_keypair(&mut thread_rng());
|
||||
|
||||
// Try signing
|
||||
assert_eq!(sign.sign_recoverable(&msg, &sk), full.sign_recoverable(&msg, &sk));
|
||||
let sigr = full.sign_recoverable(&msg, &sk);
|
||||
|
||||
// Try pk recovery
|
||||
assert!(vrfy.recover(&msg, &sigr).is_ok());
|
||||
assert!(full.recover(&msg, &sigr).is_ok());
|
||||
|
||||
assert_eq!(vrfy.recover(&msg, &sigr),
|
||||
full.recover(&msg, &sigr));
|
||||
assert_eq!(full.recover(&msg, &sigr), Ok(pk));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn recid_sanity_check() {
|
||||
let one = RecoveryId(1);
|
||||
assert_eq!(one, one.clone());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sign() {
|
||||
let mut s = Secp256k1::new();
|
||||
s.randomize(&mut thread_rng());
|
||||
let one = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];
|
||||
|
||||
let sk = SecretKey::from_slice(&one).unwrap();
|
||||
let msg = Message::from_slice(&one).unwrap();
|
||||
|
||||
let sig = s.sign_recoverable(&msg, &sk);
|
||||
assert_eq!(Ok(sig), RecoverableSignature::from_compact(&[
|
||||
0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f,
|
||||
0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6,
|
||||
0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65,
|
||||
0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98,
|
||||
0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8,
|
||||
0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f,
|
||||
0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06,
|
||||
0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89],
|
||||
RecoveryId(1)))
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sign_and_verify_fail() {
|
||||
let mut s = Secp256k1::new();
|
||||
s.randomize(&mut thread_rng());
|
||||
|
||||
let mut msg = [0u8; 32];
|
||||
thread_rng().fill_bytes(&mut msg);
|
||||
let msg = Message::from_slice(&msg).unwrap();
|
||||
|
||||
let (sk, pk) = s.generate_keypair(&mut thread_rng());
|
||||
|
||||
let sigr = s.sign_recoverable(&msg, &sk);
|
||||
let sig = sigr.to_standard();
|
||||
|
||||
let mut msg = [0u8; 32];
|
||||
thread_rng().fill_bytes(&mut msg);
|
||||
let msg = Message::from_slice(&msg).unwrap();
|
||||
assert_eq!(s.verify(&msg, &sig, &pk), Err(IncorrectSignature));
|
||||
|
||||
let recovered_key = s.recover(&msg, &sigr).unwrap();
|
||||
assert!(recovered_key != pk);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sign_with_recovery() {
|
||||
let mut s = Secp256k1::new();
|
||||
s.randomize(&mut thread_rng());
|
||||
|
||||
let mut msg = [0u8; 32];
|
||||
thread_rng().fill_bytes(&mut msg);
|
||||
let msg = Message::from_slice(&msg).unwrap();
|
||||
|
||||
let (sk, pk) = s.generate_keypair(&mut thread_rng());
|
||||
|
||||
let sig = s.sign_recoverable(&msg, &sk);
|
||||
|
||||
assert_eq!(s.recover(&msg, &sig), Ok(pk));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bad_recovery() {
|
||||
let mut s = Secp256k1::new();
|
||||
s.randomize(&mut thread_rng());
|
||||
|
||||
let msg = Message::from_slice(&[0x55; 32]).unwrap();
|
||||
|
||||
// Zero is not a valid sig
|
||||
let sig = RecoverableSignature::from_compact(&[0; 64], RecoveryId(0)).unwrap();
|
||||
assert_eq!(s.recover(&msg, &sig), Err(InvalidSignature));
|
||||
// ...but 111..111 is
|
||||
let sig = RecoverableSignature::from_compact(&[1; 64], RecoveryId(0)).unwrap();
|
||||
assert!(s.recover(&msg, &sig).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_debug_output() {
|
||||
let sig = RecoverableSignature::from_compact(&[
|
||||
0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f,
|
||||
0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6,
|
||||
0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65,
|
||||
0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98,
|
||||
0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8,
|
||||
0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f,
|
||||
0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06,
|
||||
0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89],
|
||||
RecoveryId(1)).unwrap();
|
||||
assert_eq!(&format!("{:?}", sig), "RecoverableSignature(98882e09f4ed6dc3659e43fc771e0cafa60b1f926f2b77041f744721adff7366898cb609d0ee128d06ae9aa3c48020ff9f705e02f80e1280a8ade05216971a4c01)");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_recov_sig_serialize_compact() {
|
||||
let recid_in = RecoveryId(1);
|
||||
let bytes_in = &[
|
||||
0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f,
|
||||
0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6,
|
||||
0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65,
|
||||
0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98,
|
||||
0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8,
|
||||
0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f,
|
||||
0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06,
|
||||
0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89];
|
||||
let sig = RecoverableSignature::from_compact(
|
||||
bytes_in,
|
||||
recid_in,
|
||||
).unwrap();
|
||||
let (recid_out, bytes_out) = sig.serialize_compact();
|
||||
assert_eq!(recid_in, recid_out);
|
||||
assert_eq!(&bytes_in[..], &bytes_out[..]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_recov_id_conversion_between_i32() {
|
||||
assert!(RecoveryId::from_i32(-1).is_err());
|
||||
assert!(RecoveryId::from_i32(0).is_ok());
|
||||
assert!(RecoveryId::from_i32(1).is_ok());
|
||||
assert!(RecoveryId::from_i32(2).is_ok());
|
||||
assert!(RecoveryId::from_i32(3).is_ok());
|
||||
assert!(RecoveryId::from_i32(4).is_err());
|
||||
let id0 = RecoveryId::from_i32(0).unwrap();
|
||||
assert_eq!(id0.to_i32(), 0);
|
||||
let id1 = RecoveryId(1);
|
||||
assert_eq!(id1.to_i32(), 1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
mod benches {
|
||||
#[bench]
|
||||
pub fn bench_recover(bh: &mut Bencher) {
|
||||
let s = Secp256k1::new();
|
||||
let mut msg = [0u8; 32];
|
||||
thread_rng().fill_bytes(&mut msg);
|
||||
let msg = Message::from_slice(&msg).unwrap();
|
||||
let (sk, _) = s.generate_keypair(&mut thread_rng());
|
||||
let sig = s.sign_recoverable(&msg, &sk);
|
||||
|
||||
bh.iter(|| {
|
||||
let res = s.recover(&msg, &sig).unwrap();
|
||||
black_box(res);
|
||||
});
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue