Merge pull request #21 from TheBlueMatt/master

Add fuzztarget feature that replaces crypto with memcpys
This commit is contained in:
Andrew Poelstra 2018-03-20 17:00:40 +00:00 committed by GitHub
commit 3b0fcbd05f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 383 additions and 7 deletions

View File

@ -1,7 +1,7 @@
[package]
name = "secp256k1"
version = "0.8.4"
version = "0.8.5"
authors = [ "Dawid Ciężarkiewicz <dpc@ucore.info>",
"Andrew Poelstra <apoelstra@wpsoftware.net>" ]
license = "CC0-1.0"
@ -23,6 +23,7 @@ path = "src/lib.rs"
[features]
unstable = []
default = []
fuzztarget = []
[dev-dependencies]
serde = "1.0"

View File

@ -1,8 +1,8 @@
[![Build Status](https://travis-ci.org/apoelstra/rust-secp256k1.png?branch=master)](https://travis-ci.org/apoelstra/rust-secp256k1)
[![Build Status](https://travis-ci.org/rust-bitcoin/rust-secp256k1.png?branch=master)](https://travis-ci.org/rust-bitcoin/rust-secp256k1)
### rust-secp256k1
`rust-secp256k1` is a wrapper around ![libsecp256k1](https://github.com/bitcoin/secp256k1),
`rust-secp256k1` is a wrapper around ![libsecp256k1](https://github.com/bitcoin-core/secp256k1),
a C library by Peter Wuille for producing ECDSA signatures using the SECG curve
`secp256k1`. This library
* exposes type-safe Rust bindings for all `libsecp256k1` functions

View File

@ -112,6 +112,7 @@ impl SharedSecret {
pub unsafe fn blank() -> SharedSecret { mem::uninitialized() }
}
#[cfg(not(feature = "fuzztarget"))]
extern "C" {
pub static secp256k1_nonce_function_rfc6979: NonceFn;
@ -141,8 +142,8 @@ extern "C" {
-> c_int;
pub fn secp256k1_ec_pubkey_serialize(cx: *const Context, output: *mut c_uchar,
out_len: *mut size_t, pk: *const PublicKey
, compressed: c_uint)
out_len: *mut size_t, pk: *const PublicKey,
compressed: c_uint)
-> c_int;
// Signatures
@ -158,7 +159,7 @@ extern "C" {
input: *const c_uchar, in_len: size_t)
-> c_int;
pub fn secp256k1_ecdsa_signature_serialize_der(cx: *const Context, output: *const c_uchar,
pub fn secp256k1_ecdsa_signature_serialize_der(cx: *const Context, output: *mut c_uchar,
out_len: *mut size_t, sig: *const Signature)
-> c_int;
@ -175,7 +176,7 @@ extern "C" {
-> c_int;
pub fn secp256k1_ecdsa_recoverable_signature_convert(cx: *const Context, sig: *mut Signature,
input: *const RecoverableSignature)
input: *const RecoverableSignature)
-> c_int;
pub fn secp256k1_ecdsa_signature_normalize(cx: *const Context, out_sig: *mut Signature,
@ -275,3 +276,377 @@ extern "C" {
-> c_int;
}
#[cfg(feature = "fuzztarget")]
mod fuzz_dummy {
use libc::{c_int, c_uchar, c_uint, c_void};
use ffi::*;
use std::ptr;
extern "C" {
pub static secp256k1_nonce_function_rfc6979: NonceFn;
}
// Contexts
/// Creates a dummy context, tracking flags to ensure proper calling semantics
pub unsafe fn secp256k1_context_create(flags: c_uint) -> *mut Context {
let b = Box::new(Context(flags as i32));
Box::into_raw(b)
}
/// Copies a dummy context
pub unsafe fn secp256k1_context_clone(cx: *mut Context) -> *mut Context {
let b = Box::new(Context((*cx).0));
Box::into_raw(b)
}
/// Frees a dummy context
pub unsafe fn secp256k1_context_destroy(cx: *mut Context) {
Box::from_raw(cx);
}
/// Asserts that cx is properly initialized
pub unsafe fn secp256k1_context_randomize(cx: *mut Context,
_seed32: *const c_uchar)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
1
}
// TODO secp256k1_context_set_illegal_callback
// TODO secp256k1_context_set_error_callback
// (Actually, I don't really want these exposed; if either of these
// are ever triggered it indicates a bug in rust-secp256k1, since
// one goal is to use Rust's type system to eliminate all possible
// bad inputs.)
// Pubkeys
/// Parse 33/65 byte pubkey into PublicKey, losing compressed information
pub unsafe fn secp256k1_ec_pubkey_parse(cx: *const Context, pk: *mut PublicKey,
input: *const c_uchar, in_len: size_t)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
match in_len {
33 => {
if *input != 2 && *input != 3 {
0
} else {
ptr::copy(input.offset(1), (*pk).0[0..32].as_mut_ptr(), 32);
ptr::copy(input.offset(1), (*pk).0[32..64].as_mut_ptr(), 32);
test_pk_validate(cx, pk)
}
},
65 => {
if *input != 4 && *input != 6 && *input != 7 {
0
} else {
ptr::copy(input.offset(1), (*pk).0.as_mut_ptr(), 64);
test_pk_validate(cx, pk)
}
},
_ => 0
}
}
/// Serialize PublicKey back to 33/65 byte pubkey
pub unsafe fn secp256k1_ec_pubkey_serialize(cx: *const Context, output: *mut c_uchar,
out_len: *mut size_t, pk: *const PublicKey,
compressed: c_uint)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
if test_pk_validate(cx, pk) != 1 { return 0; }
if compressed == SECP256K1_SER_COMPRESSED {
assert_eq!(*out_len, 33);
if (*pk).0[0] > 0x7f {
*output = 2;
} else {
*output = 3;
}
ptr::copy((*pk).0.as_ptr(), output.offset(1), 32);
} else if compressed == SECP256K1_SER_UNCOMPRESSED {
assert_eq!(*out_len, 65);
*output = 4;
ptr::copy((*pk).0.as_ptr(), output.offset(1), 64);
} else {
panic!("Bad flags");
}
1
}
// Signatures
pub unsafe fn secp256k1_ecdsa_signature_parse_der(cx: *const Context, sig: *mut Signature,
input: *const c_uchar, in_len: size_t)
-> c_int {
unimplemented!();
}
/// Copies input64 to sig, checking the pubkey part is valid
pub unsafe fn secp256k1_ecdsa_signature_parse_compact(cx: *const Context, sig: *mut Signature,
input64: *const c_uchar)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
if secp256k1_ec_seckey_verify(cx, input64.offset(32)) != 1 { return 0; } // sig should be msg32||sk
ptr::copy(input64, (*sig).0[..].as_mut_ptr(), 64);
1
}
pub unsafe fn ecdsa_signature_parse_der_lax(cx: *const Context, sig: *mut Signature,
input: *const c_uchar, in_len: size_t)
-> c_int {
unimplemented!();
}
pub unsafe fn secp256k1_ecdsa_signature_serialize_der(cx: *const Context, output: *mut c_uchar,
out_len: *mut size_t, sig: *const Signature)
-> c_int {
unimplemented!();
}
/// Copies sig to output64
pub unsafe fn secp256k1_ecdsa_signature_serialize_compact(cx: *const Context, output64: *mut c_uchar,
sig: *const Signature)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
ptr::copy((*sig).0[..].as_ptr(), output64, 64);
1
}
pub unsafe fn secp256k1_ecdsa_recoverable_signature_parse_compact(cx: *const Context, sig: *mut RecoverableSignature,
input64: *const c_uchar, recid: c_int)
-> c_int {
unimplemented!();
}
pub unsafe fn secp256k1_ecdsa_recoverable_signature_serialize_compact(cx: *const Context, output64: *const c_uchar,
recid: *mut c_int, sig: *const RecoverableSignature)
-> c_int {
unimplemented!();
}
pub unsafe fn secp256k1_ecdsa_recoverable_signature_convert(cx: *const Context, sig: *mut Signature,
input: *const RecoverableSignature)
-> c_int {
unimplemented!();
}
pub unsafe fn secp256k1_ecdsa_signature_normalize(cx: *const Context, out_sig: *mut Signature,
in_sig: *const Signature)
-> c_int {
unimplemented!();
}
// ECDSA
/// Verifies that sig is msg32||pk[0..32]
pub unsafe fn secp256k1_ecdsa_verify(cx: *const Context,
sig: *const Signature,
msg32: *const c_uchar,
pk: *const PublicKey)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
assert!((*cx).0 as u32 & SECP256K1_START_VERIFY == SECP256K1_START_VERIFY);
if test_pk_validate(cx, pk) != 1 { return 0; }
for i in 0..32 {
if (*sig).0[i] != *msg32.offset(i as isize) {
return 0;
}
}
if (*sig).0[32..64] != (*pk).0[0..32] {
0
} else {
1
}
}
/// Sets sig to msg32||sk
pub unsafe fn secp256k1_ecdsa_sign(cx: *const Context,
sig: *mut Signature,
msg32: *const c_uchar,
sk: *const c_uchar,
_noncefn: NonceFn,
_noncedata: *const c_void)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
assert!((*cx).0 as u32 & SECP256K1_START_SIGN == SECP256K1_START_SIGN);
if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; }
ptr::copy(msg32, (*sig).0[0..32].as_mut_ptr(), 32);
ptr::copy(sk, (*sig).0[32..64].as_mut_ptr(), 32);
1
}
/// Sets sig to (2|3)||msg32||sk
pub unsafe fn secp256k1_ecdsa_sign_recoverable(cx: *const Context,
sig: *mut RecoverableSignature,
msg32: *const c_uchar,
sk: *const c_uchar,
_noncefn: NonceFn,
_noncedata: *const c_void)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
assert!((*cx).0 as u32 & SECP256K1_START_SIGN == SECP256K1_START_SIGN);
if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; }
if *sk.offset(0) > 0x7f {
(*sig).0[0] = 2;
} else {
(*sig).0[0] = 3;
}
ptr::copy(msg32, (*sig).0[1..33].as_mut_ptr(), 32);
ptr::copy(sk, (*sig).0[33..65].as_mut_ptr(), 32);
1
}
pub unsafe fn secp256k1_ecdsa_recover(cx: *const Context,
pk: *mut PublicKey,
sig: *const RecoverableSignature,
msg32: *const c_uchar)
-> c_int {
unimplemented!();
}
// Schnorr
pub unsafe fn secp256k1_schnorr_sign(cx: *const Context,
sig64: *mut c_uchar,
msg32: *const c_uchar,
sk: *const c_uchar,
_noncefn: NonceFn,
_noncedata: *const c_void)
-> c_int {
unimplemented!();
}
pub unsafe fn secp256k1_schnorr_verify(cx: *const Context,
sig64: *const c_uchar,
msg32: *const c_uchar,
pk: *const PublicKey)
-> c_int {
unimplemented!();
}
pub unsafe fn secp256k1_schnorr_recover(cx: *const Context,
pk: *mut PublicKey,
sig64: *const c_uchar,
msg32: *const c_uchar)
-> c_int {
unimplemented!();
}
// EC
/// Checks that pk != 0xffff...ffff and pk[0..32] == pk[32..64]
pub unsafe fn test_pk_validate(cx: *const Context,
pk: *const PublicKey) -> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
if (*pk).0[0..32] != (*pk).0[32..64] || secp256k1_ec_seckey_verify(cx, (*pk).0[0..32].as_ptr()) == 0 {
0
} else {
1
}
}
/// Checks that sk != 0xffff...ffff
pub unsafe fn secp256k1_ec_seckey_verify(cx: *const Context,
sk: *const c_uchar) -> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
let mut res = 0;
for i in 0..32 {
if *sk.offset(i as isize) != 0xff { res = 1 };
}
res
}
/// Sets pk to sk||sk
pub unsafe fn secp256k1_ec_pubkey_create(cx: *const Context, pk: *mut PublicKey,
sk: *const c_uchar) -> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; }
ptr::copy(sk, (*pk).0[0..32].as_mut_ptr(), 32);
ptr::copy(sk, (*pk).0[32..64].as_mut_ptr(), 32);
1
}
//TODO secp256k1_ec_privkey_export
//TODO secp256k1_ec_privkey_import
/// Copies the first 16 bytes of tweak into the last 16 bytes of sk
pub unsafe fn secp256k1_ec_privkey_tweak_add(cx: *const Context,
sk: *mut c_uchar,
tweak: *const c_uchar)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; }
ptr::copy(tweak, sk.offset(16), 16);
*sk.offset(24) = 0x7f; // Ensure sk remains valid no matter what tweak was
1
}
/// The PublicKey equivalent of secp256k1_ec_privkey_tweak_add
pub unsafe fn secp256k1_ec_pubkey_tweak_add(cx: *const Context,
pk: *mut PublicKey,
tweak: *const c_uchar)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
if test_pk_validate(cx, pk) != 1 { return 0; }
ptr::copy(tweak, (*pk).0[16..32].as_mut_ptr(), 16);
ptr::copy(tweak, (*pk).0[16+32..64].as_mut_ptr(), 16);
(*pk).0[24] = 0x7f; // Ensure pk remains valid no matter what tweak was
(*pk).0[24+32] = 0x7f; // Ensure pk remains valid no matter what tweak was
1
}
/// Copies the last 16 bytes of tweak into the last 16 bytes of sk
pub unsafe fn secp256k1_ec_privkey_tweak_mul(cx: *const Context,
sk: *mut c_uchar,
tweak: *const c_uchar)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; }
ptr::copy(tweak.offset(16), sk.offset(16), 16);
*sk.offset(24) = 0x00; // Ensure sk remains valid no matter what tweak was
1
}
/// The PublicKey equivalent of secp256k1_ec_privkey_tweak_mul
pub unsafe fn secp256k1_ec_pubkey_tweak_mul(cx: *const Context,
pk: *mut PublicKey,
tweak: *const c_uchar)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
if test_pk_validate(cx, pk) != 1 { return 0; }
ptr::copy(tweak.offset(16), (*pk).0[16..32].as_mut_ptr(), 16);
ptr::copy(tweak.offset(16), (*pk).0[16+32..64].as_mut_ptr(), 16);
(*pk).0[24] = 0x00; // Ensure pk remains valid no matter what tweak was
(*pk).0[24+32] = 0x00; // Ensure pk remains valid no matter what tweak was
1
}
pub unsafe fn secp256k1_ec_pubkey_combine(cx: *const Context,
out: *mut PublicKey,
ins: *const *const PublicKey,
n: c_int)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
assert!(n <= 32 && n >= 0); //TODO: Remove this restriction?
for i in 0..n {
if test_pk_validate(cx, *ins.offset(i as isize)) != 1 { return 0; }
(*out).0[(i*32/n) as usize..((i+1)*32/n) as usize].copy_from_slice(&(**ins.offset(i as isize)).0[(i*32/n) as usize..((i+1)*32/n) as usize]);
}
ptr::copy((*out).0[0..32].as_ptr(), (*out).0[32..64].as_mut_ptr(), 32);
(*out).0[24] = 0x0d; // pk should always be valid
(*out).0[24+32] = 0x0d; // pk should always be valid
test_pk_validate(cx, out)
}
/// Sets out to point[0..16]||scalar[0..16]
pub unsafe fn secp256k1_ecdh(cx: *const Context,
out: *mut SharedSecret,
point: *const PublicKey,
scalar: *const c_uchar)
-> c_int {
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
assert!((*cx).0 as u32 & SECP256K1_START_SIGN == SECP256K1_START_SIGN);
if secp256k1_ec_seckey_verify(cx, scalar) != 1 { return 0; }
(*out).0[0..16].copy_from_slice(&(*point).0[0..16]);
ptr::copy(scalar, (*out).0[16..32].as_mut_ptr(), 16);
(*out).0[16] = 0x00; // result should always be a valid secret key
1
}
}
#[cfg(feature = "fuzztarget")]
pub use self::fuzz_dummy::*;