Update libsecp to latest master, c18b869e58aa4d3bff6958f370f6b643d1223c44
This commit is contained in:
parent
16b36f18e1
commit
458a3d9417
2
build.rs
2
build.rs
|
@ -43,7 +43,7 @@ fn main() {
|
|||
.define("ENABLE_MODULE_RECOVERY", Some("1"));
|
||||
|
||||
// secp256k1
|
||||
base_config.file("depend/secp256k1/src/laxder_shim.c")
|
||||
base_config.file("depend/secp256k1/contrib/lax_der_parsing.c")
|
||||
.file("depend/secp256k1/src/secp256k1.c")
|
||||
.compile("libsecp256k1.a");
|
||||
}
|
||||
|
|
|
@ -8,20 +8,20 @@ compiler:
|
|||
- gcc
|
||||
env:
|
||||
global:
|
||||
- FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no schnorr=no RECOVERY=no
|
||||
- FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no schnorr=no RECOVERY=no EXPERIMENTAL=no
|
||||
matrix:
|
||||
- SCALAR=32bit RECOVERY=yes
|
||||
- SCALAR=32bit FIELD=32bit ECDH=yes
|
||||
- SCALAR=32bit FIELD=32bit ECDH=yes EXPERIMENTAL=yes
|
||||
- SCALAR=64bit
|
||||
- FIELD=64bit RECOVERY=yes
|
||||
- FIELD=64bit ENDOMORPHISM=yes
|
||||
- FIELD=64bit ENDOMORPHISM=yes ECDH=yes
|
||||
- FIELD=64bit ENDOMORPHISM=yes ECDH=yes EXPERIMENTAL=yes
|
||||
- FIELD=64bit ASM=x86_64
|
||||
- FIELD=64bit ENDOMORPHISM=yes ASM=x86_64
|
||||
- FIELD=32bit SCHNORR=yes
|
||||
- FIELD=32bit SCHNORR=yes EXPERIMENTAL=yes
|
||||
- FIELD=32bit ENDOMORPHISM=yes
|
||||
- BIGNUM=no
|
||||
- BIGNUM=no ENDOMORPHISM=yes SCHNORR=yes RECOVERY=yes
|
||||
- BIGNUM=no ENDOMORPHISM=yes SCHNORR=yes RECOVERY=yes EXPERIMENTAL=yes
|
||||
- BIGNUM=no STATICPRECOMPUTATION=no
|
||||
- BUILD=distcheck
|
||||
- EXTRAFLAGS=CPPFLAGS=-DDETERMINISTIC
|
||||
|
@ -59,5 +59,5 @@ before_script: ./autogen.sh
|
|||
script:
|
||||
- if [ -n "$HOST" ]; then export USE_HOST="--host=$HOST"; fi
|
||||
- if [ "x$HOST" = "xi686-linux-gnu" ]; then export CC="$CC -m32"; fi
|
||||
- ./configure --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-schnorr=$SCHNORR --enable-module-recovery=$RECOVERY $EXTRAFLAGS $USE_HOST && make -j2 $BUILD
|
||||
- ./configure --enable-experimental=$EXPERIMENTAL --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-schnorr=$SCHNORR --enable-module-recovery=$RECOVERY $EXTRAFLAGS $USE_HOST && make -j2 $BUILD
|
||||
os: linux
|
||||
|
|
|
@ -41,7 +41,9 @@ noinst_HEADERS += src/field.h
|
|||
noinst_HEADERS += src/field_impl.h
|
||||
noinst_HEADERS += src/bench.h
|
||||
noinst_HEADERS += contrib/lax_der_parsing.h
|
||||
noinst_HEADERS += contrib/lax_der_parsing.c
|
||||
noinst_HEADERS += contrib/lax_der_privatekey_parsing.h
|
||||
noinst_HEADERS += contrib/lax_der_privatekey_parsing.c
|
||||
|
||||
pkgconfigdir = $(libdir)/pkgconfig
|
||||
pkgconfig_DATA = libsecp256k1.pc
|
||||
|
@ -55,9 +57,9 @@ noinst_PROGRAMS =
|
|||
if USE_BENCHMARK
|
||||
noinst_PROGRAMS += bench_verify bench_sign bench_internal
|
||||
bench_verify_SOURCES = src/bench_verify.c
|
||||
bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS)
|
||||
bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS)
|
||||
bench_sign_SOURCES = src/bench_sign.c
|
||||
bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS)
|
||||
bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS)
|
||||
bench_internal_SOURCES = src/bench_internal.c
|
||||
bench_internal_LDADD = $(SECP_LIBS)
|
||||
bench_internal_CPPFLAGS = $(SECP_INCLUDES)
|
||||
|
@ -73,7 +75,7 @@ TESTS = tests
|
|||
endif
|
||||
|
||||
if USE_ECMULT_STATIC_PRECOMPUTATION
|
||||
CPPFLAGS_FOR_BUILD +=-I$(top_srcdir)/
|
||||
CPPFLAGS_FOR_BUILD +=-I$(top_srcdir)
|
||||
CFLAGS_FOR_BUILD += -Wall -Wextra -Wno-unused-function
|
||||
|
||||
gen_context_OBJECTS = gen_context.o
|
||||
|
|
|
@ -93,6 +93,11 @@ AC_ARG_ENABLE(tests,
|
|||
[use_tests=$enableval],
|
||||
[use_tests=yes])
|
||||
|
||||
AC_ARG_ENABLE(experimental,
|
||||
AS_HELP_STRING([--enable-experimental],[allow experimental configure options (default is no)]),
|
||||
[use_experimental=$enableval],
|
||||
[use_experimental=no])
|
||||
|
||||
AC_ARG_ENABLE(endomorphism,
|
||||
AS_HELP_STRING([--enable-endomorphism],[enable endomorphism (default is no)]),
|
||||
[use_endomorphism=$enableval],
|
||||
|
@ -104,12 +109,12 @@ AC_ARG_ENABLE(ecmult_static_precomputation,
|
|||
[use_ecmult_static_precomputation=yes])
|
||||
|
||||
AC_ARG_ENABLE(module_ecdh,
|
||||
AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation (default is no)]),
|
||||
AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation (experimental)]),
|
||||
[enable_module_ecdh=$enableval],
|
||||
[enable_module_ecdh=no])
|
||||
|
||||
AC_ARG_ENABLE(module_schnorr,
|
||||
AS_HELP_STRING([--enable-module-schnorr],[enable Schnorr signature module (default is no)]),
|
||||
AS_HELP_STRING([--enable-module-schnorr],[enable Schnorr signature module (experimental)]),
|
||||
[enable_module_schnorr=$enableval],
|
||||
[enable_module_schnorr=no])
|
||||
|
||||
|
@ -350,11 +355,24 @@ AC_MSG_NOTICE([Using field implementation: $set_field])
|
|||
AC_MSG_NOTICE([Using bignum implementation: $set_bignum])
|
||||
AC_MSG_NOTICE([Using scalar implementation: $set_scalar])
|
||||
AC_MSG_NOTICE([Using endomorphism optimizations: $use_endomorphism])
|
||||
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
|
||||
|
||||
AC_MSG_NOTICE([Building Schnorr signatures module: $enable_module_schnorr])
|
||||
AC_MSG_NOTICE([Building ECDSA pubkey recovery module: $enable_module_recovery])
|
||||
|
||||
if test x"$enable_experimental" = x"yes"; then
|
||||
AC_MSG_NOTICE([******])
|
||||
AC_MSG_NOTICE([WARNING: experimental build])
|
||||
AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be safe for production use.])
|
||||
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
|
||||
AC_MSG_NOTICE([Building Schnorr signatures module: $enable_module_schnorr])
|
||||
AC_MSG_NOTICE([******])
|
||||
else
|
||||
if test x"$enable_module_schnorr" = x"yes"; then
|
||||
AC_MSG_ERROR([Schnorr signature module is experimental. Use --enable-experimental to allow.])
|
||||
fi
|
||||
if test x"$enable_module_ecdh" = x"yes"; then
|
||||
AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.])
|
||||
fi
|
||||
fi
|
||||
|
||||
AC_CONFIG_HEADERS([src/libsecp256k1-config.h])
|
||||
AC_CONFIG_FILES([Makefile libsecp256k1.pc])
|
||||
AC_SUBST(SECP_INCLUDES)
|
||||
|
|
|
@ -0,0 +1,150 @@
|
|||
/**********************************************************************
|
||||
* Copyright (c) 2015 Pieter Wuille *
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
||||
**********************************************************************/
|
||||
|
||||
#include <string.h>
|
||||
#include <secp256k1.h>
|
||||
|
||||
#include "lax_der_parsing.h"
|
||||
|
||||
int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
|
||||
size_t rpos, rlen, spos, slen;
|
||||
size_t pos = 0;
|
||||
size_t lenbyte;
|
||||
unsigned char tmpsig[64] = {0};
|
||||
int overflow = 0;
|
||||
|
||||
/* Hack to initialize sig with a correctly-parsed but invalid signature. */
|
||||
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
|
||||
|
||||
/* Sequence tag byte */
|
||||
if (pos == inputlen || input[pos] != 0x30) {
|
||||
return 0;
|
||||
}
|
||||
pos++;
|
||||
|
||||
/* Sequence length bytes */
|
||||
if (pos == inputlen) {
|
||||
return 0;
|
||||
}
|
||||
lenbyte = input[pos++];
|
||||
if (lenbyte & 0x80) {
|
||||
lenbyte -= 0x80;
|
||||
if (pos + lenbyte > inputlen) {
|
||||
return 0;
|
||||
}
|
||||
pos += lenbyte;
|
||||
}
|
||||
|
||||
/* Integer tag byte for R */
|
||||
if (pos == inputlen || input[pos] != 0x02) {
|
||||
return 0;
|
||||
}
|
||||
pos++;
|
||||
|
||||
/* Integer length for R */
|
||||
if (pos == inputlen) {
|
||||
return 0;
|
||||
}
|
||||
lenbyte = input[pos++];
|
||||
if (lenbyte & 0x80) {
|
||||
lenbyte -= 0x80;
|
||||
if (pos + lenbyte > inputlen) {
|
||||
return 0;
|
||||
}
|
||||
while (lenbyte > 0 && input[pos] == 0) {
|
||||
pos++;
|
||||
lenbyte--;
|
||||
}
|
||||
if (lenbyte >= sizeof(size_t)) {
|
||||
return 0;
|
||||
}
|
||||
rlen = 0;
|
||||
while (lenbyte > 0) {
|
||||
rlen = (rlen << 8) + input[pos];
|
||||
pos++;
|
||||
lenbyte--;
|
||||
}
|
||||
} else {
|
||||
rlen = lenbyte;
|
||||
}
|
||||
if (rlen > inputlen - pos) {
|
||||
return 0;
|
||||
}
|
||||
rpos = pos;
|
||||
pos += rlen;
|
||||
|
||||
/* Integer tag byte for S */
|
||||
if (pos == inputlen || input[pos] != 0x02) {
|
||||
return 0;
|
||||
}
|
||||
pos++;
|
||||
|
||||
/* Integer length for S */
|
||||
if (pos == inputlen) {
|
||||
return 0;
|
||||
}
|
||||
lenbyte = input[pos++];
|
||||
if (lenbyte & 0x80) {
|
||||
lenbyte -= 0x80;
|
||||
if (pos + lenbyte > inputlen) {
|
||||
return 0;
|
||||
}
|
||||
while (lenbyte > 0 && input[pos] == 0) {
|
||||
pos++;
|
||||
lenbyte--;
|
||||
}
|
||||
if (lenbyte >= sizeof(size_t)) {
|
||||
return 0;
|
||||
}
|
||||
slen = 0;
|
||||
while (lenbyte > 0) {
|
||||
slen = (slen << 8) + input[pos];
|
||||
pos++;
|
||||
lenbyte--;
|
||||
}
|
||||
} else {
|
||||
slen = lenbyte;
|
||||
}
|
||||
if (slen > inputlen - pos) {
|
||||
return 0;
|
||||
}
|
||||
spos = pos;
|
||||
pos += slen;
|
||||
|
||||
/* Ignore leading zeroes in R */
|
||||
while (rlen > 0 && input[rpos] == 0) {
|
||||
rlen--;
|
||||
rpos++;
|
||||
}
|
||||
/* Copy R value */
|
||||
if (rlen > 32) {
|
||||
overflow = 1;
|
||||
} else {
|
||||
memcpy(tmpsig + 32 - rlen, input + rpos, rlen);
|
||||
}
|
||||
|
||||
/* Ignore leading zeroes in S */
|
||||
while (slen > 0 && input[spos] == 0) {
|
||||
slen--;
|
||||
spos++;
|
||||
}
|
||||
/* Copy S value */
|
||||
if (slen > 32) {
|
||||
overflow = 1;
|
||||
} else {
|
||||
memcpy(tmpsig + 64 - slen, input + spos, slen);
|
||||
}
|
||||
|
||||
if (!overflow) {
|
||||
overflow = !secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
|
||||
}
|
||||
if (overflow) {
|
||||
memset(tmpsig, 0, 64);
|
||||
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
|
@ -4,7 +4,14 @@
|
|||
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
||||
**********************************************************************/
|
||||
|
||||
/* This file contains a code snippet that parses DER with various errors and
|
||||
/****
|
||||
* Please do not link this file directly. It is not part of the libsecp256k1
|
||||
* project and does not promise any stability in its API, functionality or
|
||||
* presence. Projects which use this code should instead copy this header
|
||||
* and its accompanying .c file directly into their codebase.
|
||||
****/
|
||||
|
||||
/* This file defines a function that parses DER with various errors and
|
||||
* violations. This is not a part of the library itself, because the allowed
|
||||
* violations are chosen arbitrarily and do not follow or establish any
|
||||
* standard.
|
||||
|
@ -44,148 +51,41 @@
|
|||
#ifndef _SECP256K1_CONTRIB_LAX_DER_PARSING_H_
|
||||
#define _SECP256K1_CONTRIB_LAX_DER_PARSING_H_
|
||||
|
||||
#include <string.h>
|
||||
#include <secp256k1.h>
|
||||
|
||||
static int secp256k1_ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen);
|
||||
# ifdef __cplusplus
|
||||
extern "C" {
|
||||
# endif
|
||||
|
||||
static int secp256k1_ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
|
||||
size_t rpos, rlen, spos, slen;
|
||||
size_t pos = 0;
|
||||
size_t lenbyte;
|
||||
unsigned char tmpsig[64] = {0};
|
||||
int overflow = 0;
|
||||
/** Parse a signature in "lax DER" format
|
||||
*
|
||||
* Returns: 1 when the signature could be parsed, 0 otherwise.
|
||||
* Args: ctx: a secp256k1 context object
|
||||
* Out: sig: a pointer to a signature object
|
||||
* In: input: a pointer to the signature to be parsed
|
||||
* inputlen: the length of the array pointed to be input
|
||||
*
|
||||
* This function will accept any valid DER encoded signature, even if the
|
||||
* encoded numbers are out of range. In addition, it will accept signatures
|
||||
* which violate the DER spec in various ways. Its purpose is to allow
|
||||
* validation of the Bitcoin blockchain, which includes non-DER signatures
|
||||
* from before the network rules were updated to enforce DER. Note that
|
||||
* the set of supported violations is a strict subset of what OpenSSL will
|
||||
* accept.
|
||||
*
|
||||
* After the call, sig will always be initialized. If parsing failed or the
|
||||
* encoded numbers are out of range, signature validation with it is
|
||||
* guaranteed to fail for every message and public key.
|
||||
*/
|
||||
int ecdsa_signature_parse_der_lax(
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_ecdsa_signature* sig,
|
||||
const unsigned char *input,
|
||||
size_t inputlen
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
||||
/* Hack to initialize sig with a correctly-parsed but invalid signature. */
|
||||
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
|
||||
|
||||
/* Sequence tag byte */
|
||||
if (pos == inputlen || input[pos] != 0x30) {
|
||||
return 0;
|
||||
}
|
||||
pos++;
|
||||
|
||||
/* Sequence length bytes */
|
||||
if (pos == inputlen) {
|
||||
return 0;
|
||||
}
|
||||
lenbyte = input[pos++];
|
||||
if (lenbyte & 0x80) {
|
||||
lenbyte -= 0x80;
|
||||
if (pos + lenbyte > inputlen) {
|
||||
return 0;
|
||||
}
|
||||
pos += lenbyte;
|
||||
}
|
||||
|
||||
/* Integer tag byte for R */
|
||||
if (pos == inputlen || input[pos] != 0x02) {
|
||||
return 0;
|
||||
}
|
||||
pos++;
|
||||
|
||||
/* Integer length for R */
|
||||
if (pos == inputlen) {
|
||||
return 0;
|
||||
}
|
||||
lenbyte = input[pos++];
|
||||
if (lenbyte & 0x80) {
|
||||
lenbyte -= 0x80;
|
||||
if (pos + lenbyte > inputlen) {
|
||||
return 0;
|
||||
}
|
||||
while (lenbyte > 0 && input[pos] == 0) {
|
||||
pos++;
|
||||
lenbyte--;
|
||||
}
|
||||
if (lenbyte >= sizeof(size_t)) {
|
||||
return 0;
|
||||
}
|
||||
rlen = 0;
|
||||
while (lenbyte > 0) {
|
||||
rlen = (rlen << 8) + input[pos];
|
||||
pos++;
|
||||
lenbyte--;
|
||||
}
|
||||
} else {
|
||||
rlen = lenbyte;
|
||||
}
|
||||
if (rlen > inputlen - pos) {
|
||||
return 0;
|
||||
}
|
||||
rpos = pos;
|
||||
pos += rlen;
|
||||
|
||||
/* Integer tag byte for S */
|
||||
if (pos == inputlen || input[pos] != 0x02) {
|
||||
return 0;
|
||||
}
|
||||
pos++;
|
||||
|
||||
/* Integer length for S */
|
||||
if (pos == inputlen) {
|
||||
return 0;
|
||||
}
|
||||
lenbyte = input[pos++];
|
||||
if (lenbyte & 0x80) {
|
||||
lenbyte -= 0x80;
|
||||
if (pos + lenbyte > inputlen) {
|
||||
return 0;
|
||||
}
|
||||
while (lenbyte > 0 && input[pos] == 0) {
|
||||
pos++;
|
||||
lenbyte--;
|
||||
}
|
||||
if (lenbyte >= sizeof(size_t)) {
|
||||
return 0;
|
||||
}
|
||||
slen = 0;
|
||||
while (lenbyte > 0) {
|
||||
slen = (slen << 8) + input[pos];
|
||||
pos++;
|
||||
lenbyte--;
|
||||
}
|
||||
} else {
|
||||
slen = lenbyte;
|
||||
}
|
||||
if (slen > inputlen - pos) {
|
||||
return 0;
|
||||
}
|
||||
spos = pos;
|
||||
pos += slen;
|
||||
|
||||
/* Ignore leading zeroes in R */
|
||||
while (rlen > 0 && input[rpos] == 0) {
|
||||
rlen--;
|
||||
rpos++;
|
||||
}
|
||||
/* Copy R value */
|
||||
if (rlen > 32) {
|
||||
overflow = 1;
|
||||
} else {
|
||||
memcpy(tmpsig + 32 - rlen, input + rpos, rlen);
|
||||
}
|
||||
|
||||
/* Ignore leading zeroes in S */
|
||||
while (slen > 0 && input[spos] == 0) {
|
||||
slen--;
|
||||
spos++;
|
||||
}
|
||||
/* Copy S value */
|
||||
if (slen > 32) {
|
||||
overflow = 1;
|
||||
} else {
|
||||
memcpy(tmpsig + 64 - slen, input + spos, slen);
|
||||
}
|
||||
|
||||
if (!overflow) {
|
||||
overflow = !secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
|
||||
}
|
||||
if (overflow) {
|
||||
memset(tmpsig, 0, 64);
|
||||
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
|
||||
}
|
||||
return 1;
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
|
|
@ -0,0 +1,113 @@
|
|||
/**********************************************************************
|
||||
* Copyright (c) 2014, 2015 Pieter Wuille *
|
||||
* Distributed under the MIT software license, see the accompanying *
|
||||
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
||||
**********************************************************************/
|
||||
|
||||
#include <string.h>
|
||||
#include <secp256k1.h>
|
||||
|
||||
#include "lax_der_privatekey_parsing.h"
|
||||
|
||||
int ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *privkey, size_t privkeylen) {
|
||||
const unsigned char *end = privkey + privkeylen;
|
||||
int lenb = 0;
|
||||
int len = 0;
|
||||
memset(out32, 0, 32);
|
||||
/* sequence header */
|
||||
if (end < privkey+1 || *privkey != 0x30) {
|
||||
return 0;
|
||||
}
|
||||
privkey++;
|
||||
/* sequence length constructor */
|
||||
if (end < privkey+1 || !(*privkey & 0x80)) {
|
||||
return 0;
|
||||
}
|
||||
lenb = *privkey & ~0x80; privkey++;
|
||||
if (lenb < 1 || lenb > 2) {
|
||||
return 0;
|
||||
}
|
||||
if (end < privkey+lenb) {
|
||||
return 0;
|
||||
}
|
||||
/* sequence length */
|
||||
len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0);
|
||||
privkey += lenb;
|
||||
if (end < privkey+len) {
|
||||
return 0;
|
||||
}
|
||||
/* sequence element 0: version number (=1) */
|
||||
if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01) {
|
||||
return 0;
|
||||
}
|
||||
privkey += 3;
|
||||
/* sequence element 1: octet string, up to 32 bytes */
|
||||
if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1]) {
|
||||
return 0;
|
||||
}
|
||||
memcpy(out32 + 32 - privkey[1], privkey + 2, privkey[1]);
|
||||
if (!secp256k1_ec_seckey_verify(ctx, out32)) {
|
||||
memset(out32, 0, 32);
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ec_privkey_export_der(const secp256k1_context *ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *key32, int compressed) {
|
||||
secp256k1_pubkey pubkey;
|
||||
size_t pubkeylen = 0;
|
||||
if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
|
||||
*privkeylen = 0;
|
||||
return 0;
|
||||
}
|
||||
if (compressed) {
|
||||
static const unsigned char begin[] = {
|
||||
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
|
||||
};
|
||||
static const unsigned char middle[] = {
|
||||
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
|
||||
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
|
||||
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
|
||||
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
|
||||
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
|
||||
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
|
||||
};
|
||||
unsigned char *ptr = privkey;
|
||||
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
|
||||
memcpy(ptr, key32, 32); ptr += 32;
|
||||
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
|
||||
pubkeylen = 33;
|
||||
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
|
||||
ptr += pubkeylen;
|
||||
*privkeylen = ptr - privkey;
|
||||
} else {
|
||||
static const unsigned char begin[] = {
|
||||
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
|
||||
};
|
||||
static const unsigned char middle[] = {
|
||||
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
|
||||
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
|
||||
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
|
||||
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
|
||||
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
|
||||
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
|
||||
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
|
||||
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
|
||||
};
|
||||
unsigned char *ptr = privkey;
|
||||
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
|
||||
memcpy(ptr, key32, 32); ptr += 32;
|
||||
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
|
||||
pubkeylen = 65;
|
||||
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
|
||||
ptr += pubkeylen;
|
||||
*privkeylen = ptr - privkey;
|
||||
}
|
||||
return 1;
|
||||
}
|
|
@ -4,6 +4,13 @@
|
|||
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
||||
**********************************************************************/
|
||||
|
||||
/****
|
||||
* Please do not link this file directly. It is not part of the libsecp256k1
|
||||
* project and does not promise any stability in its API, functionality or
|
||||
* presence. Projects which use this code should instead copy this header
|
||||
* and its accompanying .c file directly into their codebase.
|
||||
****/
|
||||
|
||||
/* This file contains code snippets that parse DER private keys with
|
||||
* various errors and violations. This is not a part of the library
|
||||
* itself, because the allowed violations are chosen arbitrarily and
|
||||
|
@ -21,9 +28,12 @@
|
|||
#ifndef _SECP256K1_CONTRIB_BER_PRIVATEKEY_H_
|
||||
#define _SECP256K1_CONTRIB_BER_PRIVATEKEY_H_
|
||||
|
||||
#include <string.h>
|
||||
#include <secp256k1.h>
|
||||
|
||||
# ifdef __cplusplus
|
||||
extern "C" {
|
||||
# endif
|
||||
|
||||
/** Export a private key in DER format.
|
||||
*
|
||||
* Returns: 1 if the private key was valid.
|
||||
|
@ -44,7 +54,7 @@
|
|||
* Note that this function does not guarantee correct DER output. It is
|
||||
* guaranteed to be parsable by secp256k1_ec_privkey_import_der
|
||||
*/
|
||||
static SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_export_der(
|
||||
SECP256K1_WARN_UNUSED_RESULT int ec_privkey_export_der(
|
||||
const secp256k1_context* ctx,
|
||||
unsigned char *privkey,
|
||||
size_t *privkeylen,
|
||||
|
@ -66,144 +76,15 @@ static SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_export_der(
|
|||
* only if you know in advance it is supposed to contain a secp256k1 private
|
||||
* key.
|
||||
*/
|
||||
static SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_import_der(
|
||||
SECP256K1_WARN_UNUSED_RESULT int ec_privkey_import_der(
|
||||
const secp256k1_context* ctx,
|
||||
unsigned char *seckey,
|
||||
const unsigned char *privkey,
|
||||
size_t privkeylen
|
||||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
||||
static int secp256k1_eckey_privkey_parse(secp256k1_scalar *key, const unsigned char *privkey, size_t privkeylen) {
|
||||
unsigned char c[32] = {0};
|
||||
const unsigned char *end = privkey + privkeylen;
|
||||
int lenb = 0;
|
||||
int len = 0;
|
||||
int overflow = 0;
|
||||
/* sequence header */
|
||||
if (end < privkey+1 || *privkey != 0x30) {
|
||||
return 0;
|
||||
}
|
||||
privkey++;
|
||||
/* sequence length constructor */
|
||||
if (end < privkey+1 || !(*privkey & 0x80)) {
|
||||
return 0;
|
||||
}
|
||||
lenb = *privkey & ~0x80; privkey++;
|
||||
if (lenb < 1 || lenb > 2) {
|
||||
return 0;
|
||||
}
|
||||
if (end < privkey+lenb) {
|
||||
return 0;
|
||||
}
|
||||
/* sequence length */
|
||||
len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0);
|
||||
privkey += lenb;
|
||||
if (end < privkey+len) {
|
||||
return 0;
|
||||
}
|
||||
/* sequence element 0: version number (=1) */
|
||||
if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01) {
|
||||
return 0;
|
||||
}
|
||||
privkey += 3;
|
||||
/* sequence element 1: octet string, up to 32 bytes */
|
||||
if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1]) {
|
||||
return 0;
|
||||
}
|
||||
memcpy(c + 32 - privkey[1], privkey + 2, privkey[1]);
|
||||
secp256k1_scalar_set_b32(key, c, &overflow);
|
||||
memset(c, 0, 32);
|
||||
return !overflow;
|
||||
}
|
||||
|
||||
static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar *key, int compressed) {
|
||||
secp256k1_gej rp;
|
||||
secp256k1_ge r;
|
||||
size_t pubkeylen = 0;
|
||||
secp256k1_ecmult_gen(ctx, &rp, key);
|
||||
secp256k1_ge_set_gej(&r, &rp);
|
||||
if (compressed) {
|
||||
static const unsigned char begin[] = {
|
||||
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
|
||||
};
|
||||
static const unsigned char middle[] = {
|
||||
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
|
||||
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
|
||||
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
|
||||
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
|
||||
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
|
||||
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
|
||||
};
|
||||
unsigned char *ptr = privkey;
|
||||
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
|
||||
secp256k1_scalar_get_b32(ptr, key); ptr += 32;
|
||||
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
|
||||
if (!secp256k1_eckey_pubkey_serialize(&r, ptr, &pubkeylen, 1)) {
|
||||
return 0;
|
||||
}
|
||||
ptr += pubkeylen;
|
||||
*privkeylen = ptr - privkey;
|
||||
} else {
|
||||
static const unsigned char begin[] = {
|
||||
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
|
||||
};
|
||||
static const unsigned char middle[] = {
|
||||
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
|
||||
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
|
||||
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
|
||||
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
|
||||
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
|
||||
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
|
||||
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
|
||||
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
|
||||
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
|
||||
};
|
||||
unsigned char *ptr = privkey;
|
||||
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
|
||||
secp256k1_scalar_get_b32(ptr, key); ptr += 32;
|
||||
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
|
||||
if (!secp256k1_eckey_pubkey_serialize(&r, ptr, &pubkeylen, 0)) {
|
||||
return 0;
|
||||
}
|
||||
ptr += pubkeylen;
|
||||
*privkeylen = ptr - privkey;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int secp256k1_ec_privkey_export_der(const secp256k1_context* ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *seckey, int compressed) {
|
||||
secp256k1_scalar key;
|
||||
int ret = 0;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(seckey != NULL);
|
||||
ARG_CHECK(privkey != NULL);
|
||||
ARG_CHECK(privkeylen != NULL);
|
||||
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
|
||||
|
||||
secp256k1_scalar_set_b32(&key, seckey, NULL);
|
||||
ret = secp256k1_eckey_privkey_serialize(&ctx->ecmult_gen_ctx, privkey, privkeylen, &key, compressed);
|
||||
secp256k1_scalar_clear(&key);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int secp256k1_ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *privkey, size_t privkeylen) {
|
||||
secp256k1_scalar key;
|
||||
int ret = 0;
|
||||
ARG_CHECK(seckey != NULL);
|
||||
ARG_CHECK(privkey != NULL);
|
||||
(void)ctx;
|
||||
|
||||
ret = secp256k1_eckey_privkey_parse(&key, privkey, privkeylen);
|
||||
if (ret) {
|
||||
secp256k1_scalar_get_b32(seckey, &key);
|
||||
}
|
||||
secp256k1_scalar_clear(&key);
|
||||
return ret;
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
|
|
@ -229,7 +229,7 @@ SECP256K1_API void secp256k1_context_set_illegal_callback(
|
|||
* crashing.
|
||||
*
|
||||
* Args: ctx: an existing context object (cannot be NULL)
|
||||
* In: fun: a pointer to a function to call when an interal error occurs,
|
||||
* In: fun: a pointer to a function to call when an internal error occurs,
|
||||
* taking a message and an opaque pointer (NULL restores a default
|
||||
* handler that calls abort).
|
||||
* data: the opaque pointer to pass to fun above.
|
||||
|
@ -266,11 +266,13 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
|
|||
* Returns: 1 always.
|
||||
* Args: ctx: a secp256k1 context object.
|
||||
* Out: output: a pointer to a 65-byte (if compressed==0) or 33-byte (if
|
||||
* compressed==1) byte array to place the serialized key in.
|
||||
* outputlen: a pointer to an integer which will contain the serialized
|
||||
* compressed==1) byte array to place the serialized key
|
||||
* in.
|
||||
* In/Out: outputlen: a pointer to an integer which is initially set to the
|
||||
* size of output, and is overwritten with the written
|
||||
* size.
|
||||
* In: pubkey: a pointer to a secp256k1_pubkey containing an initialized
|
||||
* public key.
|
||||
* In: pubkey: a pointer to a secp256k1_pubkey containing an
|
||||
* initialized public key.
|
||||
* flags: SECP256K1_EC_COMPRESSED if serialization should be in
|
||||
* compressed format, otherwise SECP256K1_EC_UNCOMPRESSED.
|
||||
*/
|
||||
|
@ -562,18 +564,16 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
|
|||
* Returns: 1: the sum of the public keys is valid.
|
||||
* 0: the sum of the public keys is not valid.
|
||||
* Args: ctx: pointer to a context object
|
||||
* Out: out: pointer to pubkey for placing the resulting public key
|
||||
* Out: out: pointer to a public key object for placing the resulting public key
|
||||
* (cannot be NULL)
|
||||
* In: ins: pointer to array of pointers to public keys (cannot be NULL)
|
||||
* n: the number of public keys to add together (must be at least 1)
|
||||
* Use secp256k1_ec_pubkey_compress and secp256k1_ec_pubkey_decompress if the
|
||||
* uncompressed format is needed.
|
||||
*/
|
||||
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine(
|
||||
const secp256k1_context* ctx,
|
||||
secp256k1_pubkey *out,
|
||||
const secp256k1_pubkey * const * ins,
|
||||
int n
|
||||
size_t n
|
||||
) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
||||
# ifdef __cplusplus
|
||||
|
|
|
@ -92,7 +92,7 @@ SECP256K1_API int secp256k1_ecdsa_sign_recoverable(
|
|||
* Returns: 1: public key successfully recovered (which guarantees a correct signature).
|
||||
* 0: otherwise.
|
||||
* Args: ctx: pointer to a context object, initialized for verification (cannot be NULL)
|
||||
* Out: pubkey: pointer to the recoved public key (cannot be NULL)
|
||||
* Out: pubkey: pointer to the recovered public key (cannot be NULL)
|
||||
* In: sig: pointer to initialized signature that supports pubkey recovery (cannot be NULL)
|
||||
* msg32: the 32-byte message hash assumed to be signed (cannot be NULL)
|
||||
*/
|
||||
|
|
|
@ -99,7 +99,7 @@ SECP256K1_API int secp256k1_schnorr_generate_nonce_pair(
|
|||
/** Produce a partial Schnorr signature, which can be combined using
|
||||
* secp256k1_schnorr_partial_combine, to end up with a full signature that is
|
||||
* verifiable using secp256k1_schnorr_verify.
|
||||
* Returns: 1: signature created succesfully.
|
||||
* Returns: 1: signature created successfully.
|
||||
* 0: no valid signature exists with this combination of keys, nonces
|
||||
* and message (chance around 1 in 2^128)
|
||||
* -1: invalid private key, nonce, or public nonces.
|
||||
|
@ -148,7 +148,7 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_sign(
|
|||
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6);
|
||||
|
||||
/** Combine multiple Schnorr partial signatures.
|
||||
* Returns: 1: the passed signatures were succesfully combined.
|
||||
* Returns: 1: the passed signatures were successfully combined.
|
||||
* 0: the resulting signature is not valid (chance of 1 in 2^256)
|
||||
* -1: some inputs were invalid, or the signatures were not created
|
||||
* using the same set of nonces
|
||||
|
@ -163,7 +163,7 @@ SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_combine
|
|||
const secp256k1_context* ctx,
|
||||
unsigned char *sig64,
|
||||
const unsigned char * const * sig64sin,
|
||||
int n
|
||||
size_t n
|
||||
) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
||||
|
||||
# ifdef __cplusplus
|
||||
|
|
|
@ -0,0 +1,322 @@
|
|||
# This code supports verifying group implementations which have branches
|
||||
# or conditional statements (like cmovs), by allowing each execution path
|
||||
# to independently set assumptions on input or intermediary variables.
|
||||
#
|
||||
# The general approach is:
|
||||
# * A constraint is a tuple of two sets of of symbolic expressions:
|
||||
# the first of which are required to evaluate to zero, the second of which
|
||||
# are required to evaluate to nonzero.
|
||||
# - A constraint is said to be conflicting if any of its nonzero expressions
|
||||
# is in the ideal with basis the zero expressions (in other words: when the
|
||||
# zero expressions imply that one of the nonzero expressions are zero).
|
||||
# * There is a list of laws that describe the intended behaviour, including
|
||||
# laws for addition and doubling. Each law is called with the symbolic point
|
||||
# coordinates as arguments, and returns:
|
||||
# - A constraint describing the assumptions under which it is applicable,
|
||||
# called "assumeLaw"
|
||||
# - A constraint describing the requirements of the law, called "require"
|
||||
# * Implementations are transliterated into functions that operate as well on
|
||||
# algebraic input points, and are called once per combination of branches
|
||||
# exectured. Each execution returns:
|
||||
# - A constraint describing the assumptions this implementation requires
|
||||
# (such as Z1=1), called "assumeFormula"
|
||||
# - A constraint describing the assumptions this specific branch requires,
|
||||
# but which is by construction guaranteed to cover the entire space by
|
||||
# merging the results from all branches, called "assumeBranch"
|
||||
# - The result of the computation
|
||||
# * All combinations of laws with implementation branches are tried, and:
|
||||
# - If the combination of assumeLaw, assumeFormula, and assumeBranch results
|
||||
# in a conflict, it means this law does not apply to this branch, and it is
|
||||
# skipped.
|
||||
# - For others, we try to prove the require constraints hold, assuming the
|
||||
# information in assumeLaw + assumeFormula + assumeBranch, and if this does
|
||||
# not succeed, we fail.
|
||||
# + To prove an expression is zero, we check whether it belongs to the
|
||||
# ideal with the assumed zero expressions as basis. This test is exact.
|
||||
# + To prove an expression is nonzero, we check whether each of its
|
||||
# factors is contained in the set of nonzero assumptions' factors.
|
||||
# This test is not exact, so various combinations of original and
|
||||
# reduced expressions' factors are tried.
|
||||
# - If we succeed, we print out the assumptions from assumeFormula that
|
||||
# weren't implied by assumeLaw already. Those from assumeBranch are skipped,
|
||||
# as we assume that all constraints in it are complementary with each other.
|
||||
#
|
||||
# Based on the sage verification scripts used in the Explicit-Formulas Database
|
||||
# by Tanja Lange and others, see http://hyperelliptic.org/EFD
|
||||
|
||||
class fastfrac:
|
||||
"""Fractions over rings."""
|
||||
|
||||
def __init__(self,R,top,bot=1):
|
||||
"""Construct a fractional, given a ring, a numerator, and denominator."""
|
||||
self.R = R
|
||||
if parent(top) == ZZ or parent(top) == R:
|
||||
self.top = R(top)
|
||||
self.bot = R(bot)
|
||||
elif top.__class__ == fastfrac:
|
||||
self.top = top.top
|
||||
self.bot = top.bot * bot
|
||||
else:
|
||||
self.top = R(numerator(top))
|
||||
self.bot = R(denominator(top)) * bot
|
||||
|
||||
def iszero(self,I):
|
||||
"""Return whether this fraction is zero given an ideal."""
|
||||
return self.top in I and self.bot not in I
|
||||
|
||||
def reduce(self,assumeZero):
|
||||
zero = self.R.ideal(map(numerator, assumeZero))
|
||||
return fastfrac(self.R, zero.reduce(self.top)) / fastfrac(self.R, zero.reduce(self.bot))
|
||||
|
||||
def __add__(self,other):
|
||||
"""Add two fractions."""
|
||||
if parent(other) == ZZ:
|
||||
return fastfrac(self.R,self.top + self.bot * other,self.bot)
|
||||
if other.__class__ == fastfrac:
|
||||
return fastfrac(self.R,self.top * other.bot + self.bot * other.top,self.bot * other.bot)
|
||||
return NotImplemented
|
||||
|
||||
def __sub__(self,other):
|
||||
"""Subtract two fractions."""
|
||||
if parent(other) == ZZ:
|
||||
return fastfrac(self.R,self.top - self.bot * other,self.bot)
|
||||
if other.__class__ == fastfrac:
|
||||
return fastfrac(self.R,self.top * other.bot - self.bot * other.top,self.bot * other.bot)
|
||||
return NotImplemented
|
||||
|
||||
def __neg__(self):
|
||||
"""Return the negation of a fraction."""
|
||||
return fastfrac(self.R,-self.top,self.bot)
|
||||
|
||||
def __mul__(self,other):
|
||||
"""Multiply two fractions."""
|
||||
if parent(other) == ZZ:
|
||||
return fastfrac(self.R,self.top * other,self.bot)
|
||||
if other.__class__ == fastfrac:
|
||||
return fastfrac(self.R,self.top * other.top,self.bot * other.bot)
|
||||
return NotImplemented
|
||||
|
||||
def __rmul__(self,other):
|
||||
"""Multiply something else with a fraction."""
|
||||
return self.__mul__(other)
|
||||
|
||||
def __div__(self,other):
|
||||
"""Divide two fractions."""
|
||||
if parent(other) == ZZ:
|
||||
return fastfrac(self.R,self.top,self.bot * other)
|
||||
if other.__class__ == fastfrac:
|
||||
return fastfrac(self.R,self.top * other.bot,self.bot * other.top)
|
||||
return NotImplemented
|
||||
|
||||
def __pow__(self,other):
|
||||
"""Compute a power of a fraction."""
|
||||
if parent(other) == ZZ:
|
||||
if other < 0:
|
||||
# Negative powers require flipping top and bottom
|
||||
return fastfrac(self.R,self.bot ^ (-other),self.top ^ (-other))
|
||||
else:
|
||||
return fastfrac(self.R,self.top ^ other,self.bot ^ other)
|
||||
return NotImplemented
|
||||
|
||||
def __str__(self):
|
||||
return "fastfrac((" + str(self.top) + ") / (" + str(self.bot) + "))"
|
||||
def __repr__(self):
|
||||
return "%s" % self
|
||||
|
||||
def numerator(self):
|
||||
return self.top
|
||||
|
||||
class constraints:
|
||||
"""A set of constraints, consisting of zero and nonzero expressions.
|
||||
|
||||
Constraints can either be used to express knowledge or a requirement.
|
||||
|
||||
Both the fields zero and nonzero are maps from expressions to description
|
||||
strings. The expressions that are the keys in zero are required to be zero,
|
||||
and the expressions that are the keys in nonzero are required to be nonzero.
|
||||
|
||||
Note that (a != 0) and (b != 0) is the same as (a*b != 0), so all keys in
|
||||
nonzero could be multiplied into a single key. This is often much less
|
||||
efficient to work with though, so we keep them separate inside the
|
||||
constraints. This allows higher-level code to do fast checks on the individual
|
||||
nonzero elements, or combine them if needed for stronger checks.
|
||||
|
||||
We can't multiply the different zero elements, as it would suffice for one of
|
||||
the factors to be zero, instead of all of them. Instead, the zero elements are
|
||||
typically combined into an ideal first.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
if 'zero' in kwargs:
|
||||
self.zero = dict(kwargs['zero'])
|
||||
else:
|
||||
self.zero = dict()
|
||||
if 'nonzero' in kwargs:
|
||||
self.nonzero = dict(kwargs['nonzero'])
|
||||
else:
|
||||
self.nonzero = dict()
|
||||
|
||||
def negate(self):
|
||||
return constraints(zero=self.nonzero, nonzero=self.zero)
|
||||
|
||||
def __add__(self, other):
|
||||
zero = self.zero.copy()
|
||||
zero.update(other.zero)
|
||||
nonzero = self.nonzero.copy()
|
||||
nonzero.update(other.nonzero)
|
||||
return constraints(zero=zero, nonzero=nonzero)
|
||||
|
||||
def __str__(self):
|
||||
return "constraints(zero=%s,nonzero=%s)" % (self.zero, self.nonzero)
|
||||
|
||||
def __repr__(self):
|
||||
return "%s" % self
|
||||
|
||||
|
||||
def conflicts(R, con):
|
||||
"""Check whether any of the passed non-zero assumptions is implied by the zero assumptions"""
|
||||
zero = R.ideal(map(numerator, con.zero))
|
||||
if 1 in zero:
|
||||
return True
|
||||
# First a cheap check whether any of the individual nonzero terms conflict on
|
||||
# their own.
|
||||
for nonzero in con.nonzero:
|
||||
if nonzero.iszero(zero):
|
||||
return True
|
||||
# It can be the case that entries in the nonzero set do not individually
|
||||
# conflict with the zero set, but their combination does. For example, knowing
|
||||
# that either x or y is zero is equivalent to having x*y in the zero set.
|
||||
# Having x or y individually in the nonzero set is not a conflict, but both
|
||||
# simultaneously is, so that is the right thing to check for.
|
||||
if reduce(lambda a,b: a * b, con.nonzero, fastfrac(R, 1)).iszero(zero):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def get_nonzero_set(R, assume):
|
||||
"""Calculate a simple set of nonzero expressions"""
|
||||
zero = R.ideal(map(numerator, assume.zero))
|
||||
nonzero = set()
|
||||
for nz in map(numerator, assume.nonzero):
|
||||
for (f,n) in nz.factor():
|
||||
nonzero.add(f)
|
||||
rnz = zero.reduce(nz)
|
||||
for (f,n) in rnz.factor():
|
||||
nonzero.add(f)
|
||||
return nonzero
|
||||
|
||||
|
||||
def prove_nonzero(R, exprs, assume):
|
||||
"""Check whether an expression is provably nonzero, given assumptions"""
|
||||
zero = R.ideal(map(numerator, assume.zero))
|
||||
nonzero = get_nonzero_set(R, assume)
|
||||
expl = set()
|
||||
ok = True
|
||||
for expr in exprs:
|
||||
if numerator(expr) in zero:
|
||||
return (False, [exprs[expr]])
|
||||
allexprs = reduce(lambda a,b: numerator(a)*numerator(b), exprs, 1)
|
||||
for (f, n) in allexprs.factor():
|
||||
if f not in nonzero:
|
||||
ok = False
|
||||
if ok:
|
||||
return (True, None)
|
||||
ok = True
|
||||
for (f, n) in zero.reduce(numerator(allexprs)).factor():
|
||||
if f not in nonzero:
|
||||
ok = False
|
||||
if ok:
|
||||
return (True, None)
|
||||
ok = True
|
||||
for expr in exprs:
|
||||
for (f,n) in numerator(expr).factor():
|
||||
if f not in nonzero:
|
||||
ok = False
|
||||
if ok:
|
||||
return (True, None)
|
||||
ok = True
|
||||
for expr in exprs:
|
||||
for (f,n) in zero.reduce(numerator(expr)).factor():
|
||||
if f not in nonzero:
|
||||
expl.add(exprs[expr])
|
||||
if expl:
|
||||
return (False, list(expl))
|
||||
else:
|
||||
return (True, None)
|
||||
|
||||
|
||||
def prove_zero(R, exprs, assume):
|
||||
"""Check whether all of the passed expressions are provably zero, given assumptions"""
|
||||
r, e = prove_nonzero(R, dict(map(lambda x: (fastfrac(R, x.bot, 1), exprs[x]), exprs)), assume)
|
||||
if not r:
|
||||
return (False, map(lambda x: "Possibly zero denominator: %s" % x, e))
|
||||
zero = R.ideal(map(numerator, assume.zero))
|
||||
nonzero = prod(x for x in assume.nonzero)
|
||||
expl = []
|
||||
for expr in exprs:
|
||||
if not expr.iszero(zero):
|
||||
expl.append(exprs[expr])
|
||||
if not expl:
|
||||
return (True, None)
|
||||
return (False, expl)
|
||||
|
||||
|
||||
def describe_extra(R, assume, assumeExtra):
|
||||
"""Describe what assumptions are added, given existing assumptions"""
|
||||
zerox = assume.zero.copy()
|
||||
zerox.update(assumeExtra.zero)
|
||||
zero = R.ideal(map(numerator, assume.zero))
|
||||
zeroextra = R.ideal(map(numerator, zerox))
|
||||
nonzero = get_nonzero_set(R, assume)
|
||||
ret = set()
|
||||
# Iterate over the extra zero expressions
|
||||
for base in assumeExtra.zero:
|
||||
if base not in zero:
|
||||
add = []
|
||||
for (f, n) in numerator(base).factor():
|
||||
if f not in nonzero:
|
||||
add += ["%s" % f]
|
||||
if add:
|
||||
ret.add((" * ".join(add)) + " = 0 [%s]" % assumeExtra.zero[base])
|
||||
# Iterate over the extra nonzero expressions
|
||||
for nz in assumeExtra.nonzero:
|
||||
nzr = zeroextra.reduce(numerator(nz))
|
||||
if nzr not in zeroextra:
|
||||
for (f,n) in nzr.factor():
|
||||
if zeroextra.reduce(f) not in nonzero:
|
||||
ret.add("%s != 0" % zeroextra.reduce(f))
|
||||
return ", ".join(x for x in ret)
|
||||
|
||||
|
||||
def check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require):
|
||||
"""Check a set of zero and nonzero requirements, given a set of zero and nonzero assumptions"""
|
||||
assume = assumeLaw + assumeAssert + assumeBranch
|
||||
|
||||
if conflicts(R, assume):
|
||||
# This formula does not apply
|
||||
return None
|
||||
|
||||
describe = describe_extra(R, assumeLaw + assumeBranch, assumeAssert)
|
||||
|
||||
ok, msg = prove_zero(R, require.zero, assume)
|
||||
if not ok:
|
||||
return "FAIL, %s fails (assuming %s)" % (str(msg), describe)
|
||||
|
||||
res, expl = prove_nonzero(R, require.nonzero, assume)
|
||||
if not res:
|
||||
return "FAIL, %s fails (assuming %s)" % (str(expl), describe)
|
||||
|
||||
if describe != "":
|
||||
return "OK (assuming %s)" % describe
|
||||
else:
|
||||
return "OK"
|
||||
|
||||
|
||||
def concrete_verify(c):
|
||||
for k in c.zero:
|
||||
if k != 0:
|
||||
return (False, c.zero[k])
|
||||
for k in c.nonzero:
|
||||
if k == 0:
|
||||
return (False, c.nonzero[k])
|
||||
return (True, None)
|
|
@ -0,0 +1,306 @@
|
|||
# Test libsecp256k1' group operation implementations using prover.sage
|
||||
|
||||
import sys
|
||||
|
||||
load("group_prover.sage")
|
||||
load("weierstrass_prover.sage")
|
||||
|
||||
def formula_secp256k1_gej_double_var(a):
|
||||
"""libsecp256k1's secp256k1_gej_double_var, used by various addition functions"""
|
||||
rz = a.Z * a.Y
|
||||
rz = rz * 2
|
||||
t1 = a.X^2
|
||||
t1 = t1 * 3
|
||||
t2 = t1^2
|
||||
t3 = a.Y^2
|
||||
t3 = t3 * 2
|
||||
t4 = t3^2
|
||||
t4 = t4 * 2
|
||||
t3 = t3 * a.X
|
||||
rx = t3
|
||||
rx = rx * 4
|
||||
rx = -rx
|
||||
rx = rx + t2
|
||||
t2 = -t2
|
||||
t3 = t3 * 6
|
||||
t3 = t3 + t2
|
||||
ry = t1 * t3
|
||||
t2 = -t4
|
||||
ry = ry + t2
|
||||
return jacobianpoint(rx, ry, rz)
|
||||
|
||||
def formula_secp256k1_gej_add_var(branch, a, b):
|
||||
"""libsecp256k1's secp256k1_gej_add_var"""
|
||||
if branch == 0:
|
||||
return (constraints(), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
|
||||
if branch == 1:
|
||||
return (constraints(), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
|
||||
z22 = b.Z^2
|
||||
z12 = a.Z^2
|
||||
u1 = a.X * z22
|
||||
u2 = b.X * z12
|
||||
s1 = a.Y * z22
|
||||
s1 = s1 * b.Z
|
||||
s2 = b.Y * z12
|
||||
s2 = s2 * a.Z
|
||||
h = -u1
|
||||
h = h + u2
|
||||
i = -s1
|
||||
i = i + s2
|
||||
if branch == 2:
|
||||
r = formula_secp256k1_gej_double_var(a)
|
||||
return (constraints(), constraints(zero={h : 'h=0', i : 'i=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}), r)
|
||||
if branch == 3:
|
||||
return (constraints(), constraints(zero={h : 'h=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={i : 'i!=0'}), point_at_infinity())
|
||||
i2 = i^2
|
||||
h2 = h^2
|
||||
h3 = h2 * h
|
||||
h = h * b.Z
|
||||
rz = a.Z * h
|
||||
t = u1 * h2
|
||||
rx = t
|
||||
rx = rx * 2
|
||||
rx = rx + h3
|
||||
rx = -rx
|
||||
rx = rx + i2
|
||||
ry = -rx
|
||||
ry = ry + t
|
||||
ry = ry * i
|
||||
h3 = h3 * s1
|
||||
h3 = -h3
|
||||
ry = ry + h3
|
||||
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
|
||||
|
||||
def formula_secp256k1_gej_add_ge_var(branch, a, b):
|
||||
"""libsecp256k1's secp256k1_gej_add_ge_var, which assume bz==1"""
|
||||
if branch == 0:
|
||||
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
|
||||
if branch == 1:
|
||||
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
|
||||
z12 = a.Z^2
|
||||
u1 = a.X
|
||||
u2 = b.X * z12
|
||||
s1 = a.Y
|
||||
s2 = b.Y * z12
|
||||
s2 = s2 * a.Z
|
||||
h = -u1
|
||||
h = h + u2
|
||||
i = -s1
|
||||
i = i + s2
|
||||
if (branch == 2):
|
||||
r = formula_secp256k1_gej_double_var(a)
|
||||
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
|
||||
if (branch == 3):
|
||||
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
|
||||
i2 = i^2
|
||||
h2 = h^2
|
||||
h3 = h * h2
|
||||
rz = a.Z * h
|
||||
t = u1 * h2
|
||||
rx = t
|
||||
rx = rx * 2
|
||||
rx = rx + h3
|
||||
rx = -rx
|
||||
rx = rx + i2
|
||||
ry = -rx
|
||||
ry = ry + t
|
||||
ry = ry * i
|
||||
h3 = h3 * s1
|
||||
h3 = -h3
|
||||
ry = ry + h3
|
||||
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
|
||||
|
||||
def formula_secp256k1_gej_add_zinv_var(branch, a, b):
|
||||
"""libsecp256k1's secp256k1_gej_add_zinv_var"""
|
||||
bzinv = b.Z^(-1)
|
||||
if branch == 0:
|
||||
return (constraints(), constraints(nonzero={b.Infinity : 'b_infinite'}), a)
|
||||
if branch == 1:
|
||||
bzinv2 = bzinv^2
|
||||
bzinv3 = bzinv2 * bzinv
|
||||
rx = b.X * bzinv2
|
||||
ry = b.Y * bzinv3
|
||||
rz = 1
|
||||
return (constraints(), constraints(zero={b.Infinity : 'b_finite'}, nonzero={a.Infinity : 'a_infinite'}), jacobianpoint(rx, ry, rz))
|
||||
azz = a.Z * bzinv
|
||||
z12 = azz^2
|
||||
u1 = a.X
|
||||
u2 = b.X * z12
|
||||
s1 = a.Y
|
||||
s2 = b.Y * z12
|
||||
s2 = s2 * azz
|
||||
h = -u1
|
||||
h = h + u2
|
||||
i = -s1
|
||||
i = i + s2
|
||||
if branch == 2:
|
||||
r = formula_secp256k1_gej_double_var(a)
|
||||
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
|
||||
if branch == 3:
|
||||
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
|
||||
i2 = i^2
|
||||
h2 = h^2
|
||||
h3 = h * h2
|
||||
rz = a.Z
|
||||
rz = rz * h
|
||||
t = u1 * h2
|
||||
rx = t
|
||||
rx = rx * 2
|
||||
rx = rx + h3
|
||||
rx = -rx
|
||||
rx = rx + i2
|
||||
ry = -rx
|
||||
ry = ry + t
|
||||
ry = ry * i
|
||||
h3 = h3 * s1
|
||||
h3 = -h3
|
||||
ry = ry + h3
|
||||
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
|
||||
|
||||
def formula_secp256k1_gej_add_ge(branch, a, b):
|
||||
"""libsecp256k1's secp256k1_gej_add_ge"""
|
||||
zeroes = {}
|
||||
nonzeroes = {}
|
||||
a_infinity = False
|
||||
if (branch & 4) != 0:
|
||||
nonzeroes.update({a.Infinity : 'a_infinite'})
|
||||
a_infinity = True
|
||||
else:
|
||||
zeroes.update({a.Infinity : 'a_finite'})
|
||||
zz = a.Z^2
|
||||
u1 = a.X
|
||||
u2 = b.X * zz
|
||||
s1 = a.Y
|
||||
s2 = b.Y * zz
|
||||
s2 = s2 * a.Z
|
||||
t = u1
|
||||
t = t + u2
|
||||
m = s1
|
||||
m = m + s2
|
||||
rr = t^2
|
||||
m_alt = -u2
|
||||
tt = u1 * m_alt
|
||||
rr = rr + tt
|
||||
degenerate = (branch & 3) == 3
|
||||
if (branch & 1) != 0:
|
||||
zeroes.update({m : 'm_zero'})
|
||||
else:
|
||||
nonzeroes.update({m : 'm_nonzero'})
|
||||
if (branch & 2) != 0:
|
||||
zeroes.update({rr : 'rr_zero'})
|
||||
else:
|
||||
nonzeroes.update({rr : 'rr_nonzero'})
|
||||
rr_alt = s1
|
||||
rr_alt = rr_alt * 2
|
||||
m_alt = m_alt + u1
|
||||
if not degenerate:
|
||||
rr_alt = rr
|
||||
m_alt = m
|
||||
n = m_alt^2
|
||||
q = n * t
|
||||
n = n^2
|
||||
if degenerate:
|
||||
n = m
|
||||
t = rr_alt^2
|
||||
rz = a.Z * m_alt
|
||||
infinity = False
|
||||
if (branch & 8) != 0:
|
||||
if not a_infinity:
|
||||
infinity = True
|
||||
zeroes.update({rz : 'r.z=0'})
|
||||
else:
|
||||
nonzeroes.update({rz : 'r.z!=0'})
|
||||
rz = rz * 2
|
||||
q = -q
|
||||
t = t + q
|
||||
rx = t
|
||||
t = t * 2
|
||||
t = t + q
|
||||
t = t * rr_alt
|
||||
t = t + n
|
||||
ry = -t
|
||||
rx = rx * 4
|
||||
ry = ry * 4
|
||||
if a_infinity:
|
||||
rx = b.X
|
||||
ry = b.Y
|
||||
rz = 1
|
||||
if infinity:
|
||||
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), point_at_infinity())
|
||||
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), jacobianpoint(rx, ry, rz))
|
||||
|
||||
def formula_secp256k1_gej_add_ge_old(branch, a, b):
|
||||
"""libsecp256k1's old secp256k1_gej_add_ge, which fails when ay+by=0 but ax!=bx"""
|
||||
a_infinity = (branch & 1) != 0
|
||||
zero = {}
|
||||
nonzero = {}
|
||||
if a_infinity:
|
||||
nonzero.update({a.Infinity : 'a_infinite'})
|
||||
else:
|
||||
zero.update({a.Infinity : 'a_finite'})
|
||||
zz = a.Z^2
|
||||
u1 = a.X
|
||||
u2 = b.X * zz
|
||||
s1 = a.Y
|
||||
s2 = b.Y * zz
|
||||
s2 = s2 * a.Z
|
||||
z = a.Z
|
||||
t = u1
|
||||
t = t + u2
|
||||
m = s1
|
||||
m = m + s2
|
||||
n = m^2
|
||||
q = n * t
|
||||
n = n^2
|
||||
rr = t^2
|
||||
t = u1 * u2
|
||||
t = -t
|
||||
rr = rr + t
|
||||
t = rr^2
|
||||
rz = m * z
|
||||
infinity = False
|
||||
if (branch & 2) != 0:
|
||||
if not a_infinity:
|
||||
infinity = True
|
||||
else:
|
||||
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(nonzero={z : 'conflict_a'}, zero={z : 'conflict_b'}), point_at_infinity())
|
||||
zero.update({rz : 'r.z=0'})
|
||||
else:
|
||||
nonzero.update({rz : 'r.z!=0'})
|
||||
rz = rz * (0 if a_infinity else 2)
|
||||
rx = t
|
||||
q = -q
|
||||
rx = rx + q
|
||||
q = q * 3
|
||||
t = t * 2
|
||||
t = t + q
|
||||
t = t * rr
|
||||
t = t + n
|
||||
ry = -t
|
||||
rx = rx * (0 if a_infinity else 4)
|
||||
ry = ry * (0 if a_infinity else 4)
|
||||
t = b.X
|
||||
t = t * (1 if a_infinity else 0)
|
||||
rx = rx + t
|
||||
t = b.Y
|
||||
t = t * (1 if a_infinity else 0)
|
||||
ry = ry + t
|
||||
t = (1 if a_infinity else 0)
|
||||
rz = rz + t
|
||||
if infinity:
|
||||
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), point_at_infinity())
|
||||
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), jacobianpoint(rx, ry, rz))
|
||||
|
||||
if __name__ == "__main__":
|
||||
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var)
|
||||
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var)
|
||||
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var)
|
||||
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge)
|
||||
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old)
|
||||
|
||||
if len(sys.argv) >= 2 and sys.argv[1] == "--exhaustive":
|
||||
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var, 43)
|
||||
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var, 43)
|
||||
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var, 43)
|
||||
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge, 43)
|
||||
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old, 43)
|
|
@ -0,0 +1,264 @@
|
|||
# Prover implementation for Weierstrass curves of the form
|
||||
# y^2 = x^3 + A * x + B, specifically with a = 0 and b = 7, with group laws
|
||||
# operating on affine and Jacobian coordinates, including the point at infinity
|
||||
# represented by a 4th variable in coordinates.
|
||||
|
||||
load("group_prover.sage")
|
||||
|
||||
|
||||
class affinepoint:
|
||||
def __init__(self, x, y, infinity=0):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.infinity = infinity
|
||||
def __str__(self):
|
||||
return "affinepoint(x=%s,y=%s,inf=%s)" % (self.x, self.y, self.infinity)
|
||||
|
||||
|
||||
class jacobianpoint:
|
||||
def __init__(self, x, y, z, infinity=0):
|
||||
self.X = x
|
||||
self.Y = y
|
||||
self.Z = z
|
||||
self.Infinity = infinity
|
||||
def __str__(self):
|
||||
return "jacobianpoint(X=%s,Y=%s,Z=%s,inf=%s)" % (self.X, self.Y, self.Z, self.Infinity)
|
||||
|
||||
|
||||
def point_at_infinity():
|
||||
return jacobianpoint(1, 1, 1, 1)
|
||||
|
||||
|
||||
def negate(p):
|
||||
if p.__class__ == affinepoint:
|
||||
return affinepoint(p.x, -p.y)
|
||||
if p.__class__ == jacobianpoint:
|
||||
return jacobianpoint(p.X, -p.Y, p.Z)
|
||||
assert(False)
|
||||
|
||||
|
||||
def on_weierstrass_curve(A, B, p):
|
||||
"""Return a set of zero-expressions for an affine point to be on the curve"""
|
||||
return constraints(zero={p.x^3 + A*p.x + B - p.y^2: 'on_curve'})
|
||||
|
||||
|
||||
def tangential_to_weierstrass_curve(A, B, p12, p3):
|
||||
"""Return a set of zero-expressions for ((x12,y12),(x3,y3)) to be a line that is tangential to the curve at (x12,y12)"""
|
||||
return constraints(zero={
|
||||
(p12.y - p3.y) * (p12.y * 2) - (p12.x^2 * 3 + A) * (p12.x - p3.x): 'tangential_to_curve'
|
||||
})
|
||||
|
||||
|
||||
def colinear(p1, p2, p3):
|
||||
"""Return a set of zero-expressions for ((x1,y1),(x2,y2),(x3,y3)) to be collinear"""
|
||||
return constraints(zero={
|
||||
(p1.y - p2.y) * (p1.x - p3.x) - (p1.y - p3.y) * (p1.x - p2.x): 'colinear_1',
|
||||
(p2.y - p3.y) * (p2.x - p1.x) - (p2.y - p1.y) * (p2.x - p3.x): 'colinear_2',
|
||||
(p3.y - p1.y) * (p3.x - p2.x) - (p3.y - p2.y) * (p3.x - p1.x): 'colinear_3'
|
||||
})
|
||||
|
||||
|
||||
def good_affine_point(p):
|
||||
return constraints(nonzero={p.x : 'nonzero_x', p.y : 'nonzero_y'})
|
||||
|
||||
|
||||
def good_jacobian_point(p):
|
||||
return constraints(nonzero={p.X : 'nonzero_X', p.Y : 'nonzero_Y', p.Z^6 : 'nonzero_Z'})
|
||||
|
||||
|
||||
def good_point(p):
|
||||
return constraints(nonzero={p.Z^6 : 'nonzero_X'})
|
||||
|
||||
|
||||
def finite(p, *affine_fns):
|
||||
con = good_point(p) + constraints(zero={p.Infinity : 'finite_point'})
|
||||
if p.Z != 0:
|
||||
return con + reduce(lambda a, b: a + b, (f(affinepoint(p.X / p.Z^2, p.Y / p.Z^3)) for f in affine_fns), con)
|
||||
else:
|
||||
return con
|
||||
|
||||
def infinite(p):
|
||||
return constraints(nonzero={p.Infinity : 'infinite_point'})
|
||||
|
||||
|
||||
def law_jacobian_weierstrass_add(A, B, pa, pb, pA, pB, pC):
|
||||
"""Check whether the passed set of coordinates is a valid Jacobian add, given assumptions"""
|
||||
assumeLaw = (good_affine_point(pa) +
|
||||
good_affine_point(pb) +
|
||||
good_jacobian_point(pA) +
|
||||
good_jacobian_point(pB) +
|
||||
on_weierstrass_curve(A, B, pa) +
|
||||
on_weierstrass_curve(A, B, pb) +
|
||||
finite(pA) +
|
||||
finite(pB) +
|
||||
constraints(nonzero={pa.x - pb.x : 'different_x'}))
|
||||
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
|
||||
colinear(pa, pb, negate(pc))))
|
||||
return (assumeLaw, require)
|
||||
|
||||
|
||||
def law_jacobian_weierstrass_double(A, B, pa, pb, pA, pB, pC):
|
||||
"""Check whether the passed set of coordinates is a valid Jacobian doubling, given assumptions"""
|
||||
assumeLaw = (good_affine_point(pa) +
|
||||
good_affine_point(pb) +
|
||||
good_jacobian_point(pA) +
|
||||
good_jacobian_point(pB) +
|
||||
on_weierstrass_curve(A, B, pa) +
|
||||
on_weierstrass_curve(A, B, pb) +
|
||||
finite(pA) +
|
||||
finite(pB) +
|
||||
constraints(zero={pa.x - pb.x : 'equal_x', pa.y - pb.y : 'equal_y'}))
|
||||
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
|
||||
tangential_to_weierstrass_curve(A, B, pa, negate(pc))))
|
||||
return (assumeLaw, require)
|
||||
|
||||
|
||||
def law_jacobian_weierstrass_add_opposites(A, B, pa, pb, pA, pB, pC):
|
||||
assumeLaw = (good_affine_point(pa) +
|
||||
good_affine_point(pb) +
|
||||
good_jacobian_point(pA) +
|
||||
good_jacobian_point(pB) +
|
||||
on_weierstrass_curve(A, B, pa) +
|
||||
on_weierstrass_curve(A, B, pb) +
|
||||
finite(pA) +
|
||||
finite(pB) +
|
||||
constraints(zero={pa.x - pb.x : 'equal_x', pa.y + pb.y : 'opposite_y'}))
|
||||
require = infinite(pC)
|
||||
return (assumeLaw, require)
|
||||
|
||||
|
||||
def law_jacobian_weierstrass_add_infinite_a(A, B, pa, pb, pA, pB, pC):
|
||||
assumeLaw = (good_affine_point(pa) +
|
||||
good_affine_point(pb) +
|
||||
good_jacobian_point(pA) +
|
||||
good_jacobian_point(pB) +
|
||||
on_weierstrass_curve(A, B, pb) +
|
||||
infinite(pA) +
|
||||
finite(pB))
|
||||
require = finite(pC, lambda pc: constraints(zero={pc.x - pb.x : 'c.x=b.x', pc.y - pb.y : 'c.y=b.y'}))
|
||||
return (assumeLaw, require)
|
||||
|
||||
|
||||
def law_jacobian_weierstrass_add_infinite_b(A, B, pa, pb, pA, pB, pC):
|
||||
assumeLaw = (good_affine_point(pa) +
|
||||
good_affine_point(pb) +
|
||||
good_jacobian_point(pA) +
|
||||
good_jacobian_point(pB) +
|
||||
on_weierstrass_curve(A, B, pa) +
|
||||
infinite(pB) +
|
||||
finite(pA))
|
||||
require = finite(pC, lambda pc: constraints(zero={pc.x - pa.x : 'c.x=a.x', pc.y - pa.y : 'c.y=a.y'}))
|
||||
return (assumeLaw, require)
|
||||
|
||||
|
||||
def law_jacobian_weierstrass_add_infinite_ab(A, B, pa, pb, pA, pB, pC):
|
||||
assumeLaw = (good_affine_point(pa) +
|
||||
good_affine_point(pb) +
|
||||
good_jacobian_point(pA) +
|
||||
good_jacobian_point(pB) +
|
||||
infinite(pA) +
|
||||
infinite(pB))
|
||||
require = infinite(pC)
|
||||
return (assumeLaw, require)
|
||||
|
||||
|
||||
laws_jacobian_weierstrass = {
|
||||
'add': law_jacobian_weierstrass_add,
|
||||
'double': law_jacobian_weierstrass_double,
|
||||
'add_opposite': law_jacobian_weierstrass_add_opposites,
|
||||
'add_infinite_a': law_jacobian_weierstrass_add_infinite_a,
|
||||
'add_infinite_b': law_jacobian_weierstrass_add_infinite_b,
|
||||
'add_infinite_ab': law_jacobian_weierstrass_add_infinite_ab
|
||||
}
|
||||
|
||||
|
||||
def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p):
|
||||
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field"""
|
||||
F = Integers(p)
|
||||
print "Formula %s on Z%i:" % (name, p)
|
||||
points = []
|
||||
for x in xrange(0, p):
|
||||
for y in xrange(0, p):
|
||||
point = affinepoint(F(x), F(y))
|
||||
r, e = concrete_verify(on_weierstrass_curve(A, B, point))
|
||||
if r:
|
||||
points.append(point)
|
||||
|
||||
for za in xrange(1, p):
|
||||
for zb in xrange(1, p):
|
||||
for pa in points:
|
||||
for pb in points:
|
||||
for ia in xrange(2):
|
||||
for ib in xrange(2):
|
||||
pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia)
|
||||
pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib)
|
||||
for branch in xrange(0, branches):
|
||||
assumeAssert, assumeBranch, pC = formula(branch, pA, pB)
|
||||
pC.X = F(pC.X)
|
||||
pC.Y = F(pC.Y)
|
||||
pC.Z = F(pC.Z)
|
||||
pC.Infinity = F(pC.Infinity)
|
||||
r, e = concrete_verify(assumeAssert + assumeBranch)
|
||||
if r:
|
||||
match = False
|
||||
for key in laws_jacobian_weierstrass:
|
||||
assumeLaw, require = laws_jacobian_weierstrass[key](A, B, pa, pb, pA, pB, pC)
|
||||
r, e = concrete_verify(assumeLaw)
|
||||
if r:
|
||||
if match:
|
||||
print " multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity)
|
||||
else:
|
||||
match = True
|
||||
r, e = concrete_verify(require)
|
||||
if not r:
|
||||
print " failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e)
|
||||
print
|
||||
|
||||
|
||||
def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC):
|
||||
assumeLaw, require = f(A, B, pa, pb, pA, pB, pC)
|
||||
return check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require)
|
||||
|
||||
def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula):
|
||||
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve symbolically"""
|
||||
R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex')
|
||||
lift = lambda x: fastfrac(R,x)
|
||||
ax = lift(ax)
|
||||
ay = lift(ay)
|
||||
Az = lift(Az)
|
||||
bx = lift(bx)
|
||||
by = lift(by)
|
||||
Bz = lift(Bz)
|
||||
Ai = lift(Ai)
|
||||
Bi = lift(Bi)
|
||||
|
||||
pa = affinepoint(ax, ay, Ai)
|
||||
pb = affinepoint(bx, by, Bi)
|
||||
pA = jacobianpoint(ax * Az^2, ay * Az^3, Az, Ai)
|
||||
pB = jacobianpoint(bx * Bz^2, by * Bz^3, Bz, Bi)
|
||||
|
||||
res = {}
|
||||
|
||||
for key in laws_jacobian_weierstrass:
|
||||
res[key] = []
|
||||
|
||||
print ("Formula " + name + ":")
|
||||
count = 0
|
||||
for branch in xrange(branches):
|
||||
assumeFormula, assumeBranch, pC = formula(branch, pA, pB)
|
||||
pC.X = lift(pC.X)
|
||||
pC.Y = lift(pC.Y)
|
||||
pC.Z = lift(pC.Z)
|
||||
pC.Infinity = lift(pC.Infinity)
|
||||
|
||||
for key in laws_jacobian_weierstrass:
|
||||
res[key].append((check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC), branch))
|
||||
|
||||
for key in res:
|
||||
print " %s:" % key
|
||||
val = res[key]
|
||||
for x in val:
|
||||
if x[0] is not None:
|
||||
print " branch %i: %s" % (x[1], x[0])
|
||||
|
||||
print
|
|
@ -11,6 +11,12 @@
|
|||
#include "util.h"
|
||||
#include "bench.h"
|
||||
|
||||
#ifdef ENABLE_OPENSSL_TESTS
|
||||
#include <openssl/bn.h>
|
||||
#include <openssl/ecdsa.h>
|
||||
#include <openssl/obj_mac.h>
|
||||
#endif
|
||||
|
||||
typedef struct {
|
||||
secp256k1_context *ctx;
|
||||
unsigned char msg[32];
|
||||
|
@ -19,6 +25,9 @@ typedef struct {
|
|||
size_t siglen;
|
||||
unsigned char pubkey[33];
|
||||
size_t pubkeylen;
|
||||
#ifdef ENABLE_OPENSSL_TESTS
|
||||
EC_GROUP* ec_group;
|
||||
#endif
|
||||
} benchmark_verify_t;
|
||||
|
||||
static void benchmark_verify(void* arg) {
|
||||
|
@ -40,6 +49,36 @@ static void benchmark_verify(void* arg) {
|
|||
}
|
||||
}
|
||||
|
||||
#ifdef ENABLE_OPENSSL_TESTS
|
||||
static void benchmark_verify_openssl(void* arg) {
|
||||
int i;
|
||||
benchmark_verify_t* data = (benchmark_verify_t*)arg;
|
||||
|
||||
for (i = 0; i < 20000; i++) {
|
||||
data->sig[data->siglen - 1] ^= (i & 0xFF);
|
||||
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
|
||||
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
|
||||
{
|
||||
EC_KEY *pkey = EC_KEY_new();
|
||||
const unsigned char *pubkey = &data->pubkey[0];
|
||||
int result;
|
||||
|
||||
CHECK(pkey != NULL);
|
||||
result = EC_KEY_set_group(pkey, data->ec_group);
|
||||
CHECK(result);
|
||||
result = (o2i_ECPublicKey(&pkey, &pubkey, data->pubkeylen)) != NULL;
|
||||
CHECK(result);
|
||||
result = ECDSA_verify(0, &data->msg[0], sizeof(data->msg), &data->sig[0], data->siglen, pkey) == (i == 0);
|
||||
CHECK(result);
|
||||
EC_KEY_free(pkey);
|
||||
}
|
||||
data->sig[data->siglen - 1] ^= (i & 0xFF);
|
||||
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
|
||||
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
int main(void) {
|
||||
int i;
|
||||
secp256k1_pubkey pubkey;
|
||||
|
@ -58,9 +97,15 @@ int main(void) {
|
|||
CHECK(secp256k1_ecdsa_sign(data.ctx, &sig, data.msg, data.key, NULL, NULL));
|
||||
CHECK(secp256k1_ecdsa_signature_serialize_der(data.ctx, data.sig, &data.siglen, &sig));
|
||||
CHECK(secp256k1_ec_pubkey_create(data.ctx, &pubkey, data.key));
|
||||
data.pubkeylen = 33;
|
||||
CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
|
||||
|
||||
run_benchmark("ecdsa_verify", benchmark_verify, NULL, NULL, &data, 10, 20000);
|
||||
#ifdef ENABLE_OPENSSL_TESTS
|
||||
data.ec_group = EC_GROUP_new_by_curve_name(NID_secp256k1);
|
||||
run_benchmark("ecdsa_verify_openssl", benchmark_verify_openssl, NULL, NULL, &data, 10, 20000);
|
||||
EC_GROUP_free(data.ec_group);
|
||||
#endif
|
||||
|
||||
secp256k1_context_destroy(data.ctx);
|
||||
return 0;
|
||||
|
|
|
@ -75,8 +75,9 @@ static int secp256k1_der_read_len(const unsigned char **sigp, const unsigned cha
|
|||
return -1;
|
||||
}
|
||||
if ((size_t)lenleft > sizeof(size_t)) {
|
||||
/* The resulthing length would exceed the range of a size_t, so
|
||||
certainly longer than the passed array size. */
|
||||
/* The resulting length would exceed the range of a size_t, so
|
||||
* certainly longer than the passed array size.
|
||||
*/
|
||||
return -1;
|
||||
}
|
||||
while (lenleft > 0) {
|
||||
|
@ -267,13 +268,17 @@ static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, sec
|
|||
secp256k1_fe_get_b32(b, &r.x);
|
||||
secp256k1_scalar_set_b32(sigr, b, &overflow);
|
||||
if (secp256k1_scalar_is_zero(sigr)) {
|
||||
/* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature. */
|
||||
/* This branch is cryptographically unreachable as hitting it requires finding the discrete log of P.x = N. */
|
||||
/* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature.
|
||||
* This branch is cryptographically unreachable as hitting it requires finding the discrete log of P.x = N.
|
||||
*/
|
||||
secp256k1_gej_clear(&rp);
|
||||
secp256k1_ge_clear(&r);
|
||||
return 0;
|
||||
}
|
||||
if (recid) {
|
||||
/* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log
|
||||
* of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria.
|
||||
*/
|
||||
*recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
|
||||
}
|
||||
secp256k1_scalar_mul(&n, sigr, seckey);
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
/** Field element module.
|
||||
*
|
||||
* Field elements can be represented in several ways, but code accessing
|
||||
* it (and implementations) need to take certain properaties into account:
|
||||
* it (and implementations) need to take certain properties into account:
|
||||
* - Each field element can be normalized or not.
|
||||
* - Each field element has a magnitude, which represents how far away
|
||||
* its representation is away from normalization. Normalized elements
|
||||
|
@ -87,9 +87,11 @@ static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp2
|
|||
* The output magnitude is 1 (but not guaranteed to be normalized). */
|
||||
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** Sets a field element to be the (modular) square root (if any exist) of another. Requires the
|
||||
* input's magnitude to be at most 8. The output magnitude is 1 (but not guaranteed to be
|
||||
* normalized). Return value indicates whether a square root was found. */
|
||||
/** If a has a square root, it is computed in r and 1 is returned. If a does not
|
||||
* have a square root, the root of its negation is computed and 0 is returned.
|
||||
* The input's magnitude can be at most 8. The output magnitude is 1 (but not
|
||||
* guaranteed to be normalized). The result in r will always be a square
|
||||
* itself. */
|
||||
static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a);
|
||||
|
||||
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
|
||||
|
|
|
@ -29,6 +29,15 @@ SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const
|
|||
}
|
||||
|
||||
static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) {
|
||||
/** Given that p is congruent to 3 mod 4, we can compute the square root of
|
||||
* a mod p as the (p+1)/4'th power of a.
|
||||
*
|
||||
* As (p+1)/4 is an even number, it will have the same result for a and for
|
||||
* (-a). Only one of these two numbers actually has a square root however,
|
||||
* so we test at the end by squaring and comparing to the input.
|
||||
* Also because (p+1)/4 is an even number, the computed square root is
|
||||
* itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
|
||||
*/
|
||||
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
|
||||
int j;
|
||||
|
||||
|
|
|
@ -43,6 +43,12 @@ typedef struct {
|
|||
/** Set a group element equal to the point with given X and Y coordinates */
|
||||
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
|
||||
|
||||
/** Set a group element (affine) equal to the point with the given X coordinate
|
||||
* and a Y coordinate that is a quadratic residue modulo p. The return value
|
||||
* is true iff a coordinate with the given X coordinate exists.
|
||||
*/
|
||||
static int secp256k1_ge_set_xquad_var(secp256k1_ge *r, const secp256k1_fe *x);
|
||||
|
||||
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
|
||||
* for Y. Return value indicates whether the result is valid. */
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
|
||||
|
|
|
@ -165,7 +165,7 @@ static void secp256k1_ge_clear(secp256k1_ge *r) {
|
|||
secp256k1_fe_clear(&r->y);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
|
||||
static int secp256k1_ge_set_xquad_var(secp256k1_ge *r, const secp256k1_fe *x) {
|
||||
secp256k1_fe x2, x3, c;
|
||||
r->x = *x;
|
||||
secp256k1_fe_sqr(&x2, x);
|
||||
|
@ -173,7 +173,11 @@ static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int o
|
|||
r->infinity = 0;
|
||||
secp256k1_fe_set_int(&c, 7);
|
||||
secp256k1_fe_add(&c, &x3);
|
||||
if (!secp256k1_fe_sqrt_var(&r->y, &c)) {
|
||||
return secp256k1_fe_sqrt_var(&r->y, &c);
|
||||
}
|
||||
|
||||
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
|
||||
if (!secp256k1_ge_set_xquad_var(r, x)) {
|
||||
return 0;
|
||||
}
|
||||
secp256k1_fe_normalize_var(&r->y);
|
||||
|
@ -181,6 +185,7 @@ static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int o
|
|||
secp256k1_fe_negate(&r->y, &r->y, 1);
|
||||
}
|
||||
return 1;
|
||||
|
||||
}
|
||||
|
||||
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
|
||||
|
|
|
@ -1,21 +0,0 @@
|
|||
/* Bitcoin secp256k1 bindings
|
||||
* Written in 2015 by
|
||||
* Andrew Poelstra
|
||||
*
|
||||
* To the extent possible under law, the author(s) have dedicated all
|
||||
* copyright and related and neighboring rights to this software to
|
||||
* the public domain worldwide. This software is distributed without
|
||||
* any warranty.
|
||||
*
|
||||
* You should have received a copy of the CC0 Public Domain Dedication
|
||||
* along with this software.
|
||||
* If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
|
||||
*/
|
||||
|
||||
#include "contrib/lax_der_parsing.h"
|
||||
|
||||
int secp256k1_ecdsa_signature_parse_der_lax_(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
|
||||
return secp256k1_ecdsa_signature_parse_der_lax(ctx, sig, input, inputlen);
|
||||
}
|
||||
|
||||
|
|
@ -154,7 +154,7 @@ int secp256k1_schnorr_partial_sign(const secp256k1_context* ctx, unsigned char *
|
|||
return secp256k1_schnorr_sig_sign(&ctx->ecmult_gen_ctx, sig64, &sec, &non, &pubnon, secp256k1_schnorr_msghash_sha256, msg32);
|
||||
}
|
||||
|
||||
int secp256k1_schnorr_partial_combine(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char * const *sig64sin, int n) {
|
||||
int secp256k1_schnorr_partial_combine(const secp256k1_context* ctx, unsigned char *sig64, const unsigned char * const *sig64sin, size_t n) {
|
||||
ARG_CHECK(sig64 != NULL);
|
||||
ARG_CHECK(n >= 1);
|
||||
ARG_CHECK(sig64sin != NULL);
|
||||
|
|
|
@ -15,6 +15,6 @@ typedef void (*secp256k1_schnorr_msghash)(unsigned char *h32, const unsigned cha
|
|||
static int secp256k1_schnorr_sig_sign(const secp256k1_ecmult_gen_context* ctx, unsigned char *sig64, const secp256k1_scalar *key, const secp256k1_scalar *nonce, const secp256k1_ge *pubnonce, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
|
||||
static int secp256k1_schnorr_sig_verify(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, const secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
|
||||
static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, const unsigned char *sig64, secp256k1_ge *pubkey, secp256k1_schnorr_msghash hash, const unsigned char *msg32);
|
||||
static int secp256k1_schnorr_sig_combine(unsigned char *sig64, int n, const unsigned char * const *sig64ins);
|
||||
static int secp256k1_schnorr_sig_combine(unsigned char *sig64, size_t n, const unsigned char * const *sig64ins);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -178,9 +178,9 @@ static int secp256k1_schnorr_sig_recover(const secp256k1_ecmult_context* ctx, co
|
|||
return 1;
|
||||
}
|
||||
|
||||
static int secp256k1_schnorr_sig_combine(unsigned char *sig64, int n, const unsigned char * const *sig64ins) {
|
||||
static int secp256k1_schnorr_sig_combine(unsigned char *sig64, size_t n, const unsigned char * const *sig64ins) {
|
||||
secp256k1_scalar s = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
|
||||
int i;
|
||||
size_t i;
|
||||
for (i = 0; i < n; i++) {
|
||||
secp256k1_scalar si;
|
||||
int overflow;
|
||||
|
|
|
@ -167,15 +167,26 @@ int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pu
|
|||
|
||||
int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey* pubkey, unsigned int flags) {
|
||||
secp256k1_ge Q;
|
||||
size_t len;
|
||||
int ret = 0;
|
||||
|
||||
(void)ctx;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(output != NULL);
|
||||
ARG_CHECK(outputlen != NULL);
|
||||
ARG_CHECK(*outputlen >= ((flags & SECP256K1_FLAGS_BIT_COMPRESSION) ? 33 : 65));
|
||||
len = *outputlen;
|
||||
*outputlen = 0;
|
||||
ARG_CHECK(output != NULL);
|
||||
memset(output, 0, len);
|
||||
ARG_CHECK(pubkey != NULL);
|
||||
ARG_CHECK((flags & SECP256K1_FLAGS_TYPE_MASK) == SECP256K1_FLAGS_TYPE_COMPRESSION);
|
||||
return (secp256k1_pubkey_load(ctx, &Q, pubkey) &&
|
||||
secp256k1_eckey_pubkey_serialize(&Q, output, outputlen, flags & SECP256K1_FLAGS_BIT_COMPRESSION));
|
||||
if (secp256k1_pubkey_load(ctx, &Q, pubkey)) {
|
||||
ret = secp256k1_eckey_pubkey_serialize(&Q, output, &len, flags & SECP256K1_FLAGS_BIT_COMPRESSION);
|
||||
if (ret) {
|
||||
*outputlen = len;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) {
|
||||
|
@ -402,13 +413,13 @@ int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *p
|
|||
int overflow;
|
||||
int ret = 0;
|
||||
VERIFY_CHECK(ctx != NULL);
|
||||
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
|
||||
ARG_CHECK(pubkey != NULL);
|
||||
memset(pubkey, 0, sizeof(*pubkey));
|
||||
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
|
||||
ARG_CHECK(seckey != NULL);
|
||||
|
||||
secp256k1_scalar_set_b32(&sec, seckey, &overflow);
|
||||
ret = (!overflow) & (!secp256k1_scalar_is_zero(&sec));
|
||||
memset(pubkey, 0, sizeof(*pubkey));
|
||||
if (ret) {
|
||||
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec);
|
||||
secp256k1_ge_set_gej(&p, &pj);
|
||||
|
@ -520,12 +531,13 @@ int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *see
|
|||
return 1;
|
||||
}
|
||||
|
||||
int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, int n) {
|
||||
int i;
|
||||
int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, size_t n) {
|
||||
size_t i;
|
||||
secp256k1_gej Qj;
|
||||
secp256k1_ge Q;
|
||||
|
||||
ARG_CHECK(pubnonce != NULL);
|
||||
memset(pubnonce, 0, sizeof(*pubnonce));
|
||||
ARG_CHECK(n >= 1);
|
||||
ARG_CHECK(pubnonces != NULL);
|
||||
|
||||
|
@ -536,7 +548,6 @@ int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *
|
|||
secp256k1_gej_add_ge(&Qj, &Qj, &Q);
|
||||
}
|
||||
if (secp256k1_gej_is_infinity(&Qj)) {
|
||||
memset(pubnonce, 0, sizeof(*pubnonce));
|
||||
return 0;
|
||||
}
|
||||
secp256k1_ge_set_gej(&Q, &Qj);
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -150,7 +150,7 @@ extern "C" {
|
|||
input: *const c_uchar, in_len: size_t)
|
||||
-> c_int;
|
||||
|
||||
pub fn secp256k1_ecdsa_signature_parse_der_lax_(cx: *const Context, sig: *mut Signature,
|
||||
pub fn ecdsa_signature_parse_der_lax(cx: *const Context, sig: *mut Signature,
|
||||
input: *const c_uchar, in_len: size_t)
|
||||
-> c_int;
|
||||
|
||||
|
|
|
@ -160,7 +160,7 @@ impl PublicKey {
|
|||
let mut ret = ArrayVec::new();
|
||||
|
||||
unsafe {
|
||||
let mut ret_len = ret.len() as ::libc::size_t;
|
||||
let mut ret_len = constants::PUBLIC_KEY_SIZE as ::libc::size_t;
|
||||
let compressed = if compressed { ffi::SECP256K1_SER_COMPRESSED } else { ffi::SECP256K1_SER_UNCOMPRESSED };
|
||||
let err = ffi::secp256k1_ec_pubkey_serialize(secp.ctx, ret.as_ptr(),
|
||||
&mut ret_len, self.as_ptr(),
|
||||
|
|
|
@ -111,7 +111,7 @@ impl Signature {
|
|||
pub fn from_der_lax(secp: &Secp256k1, data: &[u8]) -> Result<Signature, Error> {
|
||||
unsafe {
|
||||
let mut ret = ffi::Signature::blank();
|
||||
if ffi::secp256k1_ecdsa_signature_parse_der_lax_(secp.ctx, &mut ret,
|
||||
if ffi::ecdsa_signature_parse_der_lax(secp.ctx, &mut ret,
|
||||
data.as_ptr(), data.len() as libc::size_t) == 1 {
|
||||
Ok(Signature(ret))
|
||||
} else {
|
||||
|
|
Loading…
Reference in New Issue