Separate new_with_hash into public function
In preparation for simplifying the `SharedSecret` internals pull the `new_with_hash` function logic out into a standalone public function that provides similar functionality without use of the `SharedSecret` struct. Function now returns the 64 bytes of data representing a shared point on the curve, callers are expected to the hash these bytes to get a shared secret.
This commit is contained in:
parent
ef59aea888
commit
834f63c26c
|
@ -65,7 +65,7 @@ use core::fmt::{self, write, Write};
|
|||
use core::intrinsics;
|
||||
use core::panic::PanicInfo;
|
||||
|
||||
use secp256k1::ecdh::SharedSecret;
|
||||
use secp256k1::ecdh::{self, SharedSecret};
|
||||
use secp256k1::ffi::types::AlignedType;
|
||||
use secp256k1::rand::{self, RngCore};
|
||||
use secp256k1::serde::Serialize;
|
||||
|
@ -125,13 +125,7 @@ fn start(_argc: isize, _argv: *const *const u8) -> isize {
|
|||
assert_eq!(sig, new_sig);
|
||||
|
||||
let _ = SharedSecret::new(&public_key, &secret_key);
|
||||
let mut x_arr = [0u8; 32];
|
||||
let y_arr = SharedSecret::new_with_hash(&public_key, &secret_key, |x,y| {
|
||||
x_arr = x;
|
||||
y.into()
|
||||
});
|
||||
assert_ne!(x_arr, [0u8; 32]);
|
||||
assert_ne!(&y_arr[..], &[0u8; 32][..]);
|
||||
let _ = ecdh::shared_secret_point(&public_key, &secret_key);
|
||||
|
||||
#[cfg(feature = "alloc")]
|
||||
{
|
||||
|
|
96
src/ecdh.rs
96
src/ecdh.rs
|
@ -16,7 +16,7 @@
|
|||
//!
|
||||
|
||||
use core::ptr;
|
||||
use core::ops::{FnMut, Deref};
|
||||
use core::ops::Deref;
|
||||
|
||||
use key::{SecretKey, PublicKey};
|
||||
use ffi::{self, CPtr};
|
||||
|
@ -135,30 +135,36 @@ impl SharedSecret {
|
|||
ss.set_len(32); // The default hash function is SHA256, which is 32 bytes long.
|
||||
ss
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Creates a new shared secret from a pubkey and secret key with applied custom hash function.
|
||||
/// The custom hash function must be in the form of `fn(x: [u8;32], y: [u8;32]) -> SharedSecret`
|
||||
/// `SharedSecret` can be easily created via the `From` impl from arrays.
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// # #[cfg(any(feature = "alloc", features = "std"))] {
|
||||
/// # use secp256k1::ecdh::SharedSecret;
|
||||
/// # use secp256k1::{Secp256k1, PublicKey, SecretKey};
|
||||
/// # fn sha2(_a: &[u8], _b: &[u8]) -> [u8; 32] {[0u8; 32]}
|
||||
/// # let secp = Secp256k1::signing_only();
|
||||
/// # let secret_key = SecretKey::from_slice(&[3u8; 32]).unwrap();
|
||||
/// # let secret_key2 = SecretKey::from_slice(&[7u8; 32]).unwrap();
|
||||
/// # let public_key = PublicKey::from_secret_key(&secp, &secret_key2);
|
||||
///
|
||||
/// let secret = SharedSecret::new_with_hash(&public_key, &secret_key, |x,y| {
|
||||
/// let hash: [u8; 32] = sha2(&x,&y);
|
||||
/// hash.into()
|
||||
/// });
|
||||
/// # }
|
||||
/// ```
|
||||
pub fn new_with_hash<F>(point: &PublicKey, scalar: &SecretKey, mut hash_function: F) -> SharedSecret
|
||||
where F: FnMut([u8; 32], [u8; 32]) -> SharedSecret {
|
||||
/// Creates a shared point from public key and secret key.
|
||||
///
|
||||
/// Can be used like `SharedSecret` but caller is responsible for then hashing the returned buffer.
|
||||
/// This allows for the use of a custom hash function since `SharedSecret` uses SHA256.
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// 64 bytes representing the (x,y) co-ordinates of a point on the curve (32 bytes each).
|
||||
///
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// # #[cfg(all(feature = "bitcoin_hashes", feature = "rand-std", feature = "std"))] {
|
||||
/// # use secp256k1::{ecdh, Secp256k1, PublicKey, SecretKey};
|
||||
/// # use secp256k1::hashes::{Hash, sha512};
|
||||
/// # use secp256k1::rand::thread_rng;
|
||||
///
|
||||
/// let s = Secp256k1::new();
|
||||
/// let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
|
||||
/// let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
|
||||
///
|
||||
/// let point1 = ecdh::shared_secret_point(&pk2, &sk1);
|
||||
/// let secret1 = sha512::Hash::hash(&point1);
|
||||
/// let point2 = ecdh::shared_secret_point(&pk1, &sk2);
|
||||
/// let secret2 = sha512::Hash::hash(&point2);
|
||||
/// assert_eq!(secret1, secret2)
|
||||
/// # }
|
||||
/// ```
|
||||
pub fn shared_secret_point(point: &PublicKey, scalar: &SecretKey) -> [u8; 64] {
|
||||
let mut xy = [0u8; 64];
|
||||
|
||||
let res = unsafe {
|
||||
|
@ -172,15 +178,9 @@ impl SharedSecret {
|
|||
)
|
||||
};
|
||||
// Our callback *always* returns 1.
|
||||
// and the scalar was verified to be valid(0 > scalar > group_order) via the type system
|
||||
// The scalar was verified to be valid (0 > scalar > group_order) via the type system.
|
||||
debug_assert_eq!(res, 1);
|
||||
|
||||
let mut x = [0u8; 32];
|
||||
let mut y = [0u8; 32];
|
||||
x.copy_from_slice(&xy[..32]);
|
||||
y.copy_from_slice(&xy[32..]);
|
||||
hash_function(x, y)
|
||||
}
|
||||
xy
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
@ -207,38 +207,6 @@ mod tests {
|
|||
assert!(sec_odd != sec2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(all(feature="std", feature = "rand-std"))]
|
||||
fn ecdh_with_hash() {
|
||||
let s = Secp256k1::signing_only();
|
||||
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
|
||||
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
|
||||
|
||||
let sec1 = SharedSecret::new_with_hash(&pk1, &sk2, |x,_| x.into());
|
||||
let sec2 = SharedSecret::new_with_hash(&pk2, &sk1, |x,_| x.into());
|
||||
let sec_odd = SharedSecret::new_with_hash(&pk1, &sk1, |x,_| x.into());
|
||||
assert_eq!(sec1, sec2);
|
||||
assert_ne!(sec_odd, sec2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(all(feature="std", feature = "rand-std"))]
|
||||
fn ecdh_with_hash_callback() {
|
||||
let s = Secp256k1::signing_only();
|
||||
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
|
||||
let expect_result: [u8; 64] = [123; 64];
|
||||
let mut x_out = [0u8; 32];
|
||||
let mut y_out = [0u8; 32];
|
||||
let result = SharedSecret::new_with_hash(&pk1, &sk1, |x, y| {
|
||||
x_out = x;
|
||||
y_out = y;
|
||||
expect_result.into()
|
||||
});
|
||||
assert_eq!(&expect_result[..], &result[..]);
|
||||
assert_ne!(x_out, [0u8; 32]);
|
||||
assert_ne!(y_out, [0u8; 32]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_c_callback() {
|
||||
let x = [5u8; 32];
|
||||
|
|
Loading…
Reference in New Issue