[minor API BREAK] Add unit tests to cover all error cases
This comes with a couple bugfixes and the following API changes: - Secp256k1::sign and ::sign_compact no longer return Result; it is impossible to trigger their failure modes with safe code since the `Message` and `SecretKey` types validate when they are created. - constants::MAX_COMPACT_SIGNATURE_SIZE loses the MAX_; signatures are always constant size - the Debug output for everything is now hex-encoded rather than being a list of base-10 ints. It's just easier to read this way. kcov v26 now reports 100% test coverage; however, this does not guarantee that test coverage is actually complete. Patches are always welcome for improved unit tests.
This commit is contained in:
parent
9a01401746
commit
83823379e4
|
@ -31,7 +31,7 @@ pub const COMPRESSED_PUBLIC_KEY_SIZE: usize = 33;
|
|||
pub const MAX_SIGNATURE_SIZE: usize = 72;
|
||||
|
||||
/// The maximum size of a compact signature
|
||||
pub const MAX_COMPACT_SIGNATURE_SIZE: usize = 64;
|
||||
pub const COMPACT_SIGNATURE_SIZE: usize = 64;
|
||||
|
||||
/// The order of the secp256k1 curve
|
||||
pub const CURVE_ORDER: [u8; 32] = [
|
||||
|
|
162
src/key.rs
162
src/key.rs
|
@ -158,6 +158,10 @@ impl PublicKey {
|
|||
constants::UNCOMPRESSED_PUBLIC_KEY_SIZE => {
|
||||
let mut ret = [0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE];
|
||||
unsafe {
|
||||
if ffi::secp256k1_ec_pubkey_verify(secp.ctx, data.as_ptr(),
|
||||
data.len() as ::libc::c_int) == 0 {
|
||||
return Err(InvalidPublicKey);
|
||||
}
|
||||
copy_nonoverlapping(data.as_ptr(),
|
||||
ret.as_mut_ptr(),
|
||||
data.len());
|
||||
|
@ -242,7 +246,10 @@ impl PartialEq for PublicKeyData {
|
|||
|
||||
impl fmt::Debug for PublicKeyData {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
(&self[..]).fmt(f)
|
||||
for i in self[..].iter().cloned() {
|
||||
try!(write!(f, "{:02x}", i));
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -451,7 +458,11 @@ impl Serialize for PublicKey {
|
|||
|
||||
impl fmt::Debug for SecretKey {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
|
||||
(&self[..]).fmt(f)
|
||||
try!(write!(f, "SecretKey("));
|
||||
for i in self[..].iter().cloned() {
|
||||
try!(write!(f, "{:02x}", i));
|
||||
}
|
||||
write!(f, ")")
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -460,6 +471,9 @@ mod test {
|
|||
use super::super::Secp256k1;
|
||||
use super::super::Error::{InvalidPublicKey, InvalidSecretKey};
|
||||
use super::{PublicKey, SecretKey};
|
||||
use super::super::constants;
|
||||
|
||||
use rand::Rng;
|
||||
|
||||
#[test]
|
||||
fn skey_from_slice() {
|
||||
|
@ -520,6 +534,41 @@ mod test {
|
|||
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]).is_err());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bad_deserialize() {
|
||||
use std::io::Cursor;
|
||||
use serialize::{json, Decodable};
|
||||
|
||||
let zero31 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
|
||||
let json31 = json::Json::from_reader(&mut Cursor::new(zero31)).unwrap();
|
||||
let zero32 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
|
||||
let json32 = json::Json::from_reader(&mut Cursor::new(zero32)).unwrap();
|
||||
let zero65 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
|
||||
let json65 = json::Json::from_reader(&mut Cursor::new(zero65)).unwrap();
|
||||
let string = "\"my key\"".as_bytes();
|
||||
let json = json::Json::from_reader(&mut Cursor::new(string)).unwrap();
|
||||
|
||||
// Invalid length
|
||||
let mut decoder = json::Decoder::new(json31.clone());
|
||||
assert!(<PublicKey as Decodable>::decode(&mut decoder).is_err());
|
||||
let mut decoder = json::Decoder::new(json31.clone());
|
||||
assert!(<SecretKey as Decodable>::decode(&mut decoder).is_err());
|
||||
let mut decoder = json::Decoder::new(json32.clone());
|
||||
assert!(<PublicKey as Decodable>::decode(&mut decoder).is_err());
|
||||
let mut decoder = json::Decoder::new(json32.clone());
|
||||
assert!(<SecretKey as Decodable>::decode(&mut decoder).is_ok());
|
||||
let mut decoder = json::Decoder::new(json65.clone());
|
||||
assert!(<PublicKey as Decodable>::decode(&mut decoder).is_ok());
|
||||
let mut decoder = json::Decoder::new(json65.clone());
|
||||
assert!(<SecretKey as Decodable>::decode(&mut decoder).is_err());
|
||||
|
||||
// Syntax error
|
||||
let mut decoder = json::Decoder::new(json.clone());
|
||||
assert!(<PublicKey as Decodable>::decode(&mut decoder).is_err());
|
||||
let mut decoder = json::Decoder::new(json.clone());
|
||||
assert!(<SecretKey as Decodable>::decode(&mut decoder).is_err());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_serialize() {
|
||||
use std::io::Cursor;
|
||||
|
@ -551,6 +600,38 @@ mod test {
|
|||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bad_serde_deserialize() {
|
||||
use serde::{json, Deserialize};
|
||||
|
||||
// Invalid length
|
||||
let zero31 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
|
||||
let mut json = json::de::Deserializer::new(zero31.iter().map(|c| Ok(*c))).unwrap();
|
||||
assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_err());
|
||||
let mut json = json::de::Deserializer::new(zero31.iter().map(|c| Ok(*c))).unwrap();
|
||||
assert!(<SecretKey as Deserialize>::deserialize(&mut json).is_err());
|
||||
|
||||
let zero32 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
|
||||
let mut json = json::de::Deserializer::new(zero32.iter().map(|c| Ok(*c))).unwrap();
|
||||
assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_err());
|
||||
let mut json = json::de::Deserializer::new(zero32.iter().map(|c| Ok(*c))).unwrap();
|
||||
assert!(<SecretKey as Deserialize>::deserialize(&mut json).is_ok());
|
||||
|
||||
let zero65 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
|
||||
let mut json = json::de::Deserializer::new(zero65.iter().map(|c| Ok(*c))).unwrap();
|
||||
assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_ok());
|
||||
let mut json = json::de::Deserializer::new(zero65.iter().map(|c| Ok(*c))).unwrap();
|
||||
assert!(<SecretKey as Deserialize>::deserialize(&mut json).is_err());
|
||||
|
||||
// Syntax error
|
||||
let string = "\"my key\"".as_bytes();
|
||||
let mut json = json::de::Deserializer::new(string.iter().map(|c| Ok(*c))).unwrap();
|
||||
assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_err());
|
||||
let mut json = json::de::Deserializer::new(string.iter().map(|c| Ok(*c))).unwrap();
|
||||
assert!(<SecretKey as Deserialize>::deserialize(&mut json).is_err());
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_serialize_serde() {
|
||||
use serde::{json, Serialize, Deserialize};
|
||||
|
@ -580,6 +661,83 @@ mod test {
|
|||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_out_of_range() {
|
||||
|
||||
struct BadRng(u8);
|
||||
impl Rng for BadRng {
|
||||
fn next_u32(&mut self) -> u32 { unimplemented!() }
|
||||
// This will set a secret key to a little over the
|
||||
// group order, then decrement with repeated calls
|
||||
// until it returns a valid key
|
||||
fn fill_bytes(&mut self, data: &mut [u8]) {
|
||||
let group_order: [u8; 32] = [
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
||||
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
|
||||
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
|
||||
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41];
|
||||
assert_eq!(data.len(), 32);
|
||||
unsafe {
|
||||
use std::intrinsics::copy_nonoverlapping;
|
||||
copy_nonoverlapping(group_order.as_ptr(),
|
||||
data.as_mut_ptr(),
|
||||
32);
|
||||
}
|
||||
data[31] = self.0;
|
||||
self.0 -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
let mut s = Secp256k1::with_rng(BadRng(0xff));
|
||||
s.generate_keypair(false);
|
||||
let mut s = Secp256k1::with_rng(BadRng(0xff));
|
||||
s.generate_keypair(true);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_pubkey_from_bad_slice() {
|
||||
let s = Secp256k1::new_deterministic();
|
||||
// Bad sizes
|
||||
assert_eq!(PublicKey::from_slice(&s, &[0; constants::COMPRESSED_PUBLIC_KEY_SIZE - 1]),
|
||||
Err(InvalidPublicKey));
|
||||
assert_eq!(PublicKey::from_slice(&s, &[0; constants::COMPRESSED_PUBLIC_KEY_SIZE + 1]),
|
||||
Err(InvalidPublicKey));
|
||||
assert_eq!(PublicKey::from_slice(&s, &[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE - 1]),
|
||||
Err(InvalidPublicKey));
|
||||
assert_eq!(PublicKey::from_slice(&s, &[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE + 1]),
|
||||
Err(InvalidPublicKey));
|
||||
|
||||
// Bad parse
|
||||
assert_eq!(PublicKey::from_slice(&s, &[0xff; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]),
|
||||
Err(InvalidPublicKey));
|
||||
assert_eq!(PublicKey::from_slice(&s, &[0x55; constants::COMPRESSED_PUBLIC_KEY_SIZE]),
|
||||
Err(InvalidPublicKey));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_debug_output() {
|
||||
struct DumbRng(u32);
|
||||
impl Rng for DumbRng {
|
||||
fn next_u32(&mut self) -> u32 {
|
||||
self.0 = self.0.wrapping_add(1);
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
let mut s = Secp256k1::with_rng(DumbRng(0));
|
||||
let (sk1, pk1) = s.generate_keypair(false);
|
||||
let (sk2, pk2) = s.generate_keypair(true);
|
||||
|
||||
assert_eq!(&format!("{:?}", sk1),
|
||||
"SecretKey(0200000001000000040000000300000006000000050000000800000007000000)");
|
||||
assert_eq!(&format!("{:?}", pk1),
|
||||
"PublicKey(049510c48c265cefb3413be0e6b75beef02ebafcaf6634f962b27b4832abc4feec01bd8ff2e31057f7b7a244ed8c5ccd9781a63a6f607b40b493330cd159ecd5ce)");
|
||||
assert_eq!(&format!("{:?}", sk2),
|
||||
"SecretKey(0a000000090000000c0000000b0000000e0000000d000000100000000f000000)");
|
||||
assert_eq!(&format!("{:?}", pk2),
|
||||
"PublicKey(024889f1f4a9407f8588b55358c2b392a6d9662872d5b9fff98b6f68c5e290a866)");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_addition() {
|
||||
let mut s = Secp256k1::new().unwrap();
|
||||
|
|
122
src/lib.rs
122
src/lib.rs
|
@ -221,8 +221,6 @@ pub enum Error {
|
|||
InvalidSignature,
|
||||
/// Bad secret key
|
||||
InvalidSecretKey,
|
||||
/// Signing failed: bad nonce, bad privkey or signature was too small
|
||||
SignFailed,
|
||||
/// Boolean-returning function returned the wrong boolean
|
||||
Unknown
|
||||
}
|
||||
|
@ -317,36 +315,36 @@ impl<R> Secp256k1<R> {
|
|||
|
||||
/// Constructs a signature for `msg` using the secret key `sk` and nonce `nonce`
|
||||
pub fn sign(&self, msg: &Message, sk: &key::SecretKey)
|
||||
-> Result<Signature, Error> {
|
||||
-> Signature {
|
||||
let mut sig = [0; constants::MAX_SIGNATURE_SIZE];
|
||||
let mut len = constants::MAX_SIGNATURE_SIZE as c_int;
|
||||
unsafe {
|
||||
if ffi::secp256k1_ecdsa_sign(self.ctx, msg.as_ptr(), sig.as_mut_ptr(),
|
||||
// We can assume the return value because it's not possible to construct
|
||||
// an invalid signature from a valid `Message` and `SecretKey`
|
||||
assert_eq!(ffi::secp256k1_ecdsa_sign(self.ctx, msg.as_ptr(), sig.as_mut_ptr(),
|
||||
&mut len, sk.as_ptr(),
|
||||
ffi::secp256k1_nonce_function_rfc6979,
|
||||
ptr::null()) != 1 {
|
||||
return Err(Error::SignFailed);
|
||||
}
|
||||
ptr::null()), 1);
|
||||
// This assertation is probably too late :)
|
||||
debug_assert!(len as usize <= constants::MAX_SIGNATURE_SIZE);
|
||||
};
|
||||
Ok(Signature(len as usize, sig))
|
||||
}
|
||||
Signature(len as usize, sig)
|
||||
}
|
||||
|
||||
/// Constructs a compact signature for `msg` using the secret key `sk`
|
||||
pub fn sign_compact(&self, msg: &Message, sk: &key::SecretKey)
|
||||
-> Result<(Signature, RecoveryId), Error> {
|
||||
-> (Signature, RecoveryId) {
|
||||
let mut sig = [0; constants::MAX_SIGNATURE_SIZE];
|
||||
let mut recid = 0;
|
||||
unsafe {
|
||||
if ffi::secp256k1_ecdsa_sign_compact(self.ctx, msg.as_ptr(),
|
||||
// We can assume the return value because it's not possible to construct
|
||||
// an invalid signature from a valid `Message` and `SecretKey`
|
||||
assert_eq!(ffi::secp256k1_ecdsa_sign_compact(self.ctx, msg.as_ptr(),
|
||||
sig.as_mut_ptr(), sk.as_ptr(),
|
||||
ffi::secp256k1_nonce_function_default,
|
||||
ptr::null(), &mut recid) != 1 {
|
||||
return Err(Error::SignFailed);
|
||||
ptr::null(), &mut recid), 1);
|
||||
}
|
||||
};
|
||||
Ok((Signature(constants::MAX_COMPACT_SIGNATURE_SIZE, sig), RecoveryId(recid)))
|
||||
(Signature(constants::COMPACT_SIGNATURE_SIZE, sig), RecoveryId(recid))
|
||||
}
|
||||
|
||||
/// Determines the public key for which `sig` is a valid signature for
|
||||
|
@ -357,6 +355,9 @@ impl<R> Secp256k1<R> {
|
|||
let mut pk = key::PublicKey::new(compressed);
|
||||
let RecoveryId(recid) = recid;
|
||||
|
||||
if sig.len() != constants::COMPACT_SIGNATURE_SIZE {
|
||||
return Err(Error::InvalidSignature);
|
||||
}
|
||||
unsafe {
|
||||
let mut len = 0;
|
||||
if ffi::secp256k1_ecdsa_recover_compact(self.ctx, msg.as_ptr(),
|
||||
|
@ -400,14 +401,14 @@ impl<R> Secp256k1<R> {
|
|||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::iter::repeat;
|
||||
use rand::{Rng, thread_rng};
|
||||
|
||||
use test::{Bencher, black_box};
|
||||
|
||||
use key::PublicKey;
|
||||
use super::{Secp256k1, Signature, Message};
|
||||
use super::Error::{InvalidPublicKey, IncorrectSignature, InvalidSignature};
|
||||
use key::{SecretKey, PublicKey};
|
||||
use super::constants;
|
||||
use super::{Secp256k1, Signature, Message, RecoveryId};
|
||||
use super::Error::{InvalidMessage, InvalidPublicKey, IncorrectSignature, InvalidSignature};
|
||||
|
||||
#[test]
|
||||
fn invalid_pubkey() {
|
||||
|
@ -450,31 +451,40 @@ mod tests {
|
|||
|
||||
#[test]
|
||||
fn sign() {
|
||||
let mut s = Secp256k1::new().unwrap();
|
||||
let s = Secp256k1::new_deterministic();
|
||||
let one = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];
|
||||
|
||||
let mut msg = [0u8; 32];
|
||||
thread_rng().fill_bytes(&mut msg);
|
||||
let msg = Message::from_slice(&msg).unwrap();
|
||||
let sk = SecretKey::from_slice(&s, &one).unwrap();
|
||||
let msg = Message::from_slice(&one).unwrap();
|
||||
|
||||
let (sk, _) = s.generate_keypair(false);
|
||||
|
||||
s.sign(&msg, &sk).unwrap();
|
||||
let sig = s.sign(&msg, &sk);
|
||||
assert_eq!(sig, Signature(70, [
|
||||
0x30, 0x44, 0x02, 0x20, 0x66, 0x73, 0xff, 0xad,
|
||||
0x21, 0x47, 0x74, 0x1f, 0x04, 0x77, 0x2b, 0x6f,
|
||||
0x92, 0x1f, 0x0b, 0xa6, 0xaf, 0x0c, 0x1e, 0x77,
|
||||
0xfc, 0x43, 0x9e, 0x65, 0xc3, 0x6d, 0xed, 0xf4,
|
||||
0x09, 0x2e, 0x88, 0x98, 0x02, 0x20, 0x4c, 0x1a,
|
||||
0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8, 0x80, 0x12,
|
||||
0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f, 0xff, 0x20,
|
||||
0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06, 0x8d, 0x12,
|
||||
0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89, 0x00, 0x00]))
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sign_and_verify() {
|
||||
let mut s = Secp256k1::new().unwrap();
|
||||
|
||||
let mut msg: Vec<u8> = repeat(0).take(32).collect();
|
||||
let mut msg = [0; 32];
|
||||
for _ in 0..100 {
|
||||
thread_rng().fill_bytes(&mut msg);
|
||||
let msg = Message::from_slice(&msg).unwrap();
|
||||
|
||||
let (sk, pk) = s.generate_keypair(false);
|
||||
|
||||
let sig = s.sign(&msg, &sk).unwrap();
|
||||
|
||||
let sig = s.sign(&msg, &sk);
|
||||
assert_eq!(s.verify(&msg, &sig, &pk), Ok(()));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn sign_and_verify_fail() {
|
||||
|
@ -486,12 +496,16 @@ mod tests {
|
|||
|
||||
let (sk, pk) = s.generate_keypair(false);
|
||||
|
||||
let sig = s.sign(&msg, &sk).unwrap();
|
||||
let sig = s.sign(&msg, &sk);
|
||||
let (sig_compact, recid) = s.sign_compact(&msg, &sk);
|
||||
|
||||
let mut msg = [0u8; 32];
|
||||
thread_rng().fill_bytes(&mut msg);
|
||||
let msg = Message::from_slice(&msg).unwrap();
|
||||
assert_eq!(s.verify(&msg, &sig, &pk), Err(IncorrectSignature));
|
||||
|
||||
let recovered_key = s.recover_compact(&msg, &sig_compact[..], false, recid).unwrap();
|
||||
assert!(recovered_key != pk);
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
@ -504,11 +518,55 @@ mod tests {
|
|||
|
||||
let (sk, pk) = s.generate_keypair(false);
|
||||
|
||||
let (sig, recid) = s.sign_compact(&msg, &sk).unwrap();
|
||||
let (sig, recid) = s.sign_compact(&msg, &sk);
|
||||
|
||||
assert_eq!(s.recover_compact(&msg, &sig[..], false, recid), Ok(pk));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn bad_recovery() {
|
||||
let s = Secp256k1::new().unwrap();
|
||||
|
||||
let msg = Message::from_slice(&[0x55; 32]).unwrap();
|
||||
|
||||
// Bad length
|
||||
assert_eq!(s.recover_compact(&msg, &[1; 63], false, RecoveryId(0)), Err(InvalidSignature));
|
||||
assert_eq!(s.recover_compact(&msg, &[1; 65], false, RecoveryId(0)), Err(InvalidSignature));
|
||||
// Zero is not a valid sig
|
||||
assert_eq!(s.recover_compact(&msg, &[0; 64], false, RecoveryId(0)), Err(InvalidSignature));
|
||||
// ...but 111..111 is
|
||||
assert!(s.recover_compact(&msg, &[1; 64], false, RecoveryId(0)).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bad_slice() {
|
||||
assert_eq!(Signature::from_slice(&[0; constants::MAX_SIGNATURE_SIZE + 1]),
|
||||
Err(InvalidSignature));
|
||||
assert!(Signature::from_slice(&[0; constants::MAX_SIGNATURE_SIZE]).is_ok());
|
||||
|
||||
assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE - 1]),
|
||||
Err(InvalidMessage));
|
||||
assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE + 1]),
|
||||
Err(InvalidMessage));
|
||||
assert!(Signature::from_slice(&[0; constants::MESSAGE_SIZE]).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_debug_output() {
|
||||
let sig = Signature(0, [4; 72]);
|
||||
assert_eq!(&format!("{:?}", sig), "Signature()");
|
||||
let sig = Signature(10, [5; 72]);
|
||||
assert_eq!(&format!("{:?}", sig), "Signature(05050505050505050505)");
|
||||
let sig = Signature(72, [6; 72]);
|
||||
assert_eq!(&format!("{:?}", sig), "Signature(060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606)");
|
||||
|
||||
let msg = Message([1, 2, 3, 4, 5, 6, 7, 8,
|
||||
9, 10, 11, 12, 13, 14, 15, 16,
|
||||
17, 18, 19, 20, 21, 22, 23, 24,
|
||||
25, 26, 27, 28, 29, 30, 31, 255]);
|
||||
assert_eq!(&format!("{:?}", msg), "Message(0102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1fff)");
|
||||
}
|
||||
|
||||
#[bench]
|
||||
pub fn generate_compressed(bh: &mut Bencher) {
|
||||
let mut s = Secp256k1::new().unwrap();
|
||||
|
|
Loading…
Reference in New Issue