Merge rust-bitcoin/rust-secp256k1#402: Limit SharedSecret to 32 byte buffer

5603d71ad3 Limit SharedSecret to 32 byte buffer (Tobin Harding)
d5eeb099ad Use more intuitive local var numbering (Tobin Harding)
834f63c26c Separate new_with_hash into public function (Tobin Harding)

Pull request description:

  Currently `SharedSecret` provides a way to get a shared secret using SHA256 _as well as_ a way to use a custom hash function to get the shared secret. Internally `SharedSecret` uses a 256 byte buffer, this is a tad wasteful. We would like to keep the current functionality but reduce memory usage.

  - Patch 1: Pulls the `new_with_hash` logic out into a standalone public function that just returns the 64 bytes representing the x,y co-ordinates of the computed shared secret point. Callers are then responsible for hashing this point to get the shared secret (idea by @Kixunil, thanks).
  - Patch 2: Does trivial refactor
  - Patch 3: Uses a 32 byte buffer internally for `SharedSecret`. This is basically a revert of the work @elichai did to add the custom hashing logic. @elichai please holla if you are not happy with me walking all over this code :)

  ### Note to reviewers

  Secret obfuscation is done on top of this in https://github.com/rust-bitcoin/rust-secp256k1/pull/396, they could be reviewed in order if this work is of interest to you.

ACKs for top commit:
  apoelstra:
    ACK 5603d71ad3

Tree-SHA512: 48982a4a6a700a111e4c1d5d21d62503d34f433d8cb303d11ff018d2f2be2467fa806107018db16b6d0fcc5ff1a0325dd5790c62c47831c7cd2141a1b6f9467d
This commit is contained in:
Andrew Poelstra 2022-02-24 15:17:17 +00:00
commit 8b2edad041
No known key found for this signature in database
GPG Key ID: C588D63CE41B97C1
3 changed files with 101 additions and 186 deletions

View File

@ -65,7 +65,7 @@ use core::fmt::{self, write, Write};
use core::intrinsics;
use core::panic::PanicInfo;
use secp256k1::ecdh::SharedSecret;
use secp256k1::ecdh::{self, SharedSecret};
use secp256k1::ffi::types::AlignedType;
use secp256k1::rand::{self, RngCore};
use secp256k1::serde::Serialize;
@ -125,13 +125,7 @@ fn start(_argc: isize, _argv: *const *const u8) -> isize {
assert_eq!(sig, new_sig);
let _ = SharedSecret::new(&public_key, &secret_key);
let mut x_arr = [0u8; 32];
let y_arr = SharedSecret::new_with_hash(&public_key, &secret_key, |x,y| {
x_arr = x;
y.into()
});
assert_ne!(x_arr, [0u8; 32]);
assert_ne!(&y_arr[..], &[0u8; 32][..]);
let _ = ecdh::shared_secret_point(&public_key, &secret_key);
#[cfg(feature = "alloc")]
{

View File

@ -16,7 +16,7 @@
//!
use core::ptr;
use core::ops::{FnMut, Deref};
use core::borrow::Borrow;
use key::{SecretKey, PublicKey};
use ffi::{self, CPtr};
@ -34,155 +34,101 @@ use secp256k1_sys::types::{c_int, c_uchar, c_void};
/// let s = Secp256k1::new();
/// let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
/// let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
/// let sec1 = SharedSecret::new(&pk1, &sk2);
/// let sec2 = SharedSecret::new(&pk2, &sk1);
/// let sec1 = SharedSecret::new(&pk2, &sk1);
/// let sec2 = SharedSecret::new(&pk1, &sk2);
/// assert_eq!(sec1, sec2);
/// # }
// ```
#[derive(Copy, Clone)]
pub struct SharedSecret {
data: [u8; 256],
len: usize,
}
impl_raw_debug!(SharedSecret);
// This implementes `From<N>` for all `[u8; N]` arrays from 128bits(16 byte) to 2048bits allowing known hash lengths.
// Lower than 128 bits isn't resistant to collisions any more.
impl_from_array_len!(SharedSecret, 256, (16 20 28 32 48 64 96 128 256));
impl SharedSecret {
/// Creates an empty `SharedSecret`.
pub(crate) fn empty() -> SharedSecret {
SharedSecret {
data: [0u8; 256],
len: 0,
}
}
/// Gets a pointer to the underlying data with the specified capacity.
pub(crate) fn get_data_mut_ptr(&mut self) -> *mut u8 {
self.data.as_mut_ptr()
}
/// Gets the capacity of the underlying data buffer.
pub fn capacity(&self) -> usize {
self.data.len()
}
/// Gets the len of the used data.
pub fn len(&self) -> usize {
self.len
}
/// Returns true if the underlying data buffer is empty.
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
/// Sets the length of the object.
pub(crate) fn set_len(&mut self, len: usize) {
debug_assert!(len <= self.data.len());
self.len = len;
}
}
impl PartialEq for SharedSecret {
fn eq(&self, other: &SharedSecret) -> bool {
self.as_ref() == other.as_ref()
}
}
impl AsRef<[u8]> for SharedSecret {
fn as_ref(&self) -> &[u8] {
&self.data[..self.len]
}
}
impl Deref for SharedSecret {
type Target = [u8];
fn deref(&self) -> &[u8] {
&self.data[..self.len]
}
}
unsafe extern "C" fn c_callback(output: *mut c_uchar, x: *const c_uchar, y: *const c_uchar, _data: *mut c_void) -> c_int {
ptr::copy_nonoverlapping(x, output, 32);
ptr::copy_nonoverlapping(y, output.offset(32), 32);
1
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct SharedSecret([u8; 32]);
impl SharedSecret {
/// Creates a new shared secret from a pubkey and secret key.
#[inline]
pub fn new(point: &PublicKey, scalar: &SecretKey) -> SharedSecret {
let mut ss = SharedSecret::empty();
let mut buf = [0u8; 32];
let res = unsafe {
ffi::secp256k1_ecdh(
ffi::secp256k1_context_no_precomp,
ss.get_data_mut_ptr(),
buf.as_mut_ptr(),
point.as_c_ptr(),
scalar.as_c_ptr(),
ffi::secp256k1_ecdh_hash_function_default,
ptr::null_mut(),
)
};
// The default `secp256k1_ecdh_hash_function_default` should always return 1.
// and the scalar was verified to be valid(0 > scalar > group_order) via the type system
debug_assert_eq!(res, 1);
ss.set_len(32); // The default hash function is SHA256, which is 32 bytes long.
ss
SharedSecret(buf)
}
}
/// Creates a new shared secret from a pubkey and secret key with applied custom hash function.
/// The custom hash function must be in the form of `fn(x: [u8;32], y: [u8;32]) -> SharedSecret`
/// `SharedSecret` can be easily created via the `From` impl from arrays.
/// # Examples
/// ```
/// # #[cfg(any(feature = "alloc", features = "std"))] {
/// # use secp256k1::ecdh::SharedSecret;
/// # use secp256k1::{Secp256k1, PublicKey, SecretKey};
/// # fn sha2(_a: &[u8], _b: &[u8]) -> [u8; 32] {[0u8; 32]}
/// # let secp = Secp256k1::signing_only();
/// # let secret_key = SecretKey::from_slice(&[3u8; 32]).unwrap();
/// # let secret_key2 = SecretKey::from_slice(&[7u8; 32]).unwrap();
/// # let public_key = PublicKey::from_secret_key(&secp, &secret_key2);
///
/// let secret = SharedSecret::new_with_hash(&public_key, &secret_key, |x,y| {
/// let hash: [u8; 32] = sha2(&x,&y);
/// hash.into()
/// });
/// # }
/// ```
pub fn new_with_hash<F>(point: &PublicKey, scalar: &SecretKey, mut hash_function: F) -> SharedSecret
where F: FnMut([u8; 32], [u8; 32]) -> SharedSecret {
let mut xy = [0u8; 64];
let res = unsafe {
ffi::secp256k1_ecdh(
ffi::secp256k1_context_no_precomp,
xy.as_mut_ptr(),
point.as_ptr(),
scalar.as_ptr(),
Some(c_callback),
ptr::null_mut(),
)
};
// Our callback *always* returns 1.
// and the scalar was verified to be valid(0 > scalar > group_order) via the type system
debug_assert_eq!(res, 1);
let mut x = [0u8; 32];
let mut y = [0u8; 32];
x.copy_from_slice(&xy[..32]);
y.copy_from_slice(&xy[32..]);
hash_function(x, y)
impl Borrow<[u8]> for SharedSecret {
fn borrow(&self) -> &[u8] {
&self.0
}
}
impl AsRef<[u8]> for SharedSecret {
fn as_ref(&self) -> &[u8] {
&self.0
}
}
/// Creates a shared point from public key and secret key.
///
/// **Important: use of a strong cryptographic hash function may be critical to security! Do NOT use
/// unless you understand cryptographical implications.** If not, use SharedSecret instead.
///
/// Can be used like `SharedSecret` but caller is responsible for then hashing the returned buffer.
/// This allows for the use of a custom hash function since `SharedSecret` uses SHA256.
///
/// # Returns
///
/// 64 bytes representing the (x,y) co-ordinates of a point on the curve (32 bytes each).
///
/// # Examples
/// ```
/// # #[cfg(all(feature = "bitcoin_hashes", feature = "rand-std", feature = "std"))] {
/// # use secp256k1::{ecdh, Secp256k1, PublicKey, SecretKey};
/// # use secp256k1::hashes::{Hash, sha512};
/// # use secp256k1::rand::thread_rng;
///
/// let s = Secp256k1::new();
/// let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
/// let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
///
/// let point1 = ecdh::shared_secret_point(&pk2, &sk1);
/// let secret1 = sha512::Hash::hash(&point1);
/// let point2 = ecdh::shared_secret_point(&pk1, &sk2);
/// let secret2 = sha512::Hash::hash(&point2);
/// assert_eq!(secret1, secret2)
/// # }
/// ```
pub fn shared_secret_point(point: &PublicKey, scalar: &SecretKey) -> [u8; 64] {
let mut xy = [0u8; 64];
let res = unsafe {
ffi::secp256k1_ecdh(
ffi::secp256k1_context_no_precomp,
xy.as_mut_ptr(),
point.as_ptr(),
scalar.as_ptr(),
Some(c_callback),
ptr::null_mut(),
)
};
// Our callback *always* returns 1.
// The scalar was verified to be valid (0 > scalar > group_order) via the type system.
debug_assert_eq!(res, 1);
xy
}
unsafe extern "C" fn c_callback(output: *mut c_uchar, x: *const c_uchar, y: *const c_uchar, _data: *mut c_void) -> c_int {
ptr::copy_nonoverlapping(x, output, 32);
ptr::copy_nonoverlapping(y, output.offset(32), 32);
1
}
#[cfg(test)]
#[allow(unused_imports)]
mod tests {
@ -200,45 +146,13 @@ mod tests {
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
let sec1 = SharedSecret::new(&pk1, &sk2);
let sec2 = SharedSecret::new(&pk2, &sk1);
let sec1 = SharedSecret::new(&pk2, &sk1);
let sec2 = SharedSecret::new(&pk1, &sk2);
let sec_odd = SharedSecret::new(&pk1, &sk1);
assert_eq!(sec1, sec2);
assert!(sec_odd != sec2);
}
#[test]
#[cfg(all(feature="std", feature = "rand-std"))]
fn ecdh_with_hash() {
let s = Secp256k1::signing_only();
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
let sec1 = SharedSecret::new_with_hash(&pk1, &sk2, |x,_| x.into());
let sec2 = SharedSecret::new_with_hash(&pk2, &sk1, |x,_| x.into());
let sec_odd = SharedSecret::new_with_hash(&pk1, &sk1, |x,_| x.into());
assert_eq!(sec1, sec2);
assert_ne!(sec_odd, sec2);
}
#[test]
#[cfg(all(feature="std", feature = "rand-std"))]
fn ecdh_with_hash_callback() {
let s = Secp256k1::signing_only();
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
let expect_result: [u8; 64] = [123; 64];
let mut x_out = [0u8; 32];
let mut y_out = [0u8; 32];
let result = SharedSecret::new_with_hash(&pk1, &sk1, |x, y| {
x_out = x;
y_out = y;
expect_result.into()
});
assert_eq!(&expect_result[..], &result[..]);
assert_ne!(x_out, [0u8; 32]);
assert_ne!(y_out, [0u8; 32]);
}
#[test]
fn test_c_callback() {
let x = [5u8; 32];
@ -253,6 +167,30 @@ mod tests {
assert_eq!(x, new_x);
assert_eq!(y, new_y);
}
#[test]
#[cfg(not(fuzzing))]
#[cfg(all(feature="rand-std", feature = "std", feature = "bitcoin_hashes"))]
fn bitcoin_hashes_and_sys_generate_same_secret() {
use hashes::{sha256, Hash, HashEngine};
let s = Secp256k1::signing_only();
let (sk1, _) = s.generate_keypair(&mut thread_rng());
let (_, pk2) = s.generate_keypair(&mut thread_rng());
let secret_sys = SharedSecret::new(&pk2, &sk1);
let xy = shared_secret_point(&pk2, &sk1);
// Mimics logic in `bitcoin-core/secp256k1/src/module/main_impl.h`
let version = (xy[63] & 0x01) | 0x02;
let mut engine = sha256::HashEngine::default();
engine.input(&[version]);
engine.input(&xy.as_ref()[..32]);
let secret_bh = sha256::Hash::from_engine(engine);
assert_eq!(secret_bh.as_inner(), secret_sys.as_ref());
}
}
#[cfg(all(test, feature = "unstable"))]

View File

@ -26,20 +26,3 @@ macro_rules! impl_pretty_debug {
}
}
}
macro_rules! impl_from_array_len {
($thing:ident, $capacity:tt, ($($N:tt)+)) => {
$(
impl From<[u8; $N]> for $thing {
fn from(arr: [u8; $N]) -> Self {
let mut data = [0u8; $capacity];
data[..$N].copy_from_slice(&arr);
$thing {
data,
len: $N,
}
}
}
)+
}
}