Merge rust-bitcoin/rust-secp256k1#402: Limit SharedSecret to 32 byte buffer
5603d71ad3
Limit SharedSecret to 32 byte buffer (Tobin Harding)d5eeb099ad
Use more intuitive local var numbering (Tobin Harding)834f63c26c
Separate new_with_hash into public function (Tobin Harding) Pull request description: Currently `SharedSecret` provides a way to get a shared secret using SHA256 _as well as_ a way to use a custom hash function to get the shared secret. Internally `SharedSecret` uses a 256 byte buffer, this is a tad wasteful. We would like to keep the current functionality but reduce memory usage. - Patch 1: Pulls the `new_with_hash` logic out into a standalone public function that just returns the 64 bytes representing the x,y co-ordinates of the computed shared secret point. Callers are then responsible for hashing this point to get the shared secret (idea by @Kixunil, thanks). - Patch 2: Does trivial refactor - Patch 3: Uses a 32 byte buffer internally for `SharedSecret`. This is basically a revert of the work @elichai did to add the custom hashing logic. @elichai please holla if you are not happy with me walking all over this code :) ### Note to reviewers Secret obfuscation is done on top of this in https://github.com/rust-bitcoin/rust-secp256k1/pull/396, they could be reviewed in order if this work is of interest to you. ACKs for top commit: apoelstra: ACK5603d71ad3
Tree-SHA512: 48982a4a6a700a111e4c1d5d21d62503d34f433d8cb303d11ff018d2f2be2467fa806107018db16b6d0fcc5ff1a0325dd5790c62c47831c7cd2141a1b6f9467d
This commit is contained in:
commit
8b2edad041
|
@ -65,7 +65,7 @@ use core::fmt::{self, write, Write};
|
|||
use core::intrinsics;
|
||||
use core::panic::PanicInfo;
|
||||
|
||||
use secp256k1::ecdh::SharedSecret;
|
||||
use secp256k1::ecdh::{self, SharedSecret};
|
||||
use secp256k1::ffi::types::AlignedType;
|
||||
use secp256k1::rand::{self, RngCore};
|
||||
use secp256k1::serde::Serialize;
|
||||
|
@ -125,13 +125,7 @@ fn start(_argc: isize, _argv: *const *const u8) -> isize {
|
|||
assert_eq!(sig, new_sig);
|
||||
|
||||
let _ = SharedSecret::new(&public_key, &secret_key);
|
||||
let mut x_arr = [0u8; 32];
|
||||
let y_arr = SharedSecret::new_with_hash(&public_key, &secret_key, |x,y| {
|
||||
x_arr = x;
|
||||
y.into()
|
||||
});
|
||||
assert_ne!(x_arr, [0u8; 32]);
|
||||
assert_ne!(&y_arr[..], &[0u8; 32][..]);
|
||||
let _ = ecdh::shared_secret_point(&public_key, &secret_key);
|
||||
|
||||
#[cfg(feature = "alloc")]
|
||||
{
|
||||
|
|
230
src/ecdh.rs
230
src/ecdh.rs
|
@ -16,7 +16,7 @@
|
|||
//!
|
||||
|
||||
use core::ptr;
|
||||
use core::ops::{FnMut, Deref};
|
||||
use core::borrow::Borrow;
|
||||
|
||||
use key::{SecretKey, PublicKey};
|
||||
use ffi::{self, CPtr};
|
||||
|
@ -34,131 +34,77 @@ use secp256k1_sys::types::{c_int, c_uchar, c_void};
|
|||
/// let s = Secp256k1::new();
|
||||
/// let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
|
||||
/// let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
|
||||
/// let sec1 = SharedSecret::new(&pk1, &sk2);
|
||||
/// let sec2 = SharedSecret::new(&pk2, &sk1);
|
||||
/// let sec1 = SharedSecret::new(&pk2, &sk1);
|
||||
/// let sec2 = SharedSecret::new(&pk1, &sk2);
|
||||
/// assert_eq!(sec1, sec2);
|
||||
/// # }
|
||||
// ```
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct SharedSecret {
|
||||
data: [u8; 256],
|
||||
len: usize,
|
||||
}
|
||||
impl_raw_debug!(SharedSecret);
|
||||
|
||||
|
||||
// This implementes `From<N>` for all `[u8; N]` arrays from 128bits(16 byte) to 2048bits allowing known hash lengths.
|
||||
// Lower than 128 bits isn't resistant to collisions any more.
|
||||
impl_from_array_len!(SharedSecret, 256, (16 20 28 32 48 64 96 128 256));
|
||||
|
||||
impl SharedSecret {
|
||||
|
||||
/// Creates an empty `SharedSecret`.
|
||||
pub(crate) fn empty() -> SharedSecret {
|
||||
SharedSecret {
|
||||
data: [0u8; 256],
|
||||
len: 0,
|
||||
}
|
||||
}
|
||||
|
||||
/// Gets a pointer to the underlying data with the specified capacity.
|
||||
pub(crate) fn get_data_mut_ptr(&mut self) -> *mut u8 {
|
||||
self.data.as_mut_ptr()
|
||||
}
|
||||
|
||||
/// Gets the capacity of the underlying data buffer.
|
||||
pub fn capacity(&self) -> usize {
|
||||
self.data.len()
|
||||
}
|
||||
|
||||
/// Gets the len of the used data.
|
||||
pub fn len(&self) -> usize {
|
||||
self.len
|
||||
}
|
||||
|
||||
/// Returns true if the underlying data buffer is empty.
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.data.is_empty()
|
||||
}
|
||||
|
||||
/// Sets the length of the object.
|
||||
pub(crate) fn set_len(&mut self, len: usize) {
|
||||
debug_assert!(len <= self.data.len());
|
||||
self.len = len;
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for SharedSecret {
|
||||
fn eq(&self, other: &SharedSecret) -> bool {
|
||||
self.as_ref() == other.as_ref()
|
||||
}
|
||||
}
|
||||
|
||||
impl AsRef<[u8]> for SharedSecret {
|
||||
fn as_ref(&self) -> &[u8] {
|
||||
&self.data[..self.len]
|
||||
}
|
||||
}
|
||||
|
||||
impl Deref for SharedSecret {
|
||||
type Target = [u8];
|
||||
fn deref(&self) -> &[u8] {
|
||||
&self.data[..self.len]
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
unsafe extern "C" fn c_callback(output: *mut c_uchar, x: *const c_uchar, y: *const c_uchar, _data: *mut c_void) -> c_int {
|
||||
ptr::copy_nonoverlapping(x, output, 32);
|
||||
ptr::copy_nonoverlapping(y, output.offset(32), 32);
|
||||
1
|
||||
}
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
|
||||
pub struct SharedSecret([u8; 32]);
|
||||
|
||||
impl SharedSecret {
|
||||
/// Creates a new shared secret from a pubkey and secret key.
|
||||
#[inline]
|
||||
pub fn new(point: &PublicKey, scalar: &SecretKey) -> SharedSecret {
|
||||
let mut ss = SharedSecret::empty();
|
||||
let mut buf = [0u8; 32];
|
||||
let res = unsafe {
|
||||
ffi::secp256k1_ecdh(
|
||||
ffi::secp256k1_context_no_precomp,
|
||||
ss.get_data_mut_ptr(),
|
||||
buf.as_mut_ptr(),
|
||||
point.as_c_ptr(),
|
||||
scalar.as_c_ptr(),
|
||||
ffi::secp256k1_ecdh_hash_function_default,
|
||||
ptr::null_mut(),
|
||||
)
|
||||
};
|
||||
// The default `secp256k1_ecdh_hash_function_default` should always return 1.
|
||||
// and the scalar was verified to be valid(0 > scalar > group_order) via the type system
|
||||
debug_assert_eq!(res, 1);
|
||||
ss.set_len(32); // The default hash function is SHA256, which is 32 bytes long.
|
||||
ss
|
||||
SharedSecret(buf)
|
||||
}
|
||||
}
|
||||
|
||||
impl Borrow<[u8]> for SharedSecret {
|
||||
fn borrow(&self) -> &[u8] {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a new shared secret from a pubkey and secret key with applied custom hash function.
|
||||
/// The custom hash function must be in the form of `fn(x: [u8;32], y: [u8;32]) -> SharedSecret`
|
||||
/// `SharedSecret` can be easily created via the `From` impl from arrays.
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// # #[cfg(any(feature = "alloc", features = "std"))] {
|
||||
/// # use secp256k1::ecdh::SharedSecret;
|
||||
/// # use secp256k1::{Secp256k1, PublicKey, SecretKey};
|
||||
/// # fn sha2(_a: &[u8], _b: &[u8]) -> [u8; 32] {[0u8; 32]}
|
||||
/// # let secp = Secp256k1::signing_only();
|
||||
/// # let secret_key = SecretKey::from_slice(&[3u8; 32]).unwrap();
|
||||
/// # let secret_key2 = SecretKey::from_slice(&[7u8; 32]).unwrap();
|
||||
/// # let public_key = PublicKey::from_secret_key(&secp, &secret_key2);
|
||||
///
|
||||
/// let secret = SharedSecret::new_with_hash(&public_key, &secret_key, |x,y| {
|
||||
/// let hash: [u8; 32] = sha2(&x,&y);
|
||||
/// hash.into()
|
||||
/// });
|
||||
/// # }
|
||||
/// ```
|
||||
pub fn new_with_hash<F>(point: &PublicKey, scalar: &SecretKey, mut hash_function: F) -> SharedSecret
|
||||
where F: FnMut([u8; 32], [u8; 32]) -> SharedSecret {
|
||||
impl AsRef<[u8]> for SharedSecret {
|
||||
fn as_ref(&self) -> &[u8] {
|
||||
&self.0
|
||||
}
|
||||
}
|
||||
|
||||
/// Creates a shared point from public key and secret key.
|
||||
///
|
||||
/// **Important: use of a strong cryptographic hash function may be critical to security! Do NOT use
|
||||
/// unless you understand cryptographical implications.** If not, use SharedSecret instead.
|
||||
///
|
||||
/// Can be used like `SharedSecret` but caller is responsible for then hashing the returned buffer.
|
||||
/// This allows for the use of a custom hash function since `SharedSecret` uses SHA256.
|
||||
///
|
||||
/// # Returns
|
||||
///
|
||||
/// 64 bytes representing the (x,y) co-ordinates of a point on the curve (32 bytes each).
|
||||
///
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// # #[cfg(all(feature = "bitcoin_hashes", feature = "rand-std", feature = "std"))] {
|
||||
/// # use secp256k1::{ecdh, Secp256k1, PublicKey, SecretKey};
|
||||
/// # use secp256k1::hashes::{Hash, sha512};
|
||||
/// # use secp256k1::rand::thread_rng;
|
||||
///
|
||||
/// let s = Secp256k1::new();
|
||||
/// let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
|
||||
/// let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
|
||||
///
|
||||
/// let point1 = ecdh::shared_secret_point(&pk2, &sk1);
|
||||
/// let secret1 = sha512::Hash::hash(&point1);
|
||||
/// let point2 = ecdh::shared_secret_point(&pk1, &sk2);
|
||||
/// let secret2 = sha512::Hash::hash(&point2);
|
||||
/// assert_eq!(secret1, secret2)
|
||||
/// # }
|
||||
/// ```
|
||||
pub fn shared_secret_point(point: &PublicKey, scalar: &SecretKey) -> [u8; 64] {
|
||||
let mut xy = [0u8; 64];
|
||||
|
||||
let res = unsafe {
|
||||
|
@ -172,15 +118,15 @@ impl SharedSecret {
|
|||
)
|
||||
};
|
||||
// Our callback *always* returns 1.
|
||||
// and the scalar was verified to be valid(0 > scalar > group_order) via the type system
|
||||
// The scalar was verified to be valid (0 > scalar > group_order) via the type system.
|
||||
debug_assert_eq!(res, 1);
|
||||
xy
|
||||
}
|
||||
|
||||
let mut x = [0u8; 32];
|
||||
let mut y = [0u8; 32];
|
||||
x.copy_from_slice(&xy[..32]);
|
||||
y.copy_from_slice(&xy[32..]);
|
||||
hash_function(x, y)
|
||||
}
|
||||
unsafe extern "C" fn c_callback(output: *mut c_uchar, x: *const c_uchar, y: *const c_uchar, _data: *mut c_void) -> c_int {
|
||||
ptr::copy_nonoverlapping(x, output, 32);
|
||||
ptr::copy_nonoverlapping(y, output.offset(32), 32);
|
||||
1
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
@ -200,45 +146,13 @@ mod tests {
|
|||
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
|
||||
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
|
||||
|
||||
let sec1 = SharedSecret::new(&pk1, &sk2);
|
||||
let sec2 = SharedSecret::new(&pk2, &sk1);
|
||||
let sec1 = SharedSecret::new(&pk2, &sk1);
|
||||
let sec2 = SharedSecret::new(&pk1, &sk2);
|
||||
let sec_odd = SharedSecret::new(&pk1, &sk1);
|
||||
assert_eq!(sec1, sec2);
|
||||
assert!(sec_odd != sec2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(all(feature="std", feature = "rand-std"))]
|
||||
fn ecdh_with_hash() {
|
||||
let s = Secp256k1::signing_only();
|
||||
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
|
||||
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
|
||||
|
||||
let sec1 = SharedSecret::new_with_hash(&pk1, &sk2, |x,_| x.into());
|
||||
let sec2 = SharedSecret::new_with_hash(&pk2, &sk1, |x,_| x.into());
|
||||
let sec_odd = SharedSecret::new_with_hash(&pk1, &sk1, |x,_| x.into());
|
||||
assert_eq!(sec1, sec2);
|
||||
assert_ne!(sec_odd, sec2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(all(feature="std", feature = "rand-std"))]
|
||||
fn ecdh_with_hash_callback() {
|
||||
let s = Secp256k1::signing_only();
|
||||
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
|
||||
let expect_result: [u8; 64] = [123; 64];
|
||||
let mut x_out = [0u8; 32];
|
||||
let mut y_out = [0u8; 32];
|
||||
let result = SharedSecret::new_with_hash(&pk1, &sk1, |x, y| {
|
||||
x_out = x;
|
||||
y_out = y;
|
||||
expect_result.into()
|
||||
});
|
||||
assert_eq!(&expect_result[..], &result[..]);
|
||||
assert_ne!(x_out, [0u8; 32]);
|
||||
assert_ne!(y_out, [0u8; 32]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_c_callback() {
|
||||
let x = [5u8; 32];
|
||||
|
@ -253,6 +167,30 @@ mod tests {
|
|||
assert_eq!(x, new_x);
|
||||
assert_eq!(y, new_y);
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[cfg(not(fuzzing))]
|
||||
#[cfg(all(feature="rand-std", feature = "std", feature = "bitcoin_hashes"))]
|
||||
fn bitcoin_hashes_and_sys_generate_same_secret() {
|
||||
use hashes::{sha256, Hash, HashEngine};
|
||||
|
||||
let s = Secp256k1::signing_only();
|
||||
let (sk1, _) = s.generate_keypair(&mut thread_rng());
|
||||
let (_, pk2) = s.generate_keypair(&mut thread_rng());
|
||||
|
||||
let secret_sys = SharedSecret::new(&pk2, &sk1);
|
||||
|
||||
let xy = shared_secret_point(&pk2, &sk1);
|
||||
|
||||
// Mimics logic in `bitcoin-core/secp256k1/src/module/main_impl.h`
|
||||
let version = (xy[63] & 0x01) | 0x02;
|
||||
let mut engine = sha256::HashEngine::default();
|
||||
engine.input(&[version]);
|
||||
engine.input(&xy.as_ref()[..32]);
|
||||
let secret_bh = sha256::Hash::from_engine(engine);
|
||||
|
||||
assert_eq!(secret_bh.as_inner(), secret_sys.as_ref());
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(all(test, feature = "unstable"))]
|
||||
|
|
|
@ -26,20 +26,3 @@ macro_rules! impl_pretty_debug {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! impl_from_array_len {
|
||||
($thing:ident, $capacity:tt, ($($N:tt)+)) => {
|
||||
$(
|
||||
impl From<[u8; $N]> for $thing {
|
||||
fn from(arr: [u8; $N]) -> Self {
|
||||
let mut data = [0u8; $capacity];
|
||||
data[..$N].copy_from_slice(&arr);
|
||||
$thing {
|
||||
data,
|
||||
len: $N,
|
||||
}
|
||||
}
|
||||
}
|
||||
)+
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue