Revert "Overhaul interface to use zero-on-free SecretKeys"

This reverts commit 9889090784.

This is not ready for primetime -- the move prevention also prevents
reborrowing, which makes secret keys nearly unusable.
This commit is contained in:
Andrew Poelstra 2014-09-12 08:28:35 -05:00
parent 9889090784
commit 9cab4e023d
4 changed files with 247 additions and 264 deletions

View File

@ -1,7 +1,7 @@
[package] [package]
name = "bitcoin-secp256k1-rs" name = "bitcoin-secp256k1-rs"
version = "0.1.1" version = "0.0.1"
authors = [ "Dawid Ciężarkiewicz <dpc@ucore.info>", authors = [ "Dawid Ciężarkiewicz <dpc@ucore.info>",
"Andrew Poelstra <apoelstra@wpsoftware.net" ] "Andrew Poelstra <apoelstra@wpsoftware.net" ]
@ -12,6 +12,3 @@ path = "src/secp256k1.rs"
[dependencies.rust-crypto] [dependencies.rust-crypto]
git = "https://github.com/DaGenix/rust-crypto.git" git = "https://github.com/DaGenix/rust-crypto.git"
[dependencies.secretdata]
git = "https://github.com/apoelstra/secretdata.git"

View File

@ -17,13 +17,10 @@
use std::intrinsics::copy_nonoverlapping_memory; use std::intrinsics::copy_nonoverlapping_memory;
use std::cmp; use std::cmp;
use std::default::Default;
use std::fmt; use std::fmt;
use std::ptr::zero_memory;
use std::rand::Rng; use std::rand::Rng;
use serialize::{Decoder, Decodable, Encoder, Encodable}; use serialize::{Decoder, Decodable, Encoder, Encodable};
use secretdata::SecretData;
use crypto::digest::Digest; use crypto::digest::Digest;
use crypto::sha2::Sha512; use crypto::sha2::Sha512;
use crypto::hmac::Hmac; use crypto::hmac::Hmac;
@ -39,17 +36,14 @@ pub struct Nonce([u8, ..constants::NONCE_SIZE]);
impl_array_newtype!(Nonce, u8, constants::NONCE_SIZE) impl_array_newtype!(Nonce, u8, constants::NONCE_SIZE)
/// Secret 256-bit key used as `x` in an ECDSA signature /// Secret 256-bit key used as `x` in an ECDSA signature
pub struct SecretKey<'a>(SecretData<'a, SecretKeyData>); pub struct SecretKey([u8, ..constants::SECRET_KEY_SIZE]);
impl_array_newtype!(SecretKey, u8, constants::SECRET_KEY_SIZE)
/// Secret 256-bit key used as `x` in an ECDSA signature /// The number 1 encoded as a secret key
struct SecretKeyData([u8, ..constants::SECRET_KEY_SIZE]); pub static ONE: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
impl_array_newtype!(SecretKeyData, u8, constants::SECRET_KEY_SIZE) 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
impl Default for SecretKeyData { 0, 0, 0, 0, 0, 0, 0, 1]);
fn default() -> SecretKeyData {
SecretKeyData([0, ..constants::SECRET_KEY_SIZE])
}
}
/// Public key /// Public key
#[deriving(Clone, PartialEq, Eq, Show)] #[deriving(Clone, PartialEq, Eq, Show)]
@ -104,7 +98,7 @@ impl Nonce {
/// Generates a deterministic nonce by RFC6979 with HMAC-SHA512 /// Generates a deterministic nonce by RFC6979 with HMAC-SHA512
#[inline] #[inline]
#[allow(non_snake_case)] // so we can match the names in the RFC #[allow(non_snake_case)] // so we can match the names in the RFC
pub fn deterministic<'a>(msg: &[u8], key: &SecretKey<'a>) -> Nonce { pub fn deterministic(msg: &[u8], key: &SecretKey) -> Nonce {
static HMAC_SIZE: uint = 64; static HMAC_SIZE: uint = 64;
macro_rules! hmac( macro_rules! hmac(
@ -160,16 +154,10 @@ impl Nonce {
} }
} }
impl<'a> SecretKey<'a> { impl SecretKey {
/// Creates a new zeroed-out secret key
#[inline]
pub fn new() -> SecretKey<'a> {
SecretKey(SecretData::new())
}
/// Creates a new random secret key /// Creates a new random secret key
#[inline] #[inline]
pub fn init_rng<R:Rng>(&'a mut self, rng: &mut R) { pub fn new<R:Rng>(rng: &mut R) -> SecretKey {
init(); init();
let mut data = random_32_bytes(rng); let mut data = random_32_bytes(rng);
unsafe { unsafe {
@ -177,47 +165,36 @@ impl<'a> SecretKey<'a> {
data = random_32_bytes(rng); data = random_32_bytes(rng);
} }
} }
let &SecretKey(ref mut selfdata) = self; SecretKey(data)
selfdata.move(&mut SecretKeyData(data))
} }
/// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key, /// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key
/// zeroing out the original data
#[inline] #[inline]
pub fn init_slice(&'a mut self, data: &mut [u8]) -> Result<()> { pub fn from_slice(data: &[u8]) -> Result<SecretKey> {
init(); init();
match data.len() { match data.len() {
constants::SECRET_KEY_SIZE => { constants::SECRET_KEY_SIZE => {
let &SecretKey(ref mut selfdata) = self; let mut ret = [0, ..constants::SECRET_KEY_SIZE];
unsafe { unsafe {
if ffi::secp256k1_ecdsa_seckey_verify(data.as_ptr()) == 0 { if ffi::secp256k1_ecdsa_seckey_verify(data.as_ptr()) == 0 {
return Err(InvalidSecretKey); return Err(InvalidSecretKey);
} }
copy_nonoverlapping_memory(selfdata.data_mut().as_mut_ptr(), copy_nonoverlapping_memory(ret.as_mut_ptr(),
data.as_ptr(), data.as_ptr(),
data.len()); data.len());
zero_memory(data.as_mut_ptr(), data.len());
} }
Ok(()) Ok(SecretKey(ret))
} }
_ => Err(InvalidSecretKey) _ => Err(InvalidSecretKey)
} }
} }
/// Copies the data from one key to another without zeroing anyth out
#[inline]
pub fn clone_from<'b>(&'a mut self, other: &SecretKey<'b>) {
let &SecretKey(ref mut selfdata) = self;
let &SecretKey(ref otherdata) = other;
selfdata.clone_from(otherdata);
}
#[inline] #[inline]
/// Adds one secret key to another, modulo the curve order /// Adds one secret key to another, modulo the curve order
/// Marked `unsafe` since you must /// Marked `unsafe` since you must
/// call `init()` (or construct a `Secp256k1`, which does this for you) before /// call `init()` (or construct a `Secp256k1`, which does this for you) before
/// using this function /// using this function
pub fn add_assign<'b>(&mut self, other: &SecretKey<'b>) -> Result<()> { pub fn add_assign(&mut self, other: &SecretKey) -> Result<()> {
init(); init();
unsafe { unsafe {
if ffi::secp256k1_ecdsa_privkey_tweak_add(self.as_mut_ptr(), other.as_ptr()) != 1 { if ffi::secp256k1_ecdsa_privkey_tweak_add(self.as_mut_ptr(), other.as_ptr()) != 1 {
@ -229,24 +206,24 @@ impl<'a> SecretKey<'a> {
} }
#[inline] #[inline]
/// Returns an immutable view of the data as a byteslice /// Returns an iterator for the (sk, pk) pairs starting one after this one,
pub fn as_slice<'b>(&'b self) -> &'b [u8] { /// and incrementing by one each time
let &SecretKey(ref selfdata) = self; pub fn sequence(&self, compressed: bool) -> Sequence {
selfdata.data().as_slice() Sequence { last_sk: *self, compressed: compressed }
} }
}
#[inline] /// An iterator of keypairs `(sk + 1, pk*G)`, `(sk + 2, pk*2G)`, ...
/// Returns a raw pointer to the underlying secret key data pub struct Sequence {
pub fn as_ptr(&self) -> *const u8 { compressed: bool,
let &SecretKey(ref selfdata) = self; last_sk: SecretKey,
selfdata.data().as_ptr() }
}
impl<'a> Iterator<(SecretKey, PublicKey)> for Sequence {
#[inline] #[inline]
/// Returns a mutable raw pointer to the underlying secret key data fn next(&mut self) -> Option<(SecretKey, PublicKey)> {
pub fn as_mut_ptr(&mut self) -> *mut u8 { self.last_sk.add_assign(&ONE).unwrap();
let &SecretKey(ref mut selfdata) = self; Some((self.last_sk, PublicKey::from_secret_key(&self.last_sk, self.compressed)))
selfdata.data_mut().as_mut_ptr()
} }
} }
@ -262,7 +239,7 @@ impl PublicKey {
/// Creates a new public key from a secret key. /// Creates a new public key from a secret key.
#[inline] #[inline]
pub fn from_secret_key<'a>(sk: &SecretKey<'a>, compressed: bool) -> PublicKey { pub fn from_secret_key(sk: &SecretKey, compressed: bool) -> PublicKey {
let mut pk = PublicKey::new(compressed); let mut pk = PublicKey::new(compressed);
let compressed = if compressed {1} else {0}; let compressed = if compressed {1} else {0};
let mut len = 0; let mut len = 0;
@ -360,7 +337,7 @@ impl PublicKey {
#[inline] #[inline]
/// Adds the pk corresponding to `other` to the pk `self` in place /// Adds the pk corresponding to `other` to the pk `self` in place
pub fn add_exp_assign<'a>(&mut self, other: &SecretKey<'a>) -> Result<()> { pub fn add_exp_assign(&mut self, other: &SecretKey) -> Result<()> {
init(); init();
unsafe { unsafe {
if ffi::secp256k1_ecdsa_pubkey_tweak_add(self.as_mut_ptr(), if ffi::secp256k1_ecdsa_pubkey_tweak_add(self.as_mut_ptr(),
@ -444,17 +421,9 @@ impl <E: Encoder<S>, S> Encodable<E, S> for PublicKey {
} }
} }
impl<'a> PartialEq for SecretKey<'a> { impl fmt::Show for SecretKey {
fn eq(&self, other: &SecretKey<'a>) -> bool {
self.as_slice() == other.as_slice()
}
}
impl<'a> Eq for SecretKey<'a> {}
impl<'a> fmt::Show for SecretKey<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "[secret data]") self.as_slice().fmt(f)
} }
} }
@ -463,7 +432,9 @@ mod test {
use serialize::hex::FromHex; use serialize::hex::FromHex;
use std::rand::task_rng; use std::rand::task_rng;
use super::super::{InvalidNonce, InvalidPublicKey, InvalidSecretKey}; use test::Bencher;
use super::super::{Secp256k1, InvalidNonce, InvalidPublicKey, InvalidSecretKey};
use super::{Nonce, PublicKey, SecretKey}; use super::{Nonce, PublicKey, SecretKey};
#[test] #[test]
@ -471,16 +442,17 @@ mod test {
let n = Nonce::from_slice([1, ..31]); let n = Nonce::from_slice([1, ..31]);
assert_eq!(n, Err(InvalidNonce)); assert_eq!(n, Err(InvalidNonce));
let mut n = SecretKey::new(); let n = SecretKey::from_slice([1, ..32]);
assert_eq!(n.init_slice([1, ..32]), Ok(())); assert!(n.is_ok());
} }
#[test] #[test]
fn skey_from_slice() { fn skey_from_slice() {
let mut sk = SecretKey::new(); let sk = SecretKey::from_slice([1, ..31]);
assert_eq!(sk.init_slice([1, ..31]), Err(InvalidSecretKey)); assert_eq!(sk, Err(InvalidSecretKey));
let mut sk = SecretKey::new();
assert_eq!(sk.init_slice([1, ..32]), Ok(())); let sk = SecretKey::from_slice([1, ..32]);
assert!(sk.is_ok());
} }
#[test] #[test]
@ -499,17 +471,14 @@ mod test {
#[test] #[test]
fn keypair_slice_round_trip() { fn keypair_slice_round_trip() {
let mut rng = task_rng(); let mut s = Secp256k1::new().unwrap();
let mut sk1 = SecretKey::new();
sk1.init_rng(&mut rng);
let mut sk2 = SecretKey::new();
sk2.clone_from(&sk1);
assert_eq!(sk1, sk2); let (sk1, pk1) = s.generate_keypair(true);
assert_eq!(SecretKey::from_slice(sk1.as_slice()), Ok(sk1));
let pk1 = PublicKey::from_secret_key(&sk1, false);
assert_eq!(PublicKey::from_slice(pk1.as_slice()), Ok(pk1)); assert_eq!(PublicKey::from_slice(pk1.as_slice()), Ok(pk1));
let pk2 = PublicKey::from_secret_key(&sk1, true);
let (sk2, pk2) = s.generate_keypair(false);
assert_eq!(SecretKey::from_slice(sk2.as_slice()), Ok(sk2));
assert_eq!(PublicKey::from_slice(pk2.as_slice()), Ok(pk2)); assert_eq!(PublicKey::from_slice(pk2.as_slice()), Ok(pk2));
} }
@ -522,33 +491,28 @@ mod test {
#[test] #[test]
fn invalid_secret_key() { fn invalid_secret_key() {
let mut sk = SecretKey::new();
// Zero // Zero
assert_eq!(sk.init_slice([0, ..32]), Err(InvalidSecretKey)); assert_eq!(SecretKey::from_slice([0, ..32]), Err(InvalidSecretKey));
// -1 // -1
assert_eq!(sk.init_slice([0xff, ..32]), Err(InvalidSecretKey)); assert_eq!(SecretKey::from_slice([0xff, ..32]), Err(InvalidSecretKey));
// Top of range // Top of range
assert_eq!(sk.init_slice([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, assert!(SecretKey::from_slice([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]), Ok(())); 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]).is_ok());
// One past top of range // One past top of range
assert_eq!(sk.init_slice([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, assert!(SecretKey::from_slice([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]), Err(InvalidSecretKey)); 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]).is_err());
} }
#[test] #[test]
fn test_addition() { fn test_addition() {
let mut rng = task_rng(); let mut s = Secp256k1::new().unwrap();
let mut sk1 = SecretKey::new(); let (mut sk1, mut pk1) = s.generate_keypair(true);
let mut sk2 = SecretKey::new(); let (mut sk2, mut pk2) = s.generate_keypair(true);
sk1.init_rng(&mut rng);
sk2.init_rng(&mut rng);
let mut pk1 = PublicKey::from_secret_key(&sk1, true);
let mut pk2 = PublicKey::from_secret_key(&sk2, true);
assert_eq!(PublicKey::from_secret_key(&sk1, true), pk1); assert_eq!(PublicKey::from_secret_key(&sk1, true), pk1);
assert!(sk1.add_assign(&sk2).is_ok()); assert!(sk1.add_assign(&sk2).is_ok());
@ -569,10 +533,7 @@ mod test {
// from ecdsa.curves import SECP256k1 // from ecdsa.curves import SECP256k1
// # This key was generated randomly // # This key was generated randomly
// sk = 0x09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f81 // sk = 0x09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f81
let mut sk = SecretKey::new(); let sk = SecretKey::from_slice(hex_slice!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f81")).unwrap();
sk.init_slice(hex_slice_mut!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f81")).unwrap();
assert_eq!(sk.as_slice(),
hex_slice!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f81"));
// "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('').digest()) // "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('').digest())
let nonce = Nonce::deterministic([], &sk); let nonce = Nonce::deterministic([], &sk);
@ -586,7 +547,7 @@ mod test {
// # Decrease the secret key by one // # Decrease the secret key by one
// sk = 0x09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f80 // sk = 0x09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f80
sk.init_slice(hex_slice_mut!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f80")).unwrap(); let sk = SecretKey::from_slice(hex_slice!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f80")).unwrap();
// "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('').digest()) // "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('').digest())
let nonce = Nonce::deterministic([], &sk); let nonce = Nonce::deterministic([], &sk);
@ -598,6 +559,14 @@ mod test {
assert_eq!(nonce.as_slice(), assert_eq!(nonce.as_slice(),
hex_slice!("355c589ff662c838aee454d62b12c50a87b7e95ede2431c7cfa40b6ba2fddccd")); hex_slice!("355c589ff662c838aee454d62b12c50a87b7e95ede2431c7cfa40b6ba2fddccd"));
} }
#[bench]
pub fn sequence_iterate(bh: &mut Bencher) {
let mut s = Secp256k1::new().unwrap();
let (sk, _) = s.generate_keypair(true);
let mut iter = sk.sequence(true);
bh.iter(|| iter.next())
}
} }

View File

@ -27,7 +27,6 @@ macro_rules! impl_array_newtype(
} }
#[inline] #[inline]
#[allow(dead_code)]
/// Provides an immutable view into the object from index `s` inclusive to `e` exclusive /// Provides an immutable view into the object from index `s` inclusive to `e` exclusive
pub fn slice<'a>(&'a self, s: uint, e: uint) -> &'a [$ty] { pub fn slice<'a>(&'a self, s: uint, e: uint) -> &'a [$ty] {
let &$thing(ref dat) = self; let &$thing(ref dat) = self;
@ -35,7 +34,6 @@ macro_rules! impl_array_newtype(
} }
#[inline] #[inline]
#[allow(dead_code)]
/// Provides an immutable view into the object, up to index `n` exclusive /// Provides an immutable view into the object, up to index `n` exclusive
pub fn slice_to<'a>(&'a self, n: uint) -> &'a [$ty] { pub fn slice_to<'a>(&'a self, n: uint) -> &'a [$ty] {
let &$thing(ref dat) = self; let &$thing(ref dat) = self;
@ -43,7 +41,6 @@ macro_rules! impl_array_newtype(
} }
#[inline] #[inline]
#[allow(dead_code)]
/// Provides an immutable view into the object, starting from index `n` /// Provides an immutable view into the object, starting from index `n`
pub fn slice_from<'a>(&'a self, n: uint) -> &'a [$ty] { pub fn slice_from<'a>(&'a self, n: uint) -> &'a [$ty] {
let &$thing(ref dat) = self; let &$thing(ref dat) = self;
@ -65,7 +62,6 @@ macro_rules! impl_array_newtype(
} }
#[inline] #[inline]
#[allow(dead_code)]
/// Returns the length of the object as an array /// Returns the length of the object as an array
pub fn len(&self) -> uint { $len } pub fn len(&self) -> uint { $len }
} }
@ -133,10 +129,3 @@ macro_rules! hex_slice(
) )
) )
macro_rules! hex_slice_mut(
($s:expr) => (
$s.from_hex().unwrap().as_mut_slice()
)
)

View File

@ -37,7 +37,6 @@
#![warn(missing_doc)] #![warn(missing_doc)]
extern crate "rust-crypto" as crypto; extern crate "rust-crypto" as crypto;
extern crate secretdata;
extern crate libc; extern crate libc;
extern crate serialize; extern crate serialize;
@ -45,9 +44,13 @@ extern crate sync;
extern crate test; extern crate test;
use std::intrinsics::copy_nonoverlapping_memory; use std::intrinsics::copy_nonoverlapping_memory;
use std::io::IoResult;
use std::rand::{OsRng, Rng, SeedableRng};
use libc::c_int; use libc::c_int;
use sync::one::{Once, ONCE_INIT}; use sync::one::{Once, ONCE_INIT};
use crypto::fortuna::Fortuna;
mod macros; mod macros;
pub mod constants; pub mod constants;
pub mod ffi; pub mod ffi;
@ -132,6 +135,11 @@ pub type Result<T> = ::std::prelude::Result<T, Error>;
static mut Secp256k1_init : Once = ONCE_INIT; static mut Secp256k1_init : Once = ONCE_INIT;
/// The secp256k1 engine, used to execute all signature operations
pub struct Secp256k1 {
rng: Fortuna
}
/// Does one-time initialization of the secp256k1 engine. Can be called /// Does one-time initialization of the secp256k1 engine. Can be called
/// multiple times, and is called by the `Secp256k1` constructor. This /// multiple times, and is called by the `Secp256k1` constructor. This
/// only needs to be called directly if you are using the library without /// only needs to be called directly if you are using the library without
@ -145,86 +153,114 @@ pub fn init() {
} }
} }
/// Constructs a signature for `msg` using the secret key `sk` and nonce `nonce` impl Secp256k1 {
pub fn sign<'a>(msg: &[u8], sk: &key::SecretKey<'a>, nonce: &key::Nonce) /// Constructs a new secp256k1 engine.
-> Result<Signature> { pub fn new() -> IoResult<Secp256k1> {
let mut sig = [0, ..constants::MAX_SIGNATURE_SIZE]; init();
let mut len = constants::MAX_SIGNATURE_SIZE as c_int; let mut osrng = try!(OsRng::new());
unsafe { let mut seed = [0, ..2048];
if ffi::secp256k1_ecdsa_sign(msg.as_ptr(), msg.len() as c_int, osrng.fill_bytes(seed.as_mut_slice());
sig.as_mut_slice().as_mut_ptr(), &mut len, Ok(Secp256k1 { rng: SeedableRng::from_seed(seed.as_slice()) })
sk.as_ptr(), nonce.as_ptr()) != 1 { }
return Err(InvalidNonce);
} /// Generates a random keypair. Convenience function for `key::SecretKey::new`
// This assertation is probably too late :) /// and `key::PublicKey::from_secret_key`; call those functions directly for
assert!(len as uint <= constants::MAX_SIGNATURE_SIZE); /// batch key generation.
}; #[inline]
Ok(Signature(len as uint, sig)) pub fn generate_keypair(&mut self, compressed: bool)
} -> (key::SecretKey, key::PublicKey) {
let sk = key::SecretKey::new(&mut self.rng);
(sk, key::PublicKey::from_secret_key(&sk, compressed))
}
/// Generates a random nonce. Convenience function for `key::Nonce::new`; call
/// that function directly for batch nonce generation
#[inline]
pub fn generate_nonce(&mut self) -> key::Nonce {
key::Nonce::new(&mut self.rng)
}
/// Constructs a signature for `msg` using the secret key `sk` and nonce `nonce`
pub fn sign(&self, msg: &[u8], sk: &key::SecretKey, nonce: &key::Nonce)
-> Result<Signature> {
let mut sig = [0, ..constants::MAX_SIGNATURE_SIZE];
let mut len = constants::MAX_SIGNATURE_SIZE as c_int;
unsafe {
if ffi::secp256k1_ecdsa_sign(msg.as_ptr(), msg.len() as c_int,
sig.as_mut_slice().as_mut_ptr(), &mut len,
sk.as_ptr(), nonce.as_ptr()) != 1 {
return Err(InvalidNonce);
}
// This assertation is probably too late :)
assert!(len as uint <= constants::MAX_SIGNATURE_SIZE);
};
Ok(Signature(len as uint, sig))
}
/// Constructs a compact signature for `msg` using the secret key `sk` /// Constructs a compact signature for `msg` using the secret key `sk`
pub fn sign_compact<'a>(msg: &[u8], sk: &key::SecretKey<'a>, nonce: &key::Nonce) pub fn sign_compact(&self, msg: &[u8], sk: &key::SecretKey, nonce: &key::Nonce)
-> Result<(Signature, RecoveryId)> { -> Result<(Signature, RecoveryId)> {
let mut sig = [0, ..constants::MAX_SIGNATURE_SIZE]; let mut sig = [0, ..constants::MAX_SIGNATURE_SIZE];
let mut recid = 0; let mut recid = 0;
unsafe { unsafe {
if ffi::secp256k1_ecdsa_sign_compact(msg.as_ptr(), msg.len() as c_int, if ffi::secp256k1_ecdsa_sign_compact(msg.as_ptr(), msg.len() as c_int,
sig.as_mut_slice().as_mut_ptr(), sk.as_ptr(), sig.as_mut_slice().as_mut_ptr(), sk.as_ptr(),
nonce.as_ptr(), &mut recid) != 1 { nonce.as_ptr(), &mut recid) != 1 {
return Err(InvalidNonce); return Err(InvalidNonce);
}
};
Ok((Signature(constants::MAX_COMPACT_SIGNATURE_SIZE, sig), RecoveryId(recid)))
}
/// Determines the public key for which `sig` is a valid signature for
/// `msg`. Returns through the out-pointer `pubkey`.
pub fn recover_compact(&self, msg: &[u8], sig: &[u8],
compressed: bool, recid: RecoveryId)
-> Result<key::PublicKey> {
let mut pk = key::PublicKey::new(compressed);
let RecoveryId(recid) = recid;
unsafe {
let mut len = 0;
if ffi::secp256k1_ecdsa_recover_compact(msg.as_ptr(), msg.len() as c_int,
sig.as_ptr(), pk.as_mut_ptr(), &mut len,
if compressed {1} else {0},
recid) != 1 {
return Err(InvalidSignature);
}
assert_eq!(len as uint, pk.len());
};
Ok(pk)
}
/// Checks that `sig` is a valid ECDSA signature for `msg` using the public
/// key `pubkey`. Returns `Ok(true)` on success. Note that this function cannot
/// be used for Bitcoin consensus checking since there are transactions out
/// there with zero-padded signatures that don't fit in the `Signature` type.
/// Use `verify_raw` instead.
#[inline]
pub fn verify(msg: &[u8], sig: &Signature, pk: &key::PublicKey) -> Result<()> {
Secp256k1::verify_raw(msg, sig.as_slice(), pk)
}
/// Checks that `sig` is a valid ECDSA signature for `msg` using the public
/// key `pubkey`. Returns `Ok(true)` on success.
#[inline]
pub fn verify_raw(msg: &[u8], sig: &[u8], pk: &key::PublicKey) -> Result<()> {
init(); // This is a static function, so we have to init
let res = unsafe {
ffi::secp256k1_ecdsa_verify(msg.as_ptr(), msg.len() as c_int,
sig.as_ptr(), sig.len() as c_int,
pk.as_ptr(), pk.len() as c_int)
};
match res {
1 => Ok(()),
0 => Err(IncorrectSignature),
-1 => Err(InvalidPublicKey),
-2 => Err(InvalidSignature),
_ => unreachable!()
} }
};
Ok((Signature(constants::MAX_COMPACT_SIGNATURE_SIZE, sig), RecoveryId(recid)))
}
/// Determines the public key for which `sig` is a valid signature for
/// `msg`. Returns through the out-pointer `pubkey`.
pub fn recover_compact(msg: &[u8], sig: &[u8],
compressed: bool, recid: RecoveryId)
-> Result<key::PublicKey> {
let mut pk = key::PublicKey::new(compressed);
let RecoveryId(recid) = recid;
unsafe {
let mut len = 0;
if ffi::secp256k1_ecdsa_recover_compact(msg.as_ptr(), msg.len() as c_int,
sig.as_ptr(), pk.as_mut_ptr(), &mut len,
if compressed {1} else {0},
recid) != 1 {
return Err(InvalidSignature);
}
assert_eq!(len as uint, pk.len());
};
Ok(pk)
}
/// Checks that `sig` is a valid ECDSA signature for `msg` using the public
/// key `pubkey`. Returns `Ok(true)` on success. Note that this function cannot
/// be used for Bitcoin consensus checking since there are transactions out
/// there with zero-padded signatures that don't fit in the `Signature` type.
/// Use `verify_raw` instead.
#[inline]
pub fn verify(msg: &[u8], sig: &Signature, pk: &key::PublicKey) -> Result<()> {
verify_raw(msg, sig.as_slice(), pk)
}
/// Checks that `sig` is a valid ECDSA signature for `msg` using the public
/// key `pubkey`. Returns `Ok(true)` on success.
#[inline]
pub fn verify_raw(msg: &[u8], sig: &[u8], pk: &key::PublicKey) -> Result<()> {
init(); // This is a static function, so we have to init
let res = unsafe {
ffi::secp256k1_ecdsa_verify(msg.as_ptr(), msg.len() as c_int,
sig.as_ptr(), sig.len() as c_int,
pk.as_ptr(), pk.len() as c_int)
};
match res {
1 => Ok(()),
0 => Err(IncorrectSignature),
-1 => Err(InvalidPublicKey),
-2 => Err(InvalidSignature),
_ => unreachable!()
} }
} }
@ -236,9 +272,9 @@ mod tests {
use test::{Bencher, black_box}; use test::{Bencher, black_box};
use key::{SecretKey, PublicKey, Nonce}; use key::{PublicKey, Nonce};
use super::{verify, sign, sign_compact, recover_compact}; use super::{Secp256k1, Signature};
use super::{Signature, InvalidPublicKey, IncorrectSignature, InvalidSignature}; use super::{InvalidPublicKey, IncorrectSignature, InvalidSignature};
#[test] #[test]
fn invalid_pubkey() { fn invalid_pubkey() {
@ -248,134 +284,126 @@ mod tests {
rand::task_rng().fill_bytes(msg.as_mut_slice()); rand::task_rng().fill_bytes(msg.as_mut_slice());
assert_eq!(verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidPublicKey)); assert_eq!(Secp256k1::verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidPublicKey));
} }
#[test] #[test]
fn valid_pubkey_uncompressed() { fn valid_pubkey_uncompressed() {
let mut sk = SecretKey::new(); let mut s = Secp256k1::new().unwrap();
sk.init_rng(&mut rand::task_rng());
let pk = PublicKey::from_secret_key(&sk, false); let (_, pk) = s.generate_keypair(false);
let mut msg = Vec::from_elem(32, 0u8); let mut msg = Vec::from_elem(32, 0u8);
let sig = Signature::from_slice([0, ..72]).unwrap(); let sig = Signature::from_slice([0, ..72]).unwrap();
rand::task_rng().fill_bytes(msg.as_mut_slice()); rand::task_rng().fill_bytes(msg.as_mut_slice());
assert_eq!(verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidSignature)); assert_eq!(Secp256k1::verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidSignature));
} }
#[test] #[test]
fn valid_pubkey_compressed() { fn valid_pubkey_compressed() {
let mut sk = SecretKey::new(); let mut s = Secp256k1::new().unwrap();
sk.init_rng(&mut rand::task_rng());
let pk = PublicKey::from_secret_key(&sk, true);
let (_, pk) = s.generate_keypair(true);
let mut msg = Vec::from_elem(32, 0u8); let mut msg = Vec::from_elem(32, 0u8);
let sig = Signature::from_slice([0, ..72]).unwrap(); let sig = Signature::from_slice([0, ..72]).unwrap();
rand::task_rng().fill_bytes(msg.as_mut_slice()); rand::task_rng().fill_bytes(msg.as_mut_slice());
assert_eq!(verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidSignature)); assert_eq!(Secp256k1::verify(msg.as_mut_slice(), &sig, &pk), Err(InvalidSignature));
} }
#[test] #[test]
fn sign_random() { fn sign() {
let mut rng = rand::task_rng(); let mut s = Secp256k1::new().unwrap();
let mut sk = SecretKey::new();
sk.init_rng(&mut rng);
let mut msg = [0u8, ..32]; let mut msg = [0u8, ..32];
rng.fill_bytes(msg); rand::task_rng().fill_bytes(msg);
let nonce = Nonce::new(&mut rng); let (sk, _) = s.generate_keypair(false);
let nonce = s.generate_nonce();
sign(msg.as_slice(), &sk, &nonce).unwrap(); s.sign(msg.as_slice(), &sk, &nonce).unwrap();
} }
#[test] #[test]
fn sign_and_verify() { fn sign_and_verify() {
let mut rng = rand::task_rng(); let mut s = Secp256k1::new().unwrap();
let mut sk = SecretKey::new(); let mut msg = Vec::from_elem(32, 0u8);
sk.init_rng(&mut rng); rand::task_rng().fill_bytes(msg.as_mut_slice());
let pk = PublicKey::from_secret_key(&sk, true);
let mut msg = [0u8, ..32];
rng.fill_bytes(msg);
let nonce = Nonce::new(&mut rng);
let sig = sign(msg.as_slice(), &sk, &nonce).unwrap(); let (sk, pk) = s.generate_keypair(false);
assert_eq!(verify(msg.as_slice(), &sig, &pk), Ok(())); let nonce = s.generate_nonce();
let sig = s.sign(msg.as_slice(), &sk, &nonce).unwrap();
assert_eq!(Secp256k1::verify(msg.as_slice(), &sig, &pk), Ok(()));
} }
#[test] #[test]
fn sign_and_verify_fail() { fn sign_and_verify_fail() {
let mut rng = rand::task_rng(); let mut s = Secp256k1::new().unwrap();
let mut sk = SecretKey::new(); let mut msg = Vec::from_elem(32, 0u8);
sk.init_rng(&mut rng); rand::task_rng().fill_bytes(msg.as_mut_slice());
let pk = PublicKey::from_secret_key(&sk, true);
let mut msg = [0u8, ..32];
rng.fill_bytes(msg);
let nonce = Nonce::new(&mut rng);
let sig = sign(msg.as_slice(), &sk, &nonce).unwrap(); let (sk, pk) = s.generate_keypair(false);
rng.fill_bytes(msg.as_mut_slice()); let nonce = s.generate_nonce();
assert_eq!(verify(msg.as_slice(), &sig, &pk), Err(IncorrectSignature));
let sig = s.sign(msg.as_slice(), &sk, &nonce).unwrap();
rand::task_rng().fill_bytes(msg.as_mut_slice());
assert_eq!(Secp256k1::verify(msg.as_slice(), &sig, &pk), Err(IncorrectSignature));
} }
#[test] #[test]
fn sign_compact_with_recovery() { fn sign_compact_with_recovery() {
let mut rng = rand::task_rng(); let mut s = Secp256k1::new().unwrap();
let mut sk = SecretKey::new();
sk.init_rng(&mut rng);
assert!(sk != SecretKey::new());
let pk = PublicKey::from_secret_key(&sk, false);
let pk_comp = PublicKey::from_secret_key(&sk, true);
let mut msg = [0u8, ..32]; let mut msg = [0u8, ..32];
rng.fill_bytes(msg); rand::task_rng().fill_bytes(msg.as_mut_slice());
let nonce = Nonce::new(&mut rng);
let (sig, recid) = sign_compact(msg.as_slice(), &sk, &nonce).unwrap(); let (sk, pk) = s.generate_keypair(false);
let nonce = s.generate_nonce();
assert_eq!(recover_compact(msg.as_slice(), sig.as_slice(), false, recid), Ok(pk)); let (sig, recid) = s.sign_compact(msg.as_slice(), &sk, &nonce).unwrap();
assert_eq!(recover_compact(msg.as_slice(), sig.as_slice(), true, recid), Ok(pk_comp));
assert_eq!(s.recover_compact(msg.as_slice(), sig.as_slice(), false, recid), Ok(pk));
} }
#[test] #[test]
fn deterministic_sign() { fn deterministic_sign() {
let mut rng = rand::task_rng();
let mut sk = SecretKey::new();
sk.init_rng(&mut rng);
let pk = PublicKey::from_secret_key(&sk, true);
let mut msg = [0u8, ..32]; let mut msg = [0u8, ..32];
rng.fill_bytes(msg); rand::task_rng().fill_bytes(msg.as_mut_slice());
let mut s = Secp256k1::new().unwrap();
let (sk, pk) = s.generate_keypair(true);
let nonce = Nonce::deterministic(msg, &sk); let nonce = Nonce::deterministic(msg, &sk);
let sig = sign(msg.as_slice(), &sk, &nonce).unwrap(); let sig = s.sign(msg.as_slice(), &sk, &nonce).unwrap();
assert_eq!(verify(msg.as_slice(), &sig, &pk), Ok(()));
assert_eq!(Secp256k1::verify(msg.as_slice(), &sig, &pk), Ok(()));
} }
#[bench] #[bench]
pub fn generate_compressed(bh: &mut Bencher) { pub fn generate_compressed(bh: &mut Bencher) {
let mut rng = rand::task_rng(); let mut s = Secp256k1::new().unwrap();
let mut sk = SecretKey::new();
bh.iter( || { bh.iter( || {
sk.init_rng(&mut rng); let (sk, pk) = s.generate_keypair(true);
black_box(PublicKey::from_secret_key(&sk, true)); black_box(sk);
black_box(pk);
}); });
} }
#[bench] #[bench]
pub fn generate_uncompressed(bh: &mut Bencher) { pub fn generate_uncompressed(bh: &mut Bencher) {
let mut rng = rand::task_rng(); let mut s = Secp256k1::new().unwrap();
let mut sk = SecretKey::new();
bh.iter( || { bh.iter( || {
sk.init_rng(&mut rng); let (sk, pk) = s.generate_keypair(false);
black_box(PublicKey::from_secret_key(&sk, false)); black_box(sk);
black_box(pk);
}); });
} }
} }