// Bitcoin secp256k1 bindings
// Written in 2014 by
// Dawid Ciężarkiewicz
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see .
//
//! # Secp256k1
//! Rust bindings for Pieter Wuille's secp256k1 library, which is used for
//! fast and accurate manipulation of ECDSA signatures on the secp256k1
//! curve. Such signatures are used extensively by the Bitcoin network
//! and its derivatives.
//!
#![crate_type = "lib"]
#![crate_type = "rlib"]
#![crate_type = "dylib"]
#![crate_name = "secp256k1"]
// Coding conventions
#![deny(non_upper_case_globals)]
#![deny(non_camel_case_types)]
#![deny(non_snake_case)]
#![deny(unused_mut)]
#![warn(missing_docs)]
#![cfg_attr(feature = "dev", allow(unstable_features))]
#![cfg_attr(feature = "dev", feature(plugin))]
#![cfg_attr(feature = "dev", plugin(clippy))]
#![cfg_attr(all(test, feature = "unstable"), feature(test))]
#[cfg(all(test, feature = "unstable"))] extern crate test;
#[cfg(any(test, feature = "serde"))] extern crate serde;
#[cfg(test)] extern crate serde_json as json;
#[cfg(any(test, feature = "rand"))] extern crate rand;
#[cfg(any(test, feature = "rustc-serialize"))] extern crate rustc_serialize as serialize;
extern crate libc;
use libc::size_t;
use std::{error, fmt, ops, ptr};
#[cfg(any(test, feature = "rand"))] use rand::Rng;
#[macro_use]
mod macros;
pub mod constants;
pub mod ecdh;
pub mod ffi;
pub mod key;
pub mod schnorr;
/// A tag used for recovering the public key from a compact signature
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct RecoveryId(i32);
/// An ECDSA signature
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct Signature(ffi::Signature);
/// An ECDSA signature with a recovery ID for pubkey recovery
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct RecoverableSignature(ffi::RecoverableSignature);
impl RecoveryId {
#[inline]
/// Allows library users to create valid recovery IDs from i32.
pub fn from_i32(id: i32) -> Result {
match id {
0 | 1 | 2 | 3 => Ok(RecoveryId(id)),
_ => Err(Error::InvalidRecoveryId)
}
}
#[inline]
/// Allows library users to convert recovery IDs to i32.
pub fn to_i32(&self) -> i32 {
self.0
}
}
impl Signature {
#[inline]
/// Converts a DER-encoded byte slice to a signature
pub fn from_der(secp: &Secp256k1, data: &[u8]) -> Result {
let mut ret = unsafe { ffi::Signature::blank() };
unsafe {
if ffi::secp256k1_ecdsa_signature_parse_der(secp.ctx, &mut ret,
data.as_ptr(), data.len() as libc::size_t) == 1 {
Ok(Signature(ret))
} else {
Err(Error::InvalidSignature)
}
}
}
/// Converts a 64-byte compact-encoded byte slice to a signature
pub fn from_compact(secp: &Secp256k1, data: &[u8]) -> Result {
let mut ret = unsafe { ffi::Signature::blank() };
if data.len() != 64 {
return Err(Error::InvalidSignature)
}
unsafe {
if ffi::secp256k1_ecdsa_signature_parse_compact(secp.ctx, &mut ret,
data.as_ptr()) == 1 {
Ok(Signature(ret))
} else {
Err(Error::InvalidSignature)
}
}
}
/// Converts a "lax DER"-encoded byte slice to a signature. This is basically
/// only useful for validating signatures in the Bitcoin blockchain from before
/// 2016. It should never be used in new applications. This library does not
/// support serializing to this "format"
pub fn from_der_lax(secp: &Secp256k1, data: &[u8]) -> Result {
unsafe {
let mut ret = ffi::Signature::blank();
if ffi::ecdsa_signature_parse_der_lax(secp.ctx, &mut ret,
data.as_ptr(), data.len() as libc::size_t) == 1 {
Ok(Signature(ret))
} else {
Err(Error::InvalidSignature)
}
}
}
/// Normalizes a signature to a "low S" form. In ECDSA, signatures are
/// of the form (r, s) where r and s are numbers lying in some finite
/// field. The verification equation will pass for (r, s) iff it passes
/// for (r, -s), so it is possible to ``modify'' signatures in transit
/// by flipping the sign of s. This does not constitute a forgery since
/// the signed message still cannot be changed, but for some applications,
/// changing even the signature itself can be a problem. Such applications
/// require a "strong signature". It is believed that ECDSA is a strong
/// signature except for this ambiguity in the sign of s, so to accomodate
/// these applications libsecp256k1 will only accept signatures for which
/// s is in the lower half of the field range. This eliminates the
/// ambiguity.
///
/// However, for some systems, signatures with high s-values are considered
/// valid. (For example, parsing the historic Bitcoin blockchain requires
/// this.) For these applications we provide this normalization function,
/// which ensures that the s value lies in the lower half of its range.
pub fn normalize_s(&mut self, secp: &Secp256k1) {
unsafe {
// Ignore return value, which indicates whether the sig
// was already normalized. We don't care.
ffi::secp256k1_ecdsa_signature_normalize(secp.ctx, self.as_mut_ptr(),
self.as_ptr());
}
}
/// Obtains a raw pointer suitable for use with FFI functions
#[inline]
pub fn as_ptr(&self) -> *const ffi::Signature {
&self.0 as *const _
}
/// Obtains a raw mutable pointer suitable for use with FFI functions
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut ffi::Signature {
&mut self.0 as *mut _
}
#[inline]
/// Serializes the signature in DER format
pub fn serialize_der(&self, secp: &Secp256k1) -> Vec {
let mut ret = Vec::with_capacity(72);
let mut len: size_t = ret.capacity() as size_t;
unsafe {
let err = ffi::secp256k1_ecdsa_signature_serialize_der(secp.ctx, ret.as_mut_ptr(),
&mut len, self.as_ptr());
debug_assert!(err == 1);
ret.set_len(len as usize);
}
ret
}
#[inline]
/// Serializes the signature in compact format
pub fn serialize_compact(&self, secp: &Secp256k1) -> [u8; 64] {
let mut ret = [0; 64];
unsafe {
let err = ffi::secp256k1_ecdsa_signature_serialize_compact(secp.ctx, ret.as_mut_ptr(),
self.as_ptr());
debug_assert!(err == 1);
}
ret
}
}
#[cfg(any(test, feature = "serde"))]
impl serde::Serialize for Signature {
fn serialize(&self, s: S) -> Result
where S: serde::Serializer
{
let secp = Secp256k1::with_caps(::ContextFlag::None);
(&self.serialize_compact(&secp)[..]).serialize(s)
}
}
#[cfg(any(test, feature = "serde"))]
impl<'de> serde::Deserialize<'de> for Signature {
fn deserialize(d: D) -> Result
where D: serde::Deserializer<'de>
{
use serde::de;
struct Visitor {
marker: std::marker::PhantomData,
}
impl<'de> de::Visitor<'de> for Visitor {
type Value = Signature;
#[inline]
fn visit_seq(self, mut a: A) -> Result
where A: de::SeqAccess<'de>
{
let s = Secp256k1::with_caps(::ContextFlag::None);
unsafe {
use std::mem;
let mut ret: [u8; constants::COMPACT_SIGNATURE_SIZE] = mem::uninitialized();
for i in 0..constants::COMPACT_SIGNATURE_SIZE {
ret[i] = match try!(a.next_element()) {
Some(c) => c,
None => return Err(::serde::de::Error::invalid_length(i, &self))
};
}
let one_after_last : Option = try!(a.next_element());
if one_after_last.is_some() {
return Err(serde::de::Error::invalid_length(constants::COMPACT_SIGNATURE_SIZE + 1, &self));
}
Signature::from_compact(&s, &ret).map_err(
|e| match e {
Error::InvalidSignature => de::Error::invalid_value(de::Unexpected::Seq, &self),
_ => de::Error::custom(&e.to_string()),
}
)
}
}
fn expecting(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
write!(f, "a sequence of {} bytes representing a syntactically well-formed compact signature",
constants::COMPACT_SIGNATURE_SIZE)
}
}
// Begin actual function
d.deserialize_seq(Visitor { marker: std::marker::PhantomData })
}
}
/// Creates a new signature from a FFI signature
impl From for Signature {
#[inline]
fn from(sig: ffi::Signature) -> Signature {
Signature(sig)
}
}
impl RecoverableSignature {
#[inline]
/// Converts a compact-encoded byte slice to a signature. This
/// representation is nonstandard and defined by the libsecp256k1
/// library.
pub fn from_compact(secp: &Secp256k1, data: &[u8], recid: RecoveryId) -> Result {
let mut ret = unsafe { ffi::RecoverableSignature::blank() };
unsafe {
if data.len() != 64 {
Err(Error::InvalidSignature)
} else if ffi::secp256k1_ecdsa_recoverable_signature_parse_compact(secp.ctx, &mut ret,
data.as_ptr(), recid.0) == 1 {
Ok(RecoverableSignature(ret))
} else {
Err(Error::InvalidSignature)
}
}
}
/// Obtains a raw pointer suitable for use with FFI functions
#[inline]
pub fn as_ptr(&self) -> *const ffi::RecoverableSignature {
&self.0 as *const _
}
#[inline]
/// Serializes the recoverable signature in compact format
pub fn serialize_compact(&self, secp: &Secp256k1) -> (RecoveryId, [u8; 64]) {
let mut ret = [0u8; 64];
let mut recid = 0i32;
unsafe {
let err = ffi::secp256k1_ecdsa_recoverable_signature_serialize_compact(
secp.ctx, ret.as_mut_ptr(), &mut recid, self.as_ptr());
assert!(err == 1);
}
(RecoveryId(recid), ret)
}
/// Converts a recoverable signature to a non-recoverable one (this is needed
/// for verification
#[inline]
pub fn to_standard(&self, secp: &Secp256k1) -> Signature {
let mut ret = unsafe { ffi::Signature::blank() };
unsafe {
let err = ffi::secp256k1_ecdsa_recoverable_signature_convert(secp.ctx, &mut ret, self.as_ptr());
assert!(err == 1);
}
Signature(ret)
}
}
/// Creates a new recoverable signature from a FFI one
impl From for RecoverableSignature {
#[inline]
fn from(sig: ffi::RecoverableSignature) -> RecoverableSignature {
RecoverableSignature(sig)
}
}
impl ops::Index for Signature {
type Output = u8;
#[inline]
fn index(&self, index: usize) -> &u8 {
&self.0[index]
}
}
impl ops::Index> for Signature {
type Output = [u8];
#[inline]
fn index(&self, index: ops::Range) -> &[u8] {
&self.0[index]
}
}
impl ops::Index> for Signature {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeFrom) -> &[u8] {
&self.0[index.start..]
}
}
impl ops::Index for Signature {
type Output = [u8];
#[inline]
fn index(&self, _: ops::RangeFull) -> &[u8] {
&self.0[..]
}
}
/// A (hashed) message input to an ECDSA signature
pub struct Message([u8; constants::MESSAGE_SIZE]);
impl_array_newtype!(Message, u8, constants::MESSAGE_SIZE);
impl_pretty_debug!(Message);
impl Message {
/// Converts a `MESSAGE_SIZE`-byte slice to a message object
#[inline]
pub fn from_slice(data: &[u8]) -> Result {
match data.len() {
constants::MESSAGE_SIZE => {
let mut ret = [0; constants::MESSAGE_SIZE];
ret[..].copy_from_slice(data);
Ok(Message(ret))
}
_ => Err(Error::InvalidMessage)
}
}
}
/// Creates a message from a `MESSAGE_SIZE` byte array
impl From<[u8; constants::MESSAGE_SIZE]> for Message {
fn from(buf: [u8; constants::MESSAGE_SIZE]) -> Message {
Message(buf)
}
}
/// An ECDSA error
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
pub enum Error {
/// A `Secp256k1` was used for an operation, but it was not created to
/// support this (so necessary precomputations have not been done)
IncapableContext,
/// Signature failed verification
IncorrectSignature,
/// Badly sized message ("messages" are actually fixed-sized digests; see the `MESSAGE_SIZE`
/// constant)
InvalidMessage,
/// Bad public key
InvalidPublicKey,
/// Bad signature
InvalidSignature,
/// Bad secret key
InvalidSecretKey,
/// Bad recovery id
InvalidRecoveryId,
}
// Passthrough Debug to Display, since errors should be user-visible
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
f.write_str(error::Error::description(self))
}
}
impl error::Error for Error {
fn cause(&self) -> Option<&error::Error> { None }
fn description(&self) -> &str {
match *self {
Error::IncapableContext => "secp: context does not have sufficient capabilities",
Error::IncorrectSignature => "secp: signature failed verification",
Error::InvalidMessage => "secp: message was not 32 bytes (do you need to hash?)",
Error::InvalidPublicKey => "secp: malformed public key",
Error::InvalidSignature => "secp: malformed signature",
Error::InvalidSecretKey => "secp: malformed or out-of-range secret key",
Error::InvalidRecoveryId => "secp: bad recovery id"
}
}
}
/// The secp256k1 engine, used to execute all signature operations
pub struct Secp256k1 {
ctx: *mut ffi::Context,
caps: ContextFlag
}
unsafe impl Send for Secp256k1 {}
unsafe impl Sync for Secp256k1 {}
/// Flags used to determine the capabilities of a `Secp256k1` object;
/// the more capabilities, the more expensive it is to create.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum ContextFlag {
/// Can neither sign nor verify signatures (cheapest to create, useful
/// for cases not involving signatures, such as creating keys from slices)
None,
/// Can sign but not verify signatures
SignOnly,
/// Can verify but not create signatures
VerifyOnly,
/// Can verify and create signatures
Full
}
// Passthrough Debug to Display, since caps should be user-visible
impl fmt::Display for ContextFlag {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
fmt::Debug::fmt(self, f)
}
}
impl Clone for Secp256k1 {
fn clone(&self) -> Secp256k1 {
Secp256k1 {
ctx: unsafe { ffi::secp256k1_context_clone(self.ctx) },
caps: self.caps
}
}
}
impl PartialEq for Secp256k1 {
fn eq(&self, other: &Secp256k1) -> bool { self.caps == other.caps }
}
impl Eq for Secp256k1 { }
impl fmt::Debug for Secp256k1 {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "Secp256k1 {{ [private], caps: {:?} }}", self.caps)
}
}
impl Drop for Secp256k1 {
fn drop(&mut self) {
unsafe { ffi::secp256k1_context_destroy(self.ctx); }
}
}
impl Secp256k1 {
/// Creates a new Secp256k1 context
#[inline]
pub fn new() -> Secp256k1 {
Secp256k1::with_caps(ContextFlag::Full)
}
/// Creates a new Secp256k1 context with the specified capabilities
pub fn with_caps(caps: ContextFlag) -> Secp256k1 {
let flag = match caps {
ContextFlag::None => ffi::SECP256K1_START_NONE,
ContextFlag::SignOnly => ffi::SECP256K1_START_SIGN,
ContextFlag::VerifyOnly => ffi::SECP256K1_START_VERIFY,
ContextFlag::Full => ffi::SECP256K1_START_SIGN | ffi::SECP256K1_START_VERIFY
};
Secp256k1 { ctx: unsafe { ffi::secp256k1_context_create(flag) }, caps: caps }
}
/// Creates a new Secp256k1 context with no capabilities (just de/serialization)
pub fn without_caps() -> Secp256k1 {
Secp256k1::with_caps(ContextFlag::None)
}
/// (Re)randomizes the Secp256k1 context for cheap sidechannel resistence;
/// see comment in libsecp256k1 commit d2275795f by Gregory Maxwell
#[cfg(any(test, feature = "rand"))]
pub fn randomize(&mut self, rng: &mut R) {
let mut seed = [0; 32];
rng.fill_bytes(&mut seed);
unsafe {
let err = ffi::secp256k1_context_randomize(self.ctx, seed.as_ptr());
// This function cannot fail; it has an error return for future-proofing.
// We do not expose this error since it is impossible to hit, and we have
// precedent for not exposing impossible errors (for example in
// `PublicKey::from_secret_key` where it is impossble to create an invalid
// secret key through the API.)
// However, if this DOES fail, the result is potentially weaker side-channel
// resistance, which is deadly and undetectable, so we take out the entire
// thread to be on the safe side.
assert!(err == 1);
}
}
/// Generates a random keypair. Convenience function for `key::SecretKey::new`
/// and `key::PublicKey::from_secret_key`; call those functions directly for
/// batch key generation. Requires a signing-capable context.
#[inline]
#[cfg(any(test, feature = "rand"))]
pub fn generate_keypair(&self, rng: &mut R)
-> Result<(key::SecretKey, key::PublicKey), Error> {
let sk = key::SecretKey::new(self, rng);
let pk = try!(key::PublicKey::from_secret_key(self, &sk));
Ok((sk, pk))
}
/// Constructs a signature for `msg` using the secret key `sk` and RFC6979 nonce
/// Requires a signing-capable context.
pub fn sign(&self, msg: &Message, sk: &key::SecretKey)
-> Result {
if self.caps == ContextFlag::VerifyOnly || self.caps == ContextFlag::None {
return Err(Error::IncapableContext);
}
let mut ret = unsafe { ffi::Signature::blank() };
unsafe {
// We can assume the return value because it's not possible to construct
// an invalid signature from a valid `Message` and `SecretKey`
assert_eq!(ffi::secp256k1_ecdsa_sign(self.ctx, &mut ret, msg.as_ptr(),
sk.as_ptr(), ffi::secp256k1_nonce_function_rfc6979,
ptr::null()), 1);
}
Ok(Signature::from(ret))
}
/// Constructs a signature for `msg` using the secret key `sk` and RFC6979 nonce
/// Requires a signing-capable context.
pub fn sign_recoverable(&self, msg: &Message, sk: &key::SecretKey)
-> Result {
if self.caps == ContextFlag::VerifyOnly || self.caps == ContextFlag::None {
return Err(Error::IncapableContext);
}
let mut ret = unsafe { ffi::RecoverableSignature::blank() };
unsafe {
// We can assume the return value because it's not possible to construct
// an invalid signature from a valid `Message` and `SecretKey`
assert_eq!(ffi::secp256k1_ecdsa_sign_recoverable(self.ctx, &mut ret, msg.as_ptr(),
sk.as_ptr(), ffi::secp256k1_nonce_function_rfc6979,
ptr::null()), 1);
}
Ok(RecoverableSignature::from(ret))
}
/// Determines the public key for which `sig` is a valid signature for
/// `msg`. Requires a verify-capable context.
pub fn recover(&self, msg: &Message, sig: &RecoverableSignature)
-> Result {
if self.caps == ContextFlag::SignOnly || self.caps == ContextFlag::None {
return Err(Error::IncapableContext);
}
let mut pk = unsafe { ffi::PublicKey::blank() };
unsafe {
if ffi::secp256k1_ecdsa_recover(self.ctx, &mut pk,
sig.as_ptr(), msg.as_ptr()) != 1 {
return Err(Error::InvalidSignature);
}
};
Ok(key::PublicKey::from(pk))
}
/// Checks that `sig` is a valid ECDSA signature for `msg` using the public
/// key `pubkey`. Returns `Ok(true)` on success. Note that this function cannot
/// be used for Bitcoin consensus checking since there may exist signatures
/// which OpenSSL would verify but not libsecp256k1, or vice-versa. Requires a
/// verify-capable context.
#[inline]
pub fn verify(&self, msg: &Message, sig: &Signature, pk: &key::PublicKey) -> Result<(), Error> {
if self.caps == ContextFlag::SignOnly || self.caps == ContextFlag::None {
return Err(Error::IncapableContext);
}
if !pk.is_valid() {
Err(Error::InvalidPublicKey)
} else if unsafe { ffi::secp256k1_ecdsa_verify(self.ctx, sig.as_ptr(), msg.as_ptr(),
pk.as_ptr()) } == 0 {
Err(Error::IncorrectSignature)
} else {
Ok(())
}
}
}
#[cfg(test)]
mod tests {
use rand::{Rng, thread_rng};
use serialize::hex::FromHex;
use key::{SecretKey, PublicKey};
use super::constants;
use super::{Secp256k1, Signature, RecoverableSignature, Message, RecoveryId, ContextFlag};
use super::Error::{InvalidMessage, InvalidPublicKey, IncorrectSignature, InvalidSignature,
IncapableContext};
macro_rules! hex (($hex:expr) => ($hex.from_hex().unwrap()));
#[test]
fn capabilities() {
let none = Secp256k1::with_caps(ContextFlag::None);
let sign = Secp256k1::with_caps(ContextFlag::SignOnly);
let vrfy = Secp256k1::with_caps(ContextFlag::VerifyOnly);
let full = Secp256k1::with_caps(ContextFlag::Full);
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
// Try key generation
assert_eq!(none.generate_keypair(&mut thread_rng()), Err(IncapableContext));
assert_eq!(vrfy.generate_keypair(&mut thread_rng()), Err(IncapableContext));
assert!(sign.generate_keypair(&mut thread_rng()).is_ok());
assert!(full.generate_keypair(&mut thread_rng()).is_ok());
let (sk, pk) = full.generate_keypair(&mut thread_rng()).unwrap();
// Try signing
assert_eq!(none.sign(&msg, &sk), Err(IncapableContext));
assert_eq!(vrfy.sign(&msg, &sk), Err(IncapableContext));
assert!(sign.sign(&msg, &sk).is_ok());
assert!(full.sign(&msg, &sk).is_ok());
assert_eq!(none.sign_recoverable(&msg, &sk), Err(IncapableContext));
assert_eq!(vrfy.sign_recoverable(&msg, &sk), Err(IncapableContext));
assert!(sign.sign_recoverable(&msg, &sk).is_ok());
assert!(full.sign_recoverable(&msg, &sk).is_ok());
assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk));
assert_eq!(sign.sign_recoverable(&msg, &sk), full.sign_recoverable(&msg, &sk));
let sig = full.sign(&msg, &sk).unwrap();
let sigr = full.sign_recoverable(&msg, &sk).unwrap();
// Try verifying
assert_eq!(none.verify(&msg, &sig, &pk), Err(IncapableContext));
assert_eq!(sign.verify(&msg, &sig, &pk), Err(IncapableContext));
assert!(vrfy.verify(&msg, &sig, &pk).is_ok());
assert!(full.verify(&msg, &sig, &pk).is_ok());
// Try pk recovery
assert_eq!(none.recover(&msg, &sigr), Err(IncapableContext));
assert_eq!(sign.recover(&msg, &sigr), Err(IncapableContext));
assert!(vrfy.recover(&msg, &sigr).is_ok());
assert!(full.recover(&msg, &sigr).is_ok());
assert_eq!(vrfy.recover(&msg, &sigr),
full.recover(&msg, &sigr));
assert_eq!(full.recover(&msg, &sigr), Ok(pk));
// Check that we can produce keys from slices with no precomputation
let (pk_slice, sk_slice) = (&pk.serialize(), &sk[..]);
let new_pk = PublicKey::from_slice(&none, pk_slice).unwrap();
let new_sk = SecretKey::from_slice(&none, sk_slice).unwrap();
assert_eq!(sk, new_sk);
assert_eq!(pk, new_pk);
}
#[test]
fn recid_sanity_check() {
let one = RecoveryId(1);
assert_eq!(one, one.clone());
}
#[test]
fn invalid_pubkey() {
let s = Secp256k1::new();
let sig = RecoverableSignature::from_compact(&s, &[1; 64], RecoveryId(0)).unwrap();
let pk = PublicKey::new();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
assert_eq!(s.verify(&msg, &sig.to_standard(&s), &pk), Err(InvalidPublicKey));
}
#[test]
fn sign() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
let one = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];
let sk = SecretKey::from_slice(&s, &one).unwrap();
let msg = Message::from_slice(&one).unwrap();
let sig = s.sign_recoverable(&msg, &sk).unwrap();
assert_eq!(Ok(sig), RecoverableSignature::from_compact(&s, &[
0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f,
0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6,
0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65,
0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98,
0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8,
0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f,
0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06,
0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89],
RecoveryId(1)))
}
#[test]
fn signature_serialize_roundtrip() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
let mut msg = [0; 32];
for _ in 0..100 {
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, _) = s.generate_keypair(&mut thread_rng()).unwrap();
let sig1 = s.sign(&msg, &sk).unwrap();
let der = sig1.serialize_der(&s);
let sig2 = Signature::from_der(&s, &der[..]).unwrap();
assert_eq!(sig1, sig2);
let compact = sig1.serialize_compact(&s);
let sig2 = Signature::from_compact(&s, &compact[..]).unwrap();
assert_eq!(sig1, sig2);
round_trip_serde!(sig1);
assert!(Signature::from_compact(&s, &der[..]).is_err());
assert!(Signature::from_compact(&s, &compact[0..4]).is_err());
assert!(Signature::from_der(&s, &compact[..]).is_err());
assert!(Signature::from_der(&s, &der[0..4]).is_err());
}
}
#[test]
fn signature_lax_der() {
macro_rules! check_lax_sig(
($hex:expr) => ({
let secp = Secp256k1::without_caps();
let sig = hex!($hex);
assert!(Signature::from_der_lax(&secp, &sig[..]).is_ok());
})
);
check_lax_sig!("304402204c2dd8a9b6f8d425fcd8ee9a20ac73b619906a6367eac6cb93e70375225ec0160220356878eff111ff3663d7e6bf08947f94443845e0dcc54961664d922f7660b80c");
check_lax_sig!("304402202ea9d51c7173b1d96d331bd41b3d1b4e78e66148e64ed5992abd6ca66290321c0220628c47517e049b3e41509e9d71e480a0cdc766f8cdec265ef0017711c1b5336f");
check_lax_sig!("3045022100bf8e050c85ffa1c313108ad8c482c4849027937916374617af3f2e9a881861c9022023f65814222cab09d5ec41032ce9c72ca96a5676020736614de7b78a4e55325a");
check_lax_sig!("3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45");
check_lax_sig!("3046022100eaa5f90483eb20224616775891397d47efa64c68b969db1dacb1c30acdfc50aa022100cf9903bbefb1c8000cf482b0aeeb5af19287af20bd794de11d82716f9bae3db1");
check_lax_sig!("3045022047d512bc85842ac463ca3b669b62666ab8672ee60725b6c06759e476cebdc6c102210083805e93bd941770109bcc797784a71db9e48913f702c56e60b1c3e2ff379a60");
check_lax_sig!("3044022023ee4e95151b2fbbb08a72f35babe02830d14d54bd7ed1320e4751751d1baa4802206235245254f58fd1be6ff19ca291817da76da65c2f6d81d654b5185dd86b8acf");
}
#[test]
fn sign_and_verify() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
let mut msg = [0; 32];
for _ in 0..100 {
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, pk) = s.generate_keypair(&mut thread_rng()).unwrap();
let sig = s.sign(&msg, &sk).unwrap();
assert_eq!(s.verify(&msg, &sig, &pk), Ok(()));
}
}
#[test]
fn sign_and_verify_extreme() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
// Wild keys: 1, CURVE_ORDER - 1
// Wild msgs: 0, 1, CURVE_ORDER - 1, CURVE_ORDER
let mut wild_keys = [[0; 32]; 2];
let mut wild_msgs = [[0; 32]; 4];
wild_keys[0][0] = 1;
wild_msgs[1][0] = 1;
use constants;
wild_keys[1][..].copy_from_slice(&constants::CURVE_ORDER[..]);
wild_msgs[1][..].copy_from_slice(&constants::CURVE_ORDER[..]);
wild_msgs[2][..].copy_from_slice(&constants::CURVE_ORDER[..]);
wild_keys[1][0] -= 1;
wild_msgs[1][0] -= 1;
for key in wild_keys.iter().map(|k| SecretKey::from_slice(&s, &k[..]).unwrap()) {
for msg in wild_msgs.iter().map(|m| Message::from_slice(&m[..]).unwrap()) {
let sig = s.sign(&msg, &key).unwrap();
let pk = PublicKey::from_secret_key(&s, &key).unwrap();
assert_eq!(s.verify(&msg, &sig, &pk), Ok(()));
}
}
}
#[test]
fn sign_and_verify_fail() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, pk) = s.generate_keypair(&mut thread_rng()).unwrap();
let sigr = s.sign_recoverable(&msg, &sk).unwrap();
let sig = sigr.to_standard(&s);
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
assert_eq!(s.verify(&msg, &sig, &pk), Err(IncorrectSignature));
let recovered_key = s.recover(&msg, &sigr).unwrap();
assert!(recovered_key != pk);
}
#[test]
fn sign_with_recovery() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, pk) = s.generate_keypair(&mut thread_rng()).unwrap();
let sig = s.sign_recoverable(&msg, &sk).unwrap();
assert_eq!(s.recover(&msg, &sig), Ok(pk));
}
#[test]
fn bad_recovery() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
let msg = Message::from_slice(&[0x55; 32]).unwrap();
// Zero is not a valid sig
let sig = RecoverableSignature::from_compact(&s, &[0; 64], RecoveryId(0)).unwrap();
assert_eq!(s.recover(&msg, &sig), Err(InvalidSignature));
// ...but 111..111 is
let sig = RecoverableSignature::from_compact(&s, &[1; 64], RecoveryId(0)).unwrap();
assert!(s.recover(&msg, &sig).is_ok());
}
#[test]
fn test_bad_slice() {
let s = Secp256k1::new();
assert_eq!(Signature::from_der(&s, &[0; constants::MAX_SIGNATURE_SIZE + 1]),
Err(InvalidSignature));
assert_eq!(Signature::from_der(&s, &[0; constants::MAX_SIGNATURE_SIZE]),
Err(InvalidSignature));
assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE - 1]),
Err(InvalidMessage));
assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE + 1]),
Err(InvalidMessage));
assert!(Message::from_slice(&[0; constants::MESSAGE_SIZE]).is_ok());
}
#[test]
fn test_debug_output() {
let s = Secp256k1::new();
let sig = RecoverableSignature::from_compact(&s, &[
0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f,
0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6,
0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65,
0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98,
0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8,
0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f,
0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06,
0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89],
RecoveryId(1)).unwrap();
assert_eq!(&format!("{:?}", sig), "RecoverableSignature(98882e09f4ed6dc3659e43fc771e0cafa60b1f926f2b77041f744721adff7366898cb609d0ee128d06ae9aa3c48020ff9f705e02f80e1280a8ade05216971a4c01)");
let msg = Message([1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 255]);
assert_eq!(&format!("{:?}", msg), "Message(0102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1fff)");
}
#[test]
fn test_recov_sig_serialize_compact() {
let s = Secp256k1::new();
let recid_in = RecoveryId(1);
let bytes_in = &[
0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f,
0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6,
0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65,
0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98,
0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8,
0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f,
0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06,
0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89];
let sig = RecoverableSignature::from_compact(
&s, bytes_in, recid_in).unwrap();
let (recid_out, bytes_out) = sig.serialize_compact(&s);
assert_eq!(recid_in, recid_out);
assert_eq!(&bytes_in[..], &bytes_out[..]);
}
#[test]
fn test_recov_id_conversion_between_i32() {
assert!(RecoveryId::from_i32(-1).is_err());
assert!(RecoveryId::from_i32(0).is_ok());
assert!(RecoveryId::from_i32(1).is_ok());
assert!(RecoveryId::from_i32(2).is_ok());
assert!(RecoveryId::from_i32(3).is_ok());
assert!(RecoveryId::from_i32(4).is_err());
let id0 = RecoveryId::from_i32(0).unwrap();
assert_eq!(id0.to_i32(), 0);
let id1 = RecoveryId(1);
assert_eq!(id1.to_i32(), 1);
}
#[test]
fn test_low_s() {
// nb this is a transaction on testnet
// txid 8ccc87b72d766ab3128f03176bb1c98293f2d1f85ebfaf07b82cc81ea6891fa9
// input number 3
let sig = hex!("3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45");
let pk = hex!("031ee99d2b786ab3b0991325f2de8489246a6a3fdb700f6d0511b1d80cf5f4cd43");
let msg = hex!("a4965ca63b7d8562736ceec36dfa5a11bf426eb65be8ea3f7a49ae363032da0d");
let secp = Secp256k1::new();
let mut sig = Signature::from_der(&secp, &sig[..]).unwrap();
let pk = PublicKey::from_slice(&secp, &pk[..]).unwrap();
let msg = Message::from_slice(&msg[..]).unwrap();
// without normalization we expect this will fail
assert_eq!(secp.verify(&msg, &sig, &pk), Err(IncorrectSignature));
// after normalization it should pass
sig.normalize_s(&secp);
assert_eq!(secp.verify(&msg, &sig, &pk), Ok(()));
}
}
#[cfg(all(test, feature = "unstable"))]
mod benches {
use rand::{Rng, thread_rng};
use test::{Bencher, black_box};
use super::{Secp256k1, Message};
#[bench]
pub fn generate(bh: &mut Bencher) {
struct CounterRng(u32);
impl Rng for CounterRng {
fn next_u32(&mut self) -> u32 { self.0 += 1; self.0 }
}
let s = Secp256k1::new();
let mut r = CounterRng(0);
bh.iter( || {
let (sk, pk) = s.generate_keypair(&mut r).unwrap();
black_box(sk);
black_box(pk);
});
}
#[bench]
pub fn bench_sign(bh: &mut Bencher) {
let s = Secp256k1::new();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, _) = s.generate_keypair(&mut thread_rng()).unwrap();
bh.iter(|| {
let sig = s.sign(&msg, &sk).unwrap();
black_box(sig);
});
}
#[bench]
pub fn bench_verify(bh: &mut Bencher) {
let s = Secp256k1::new();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, pk) = s.generate_keypair(&mut thread_rng()).unwrap();
let sig = s.sign(&msg, &sk).unwrap();
bh.iter(|| {
let res = s.verify(&msg, &sig, &pk).unwrap();
black_box(res);
});
}
#[bench]
pub fn bench_recover(bh: &mut Bencher) {
let s = Secp256k1::new();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, _) = s.generate_keypair(&mut thread_rng()).unwrap();
let sig = s.sign_recoverable(&msg, &sk).unwrap();
bh.iter(|| {
let res = s.recover(&msg, &sig).unwrap();
black_box(res);
});
}
}