// Bitcoin secp256k1 bindings // Written in 2014 by // Dawid Ciężarkiewicz // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! # FFI bindings //! Direct bindings to the underlying C library functions. These should //! not be needed for most users. use std::mem; use std::hash; use std::os::raw::{c_int, c_uchar, c_uint, c_void}; /// Flag for context to enable no precomputation pub const SECP256K1_START_NONE: c_uint = 1; /// Flag for context to enable verification precomputation pub const SECP256K1_START_VERIFY: c_uint = 1 | (1 << 8); /// Flag for context to enable signing precomputation pub const SECP256K1_START_SIGN: c_uint = 1 | (1 << 9); /// Flag for keys to indicate uncompressed serialization format pub const SECP256K1_SER_UNCOMPRESSED: c_uint = (1 << 1); /// Flag for keys to indicate compressed serialization format pub const SECP256K1_SER_COMPRESSED: c_uint = (1 << 1) | (1 << 8); /// A nonce generation function. Ordinary users of the library /// never need to see this type; only if you need to control /// nonce generation do you need to use it. I have deliberately /// made this hard to do: you have to write your own wrapper /// around the FFI functions to use it. And it's an unsafe type. /// Nonces are generated deterministically by RFC6979 by /// default; there should be no need to ever change this. pub type NonceFn = unsafe extern "C" fn(nonce32: *mut c_uchar, msg32: *const c_uchar, key32: *const c_uchar, algo16: *const c_uchar, attempt: c_uint, data: *const c_void); /// Hash function to use to post-process an ECDH point to get /// a shared secret. pub type EcdhHashFn = unsafe extern "C" fn( output: *mut c_uchar, x: *const c_uchar, y: *const c_uchar, data: *const c_void, ); /// A Secp256k1 context, containing various precomputed values and such /// needed to do elliptic curve computations. If you create one of these /// with `secp256k1_context_create` you MUST destroy it with /// `secp256k1_context_destroy`, or else you will have a memory leak. #[derive(Clone, Debug)] #[repr(C)] pub struct Context(c_int); /// Library-internal representation of a Secp256k1 public key #[repr(C)] pub struct PublicKey([c_uchar; 64]); impl_array_newtype!(PublicKey, c_uchar, 64); impl_raw_debug!(PublicKey); impl PublicKey { /// Create a new (zeroed) public key usable for the FFI interface pub fn new() -> PublicKey { PublicKey([0; 64]) } /// Create a new (uninitialized) public key usable for the FFI interface pub unsafe fn blank() -> PublicKey { mem::uninitialized() } } impl Default for PublicKey { fn default() -> Self { PublicKey::new() } } impl hash::Hash for PublicKey { fn hash(&self, state: &mut H) { state.write(&self.0) } } /// Library-internal representation of a Secp256k1 signature #[repr(C)] pub struct Signature([c_uchar; 64]); impl_array_newtype!(Signature, c_uchar, 64); impl_raw_debug!(Signature); /// Library-internal representation of a Secp256k1 signature + recovery ID #[repr(C)] pub struct RecoverableSignature([c_uchar; 65]); impl_array_newtype!(RecoverableSignature, c_uchar, 65); impl_raw_debug!(RecoverableSignature); impl Signature { /// Create a new (zeroed) signature usable for the FFI interface pub fn new() -> Signature { Signature([0; 64]) } /// Create a new (uninitialized) signature usable for the FFI interface pub unsafe fn blank() -> Signature { mem::uninitialized() } } impl Default for Signature { fn default() -> Self { Signature::new() } } impl RecoverableSignature { /// Create a new (zeroed) signature usable for the FFI interface pub fn new() -> RecoverableSignature { RecoverableSignature([0; 65]) } /// Create a new (uninitialized) signature usable for the FFI interface pub unsafe fn blank() -> RecoverableSignature { mem::uninitialized() } } impl Default for RecoverableSignature { fn default() -> Self { RecoverableSignature::new() } } /// Library-internal representation of an ECDH shared secret #[repr(C)] pub struct SharedSecret([c_uchar; 32]); impl_array_newtype!(SharedSecret, c_uchar, 32); impl_raw_debug!(SharedSecret); impl SharedSecret { /// Create a new (zeroed) signature usable for the FFI interface pub fn new() -> SharedSecret { SharedSecret([0; 32]) } /// Create a new (uninitialized) signature usable for the FFI interface pub unsafe fn blank() -> SharedSecret { mem::uninitialized() } } impl Default for SharedSecret { fn default() -> Self { SharedSecret::new() } } #[cfg(not(feature = "fuzztarget"))] extern "C" { /// Default ECDH hash function pub static secp256k1_ecdh_hash_function_default: EcdhHashFn; pub static secp256k1_nonce_function_rfc6979: NonceFn; pub static secp256k1_nonce_function_default: NonceFn; pub static secp256k1_context_no_precomp: *const Context; // Contexts pub fn secp256k1_context_create(flags: c_uint) -> *mut Context; pub fn secp256k1_context_clone(cx: *mut Context) -> *mut Context; pub fn secp256k1_context_destroy(cx: *mut Context); pub fn secp256k1_context_randomize(cx: *mut Context, seed32: *const c_uchar) -> c_int; // TODO secp256k1_context_set_illegal_callback // TODO secp256k1_context_set_error_callback // (Actually, I don't really want these exposed; if either of these // are ever triggered it indicates a bug in rust-secp256k1, since // one goal is to use Rust's type system to eliminate all possible // bad inputs.) // Pubkeys pub fn secp256k1_ec_pubkey_parse(cx: *const Context, pk: *mut PublicKey, input: *const c_uchar, in_len: usize) -> c_int; pub fn secp256k1_ec_pubkey_serialize(cx: *const Context, output: *mut c_uchar, out_len: *mut usize, pk: *const PublicKey, compressed: c_uint) -> c_int; // Signatures pub fn secp256k1_ecdsa_signature_parse_der(cx: *const Context, sig: *mut Signature, input: *const c_uchar, in_len: usize) -> c_int; pub fn secp256k1_ecdsa_signature_parse_compact(cx: *const Context, sig: *mut Signature, input64: *const c_uchar) -> c_int; pub fn ecdsa_signature_parse_der_lax(cx: *const Context, sig: *mut Signature, input: *const c_uchar, in_len: usize) -> c_int; pub fn secp256k1_ecdsa_signature_serialize_der(cx: *const Context, output: *mut c_uchar, out_len: *mut usize, sig: *const Signature) -> c_int; pub fn secp256k1_ecdsa_signature_serialize_compact(cx: *const Context, output64: *const c_uchar, sig: *const Signature) -> c_int; pub fn secp256k1_ecdsa_recoverable_signature_parse_compact(cx: *const Context, sig: *mut RecoverableSignature, input64: *const c_uchar, recid: c_int) -> c_int; pub fn secp256k1_ecdsa_recoverable_signature_serialize_compact(cx: *const Context, output64: *const c_uchar, recid: *mut c_int, sig: *const RecoverableSignature) -> c_int; pub fn secp256k1_ecdsa_recoverable_signature_convert(cx: *const Context, sig: *mut Signature, input: *const RecoverableSignature) -> c_int; pub fn secp256k1_ecdsa_signature_normalize(cx: *const Context, out_sig: *mut Signature, in_sig: *const Signature) -> c_int; // ECDSA pub fn secp256k1_ecdsa_verify(cx: *const Context, sig: *const Signature, msg32: *const c_uchar, pk: *const PublicKey) -> c_int; pub fn secp256k1_ecdsa_sign(cx: *const Context, sig: *mut Signature, msg32: *const c_uchar, sk: *const c_uchar, noncefn: NonceFn, noncedata: *const c_void) -> c_int; pub fn secp256k1_ecdsa_sign_recoverable(cx: *const Context, sig: *mut RecoverableSignature, msg32: *const c_uchar, sk: *const c_uchar, noncefn: NonceFn, noncedata: *const c_void) -> c_int; pub fn secp256k1_ecdsa_recover(cx: *const Context, pk: *mut PublicKey, sig: *const RecoverableSignature, msg32: *const c_uchar) -> c_int; // EC pub fn secp256k1_ec_seckey_verify(cx: *const Context, sk: *const c_uchar) -> c_int; pub fn secp256k1_ec_pubkey_create(cx: *const Context, pk: *mut PublicKey, sk: *const c_uchar) -> c_int; //TODO secp256k1_ec_privkey_export //TODO secp256k1_ec_privkey_import pub fn secp256k1_ec_privkey_tweak_add(cx: *const Context, sk: *mut c_uchar, tweak: *const c_uchar) -> c_int; pub fn secp256k1_ec_pubkey_tweak_add(cx: *const Context, pk: *mut PublicKey, tweak: *const c_uchar) -> c_int; pub fn secp256k1_ec_privkey_tweak_mul(cx: *const Context, sk: *mut c_uchar, tweak: *const c_uchar) -> c_int; pub fn secp256k1_ec_pubkey_tweak_mul(cx: *const Context, pk: *mut PublicKey, tweak: *const c_uchar) -> c_int; pub fn secp256k1_ec_pubkey_combine(cx: *const Context, out: *mut PublicKey, ins: *const *const PublicKey, n: c_int) -> c_int; pub fn secp256k1_ecdh( cx: *const Context, output: *mut SharedSecret, pubkey: *const PublicKey, privkey: *const c_uchar, hashfp: EcdhHashFn, data: *mut c_void, ) -> c_int; } #[cfg(feature = "fuzztarget")] mod fuzz_dummy { use std::os::raw::{c_int, c_uchar, c_uint, c_void}; use ffi::*; use std::ptr; extern "C" { pub static secp256k1_ecdh_hash_function_default: EcdhHashFn; pub static secp256k1_nonce_function_rfc6979: NonceFn; pub static secp256k1_context_no_precomp: *const Context; } // Contexts /// Creates a dummy context, tracking flags to ensure proper calling semantics pub unsafe fn secp256k1_context_create(flags: c_uint) -> *mut Context { let b = Box::new(Context(flags as i32)); Box::into_raw(b) } /// Copies a dummy context pub unsafe fn secp256k1_context_clone(cx: *mut Context) -> *mut Context { let b = Box::new(Context((*cx).0)); Box::into_raw(b) } /// Frees a dummy context pub unsafe fn secp256k1_context_destroy(cx: *mut Context) { Box::from_raw(cx); } /// Asserts that cx is properly initialized pub unsafe fn secp256k1_context_randomize(cx: *mut Context, _seed32: *const c_uchar) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); 1 } // TODO secp256k1_context_set_illegal_callback // TODO secp256k1_context_set_error_callback // (Actually, I don't really want these exposed; if either of these // are ever triggered it indicates a bug in rust-secp256k1, since // one goal is to use Rust's type system to eliminate all possible // bad inputs.) // Pubkeys /// Parse 33/65 byte pubkey into PublicKey, losing compressed information pub unsafe fn secp256k1_ec_pubkey_parse(cx: *const Context, pk: *mut PublicKey, input: *const c_uchar, in_len: usize) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); match in_len { 33 => { if (*input.offset(1) > 0x7f && *input != 2) || (*input.offset(1) <= 0x7f && *input != 3) { 0 } else { ptr::copy(input.offset(1), (*pk).0[0..32].as_mut_ptr(), 32); ptr::copy(input.offset(1), (*pk).0[32..64].as_mut_ptr(), 32); test_pk_validate(cx, pk) } }, 65 => { if *input != 4 && *input != 6 && *input != 7 { 0 } else { ptr::copy(input.offset(1), (*pk).0.as_mut_ptr(), 64); test_pk_validate(cx, pk) } }, _ => 0 } } /// Serialize PublicKey back to 33/65 byte pubkey pub unsafe fn secp256k1_ec_pubkey_serialize(cx: *const Context, output: *mut c_uchar, out_len: *mut usize, pk: *const PublicKey, compressed: c_uint) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); if test_pk_validate(cx, pk) != 1 { return 0; } if compressed == SECP256K1_SER_COMPRESSED { assert_eq!(*out_len, 33); if (*pk).0[0] > 0x7f { *output = 2; } else { *output = 3; } ptr::copy((*pk).0.as_ptr(), output.offset(1), 32); } else if compressed == SECP256K1_SER_UNCOMPRESSED { assert_eq!(*out_len, 65); *output = 4; ptr::copy((*pk).0.as_ptr(), output.offset(1), 64); } else { panic!("Bad flags"); } 1 } // Signatures pub unsafe fn secp256k1_ecdsa_signature_parse_der(_cx: *const Context, _sig: *mut Signature, _input: *const c_uchar, _in_len: usize) -> c_int { unimplemented!(); } /// Copies input64 to sig, checking the pubkey part is valid pub unsafe fn secp256k1_ecdsa_signature_parse_compact(cx: *const Context, sig: *mut Signature, input64: *const c_uchar) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); if secp256k1_ec_seckey_verify(cx, input64.offset(32)) != 1 { return 0; } // sig should be msg32||sk ptr::copy(input64, (*sig).0[..].as_mut_ptr(), 64); 1 } pub unsafe fn ecdsa_signature_parse_der_lax(_cx: *const Context, _sig: *mut Signature, _input: *const c_uchar, _in_len: usize) -> c_int { unimplemented!(); } /// Copies up to 72 bytes into output from sig pub unsafe fn secp256k1_ecdsa_signature_serialize_der(cx: *const Context, output: *mut c_uchar, out_len: *mut usize, sig: *const Signature) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); let mut len_r = 33; if *(*sig).0.as_ptr().offset(0) < 0x80 { len_r -= 1; } let mut len_s = 33; if *(*sig).0.as_ptr().offset(32) < 0x80 { len_s -= 1; } assert!(*out_len >= (6 + len_s + len_r) as usize); *output.offset(0) = 0x30; *output.offset(1) = 4 + len_r + len_s; *output.offset(2) = 0x02; *output.offset(3) = len_r; if len_r == 33 { *output.offset(4) = 0; ptr::copy((*sig).0[..].as_ptr(), output.offset(5), 32); } else { ptr::copy((*sig).0[..].as_ptr(), output.offset(4), 32); } *output.offset(4 + len_r as isize) = 0x02; *output.offset(5 + len_r as isize) = len_s; if len_s == 33 { *output.offset(6 + len_r as isize) = 0; ptr::copy((*sig).0[..].as_ptr().offset(32), output.offset(7 + len_r as isize), 32); } else { ptr::copy((*sig).0[..].as_ptr().offset(32), output.offset(6 + len_r as isize), 32); } 1 } /// Copies sig to output64 pub unsafe fn secp256k1_ecdsa_signature_serialize_compact(cx: *const Context, output64: *mut c_uchar, sig: *const Signature) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); ptr::copy((*sig).0[..].as_ptr(), output64, 64); 1 } pub unsafe fn secp256k1_ecdsa_recoverable_signature_parse_compact(_cx: *const Context, _sig: *mut RecoverableSignature, _input64: *const c_uchar, _recid: c_int) -> c_int { unimplemented!(); } pub unsafe fn secp256k1_ecdsa_recoverable_signature_serialize_compact(_cx: *const Context, _output64: *const c_uchar, _recid: *mut c_int, _sig: *const RecoverableSignature) -> c_int { unimplemented!(); } pub unsafe fn secp256k1_ecdsa_recoverable_signature_convert(_cx: *const Context, _sig: *mut Signature, _input: *const RecoverableSignature) -> c_int { unimplemented!(); } pub unsafe fn secp256k1_ecdsa_signature_normalize(_cx: *const Context, _out_sig: *mut Signature, _in_sig: *const Signature) -> c_int { unimplemented!(); } // ECDSA /// Verifies that sig is msg32||pk[0..32] pub unsafe fn secp256k1_ecdsa_verify(cx: *const Context, sig: *const Signature, msg32: *const c_uchar, pk: *const PublicKey) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); assert!((*cx).0 as u32 & SECP256K1_START_VERIFY == SECP256K1_START_VERIFY); if test_pk_validate(cx, pk) != 1 { return 0; } for i in 0..32 { if (*sig).0[i] != *msg32.offset(i as isize) { return 0; } } if (*sig).0[32..64] != (*pk).0[0..32] { 0 } else { 1 } } /// Sets sig to msg32||sk pub unsafe fn secp256k1_ecdsa_sign(cx: *const Context, sig: *mut Signature, msg32: *const c_uchar, sk: *const c_uchar, _noncefn: NonceFn, _noncedata: *const c_void) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); assert!((*cx).0 as u32 & SECP256K1_START_SIGN == SECP256K1_START_SIGN); if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; } ptr::copy(msg32, (*sig).0[0..32].as_mut_ptr(), 32); ptr::copy(sk, (*sig).0[32..64].as_mut_ptr(), 32); 1 } /// Sets sig to (2|3)||msg32||sk pub unsafe fn secp256k1_ecdsa_sign_recoverable(cx: *const Context, sig: *mut RecoverableSignature, msg32: *const c_uchar, sk: *const c_uchar, _noncefn: NonceFn, _noncedata: *const c_void) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); assert!((*cx).0 as u32 & SECP256K1_START_SIGN == SECP256K1_START_SIGN); if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; } if *sk.offset(0) > 0x7f { (*sig).0[0] = 2; } else { (*sig).0[0] = 3; } ptr::copy(msg32, (*sig).0[1..33].as_mut_ptr(), 32); ptr::copy(sk, (*sig).0[33..65].as_mut_ptr(), 32); 1 } pub unsafe fn secp256k1_ecdsa_recover(_cx: *const Context, _pk: *mut PublicKey, _sig: *const RecoverableSignature, _msg32: *const c_uchar) -> c_int { unimplemented!(); } // EC /// Checks that pk != 0xffff...ffff and pk[0..32] == pk[32..64] pub unsafe fn test_pk_validate(cx: *const Context, pk: *const PublicKey) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); if (*pk).0[0..32] != (*pk).0[32..64] || secp256k1_ec_seckey_verify(cx, (*pk).0[0..32].as_ptr()) == 0 { 0 } else { 1 } } /// Checks that sk != 0xffff...ffff pub unsafe fn secp256k1_ec_seckey_verify(cx: *const Context, sk: *const c_uchar) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); let mut res = 0; for i in 0..32 { if *sk.offset(i as isize) != 0xff { res = 1 }; } res } /// Sets pk to sk||sk pub unsafe fn secp256k1_ec_pubkey_create(cx: *const Context, pk: *mut PublicKey, sk: *const c_uchar) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; } ptr::copy(sk, (*pk).0[0..32].as_mut_ptr(), 32); ptr::copy(sk, (*pk).0[32..64].as_mut_ptr(), 32); 1 } //TODO secp256k1_ec_privkey_export //TODO secp256k1_ec_privkey_import /// Copies the first 16 bytes of tweak into the last 16 bytes of sk pub unsafe fn secp256k1_ec_privkey_tweak_add(cx: *const Context, sk: *mut c_uchar, tweak: *const c_uchar) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; } ptr::copy(tweak.offset(16), sk.offset(16), 16); *sk.offset(24) = 0x7f; // Ensure sk remains valid no matter what tweak was 1 } /// The PublicKey equivalent of secp256k1_ec_privkey_tweak_add pub unsafe fn secp256k1_ec_pubkey_tweak_add(cx: *const Context, pk: *mut PublicKey, tweak: *const c_uchar) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); if test_pk_validate(cx, pk) != 1 { return 0; } ptr::copy(tweak.offset(16), (*pk).0[16..32].as_mut_ptr(), 16); ptr::copy(tweak.offset(16), (*pk).0[16+32..64].as_mut_ptr(), 16); (*pk).0[24] = 0x7f; // Ensure pk remains valid no matter what tweak was (*pk).0[24+32] = 0x7f; // Ensure pk remains valid no matter what tweak was 1 } /// Copies the last 16 bytes of tweak into the last 16 bytes of sk pub unsafe fn secp256k1_ec_privkey_tweak_mul(cx: *const Context, sk: *mut c_uchar, tweak: *const c_uchar) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; } ptr::copy(tweak.offset(16), sk.offset(16), 16); *sk.offset(24) = 0x00; // Ensure sk remains valid no matter what tweak was 1 } /// The PublicKey equivalent of secp256k1_ec_privkey_tweak_mul pub unsafe fn secp256k1_ec_pubkey_tweak_mul(cx: *const Context, pk: *mut PublicKey, tweak: *const c_uchar) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); if test_pk_validate(cx, pk) != 1 { return 0; } ptr::copy(tweak.offset(16), (*pk).0[16..32].as_mut_ptr(), 16); ptr::copy(tweak.offset(16), (*pk).0[16+32..64].as_mut_ptr(), 16); (*pk).0[24] = 0x00; // Ensure pk remains valid no matter what tweak was (*pk).0[24+32] = 0x00; // Ensure pk remains valid no matter what tweak was 1 } pub unsafe fn secp256k1_ec_pubkey_combine(cx: *const Context, out: *mut PublicKey, ins: *const *const PublicKey, n: c_int) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); assert!(n <= 32 && n >= 0); //TODO: Remove this restriction? for i in 0..n { if test_pk_validate(cx, *ins.offset(i as isize)) != 1 { return 0; } (*out).0[(i*32/n) as usize..((i+1)*32/n) as usize].copy_from_slice(&(**ins.offset(i as isize)).0[(i*32/n) as usize..((i+1)*32/n) as usize]); } ptr::copy((*out).0[0..32].as_ptr(), (*out).0[32..64].as_mut_ptr(), 32); (*out).0[24] = 0x7f; // pk should always be valid (*out).0[24+32] = 0x7f; // pk should always be valid test_pk_validate(cx, out) } /// Sets out to point[0..16]||scalar[0..16] pub unsafe fn secp256k1_ecdh( cx: *const Context, out: *mut SharedSecret, point: *const PublicKey, scalar: *const c_uchar, _hashfp: EcdhHashFn, _data: *mut c_void, ) -> c_int { assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0); if secp256k1_ec_seckey_verify(cx, scalar) != 1 { return 0; } let mut scalar_prefix = [0; 16]; ptr::copy(scalar, scalar_prefix[..].as_mut_ptr(), 16); if (*point).0[0..16] > scalar_prefix[0..16] { (*out).0[0..16].copy_from_slice(&(*point).0[0..16]); ptr::copy(scalar, (*out).0[16..32].as_mut_ptr(), 16); } else { ptr::copy(scalar, (*out).0[0..16].as_mut_ptr(), 16); (*out).0[16..32].copy_from_slice(&(*point).0[0..16]); } (*out).0[16] = 0x00; // result should always be a valid secret key 1 } } #[cfg(feature = "fuzztarget")] pub use self::fuzz_dummy::*;