/*********************************************************************** * Copyright (c) 2013-2015 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_ECDSA_IMPL_H #define SECP256K1_ECDSA_IMPL_H #include "scalar.h" #include "field.h" #include "group.h" #include "ecmult.h" #include "ecmult_gen.h" #include "ecdsa.h" /** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1 * sage: for t in xrange(1023, -1, -1): * .. p = 2**256 - 2**32 - t * .. if p.is_prime(): * .. print '%x'%p * .. break * 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f' * sage: a = 0 * sage: b = 7 * sage: F = FiniteField (p) * sage: '%x' % (EllipticCurve ([F (a), F (b)]).order()) * 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141' */ static const rustsecp256k1_v0_8_1_fe rustsecp256k1_v0_8_1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST( 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL ); /** Difference between field and order, values 'p' and 'n' values defined in * "Standards for Efficient Cryptography" (SEC2) 2.7.1. * sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F * sage: a = 0 * sage: b = 7 * sage: F = FiniteField (p) * sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order()) * '14551231950b75fc4402da1722fc9baee' */ static const rustsecp256k1_v0_8_1_fe rustsecp256k1_v0_8_1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST( 0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL ); static int rustsecp256k1_v0_8_1_der_read_len(size_t *len, const unsigned char **sigp, const unsigned char *sigend) { size_t lenleft; unsigned char b1; VERIFY_CHECK(len != NULL); *len = 0; if (*sigp >= sigend) { return 0; } b1 = *((*sigp)++); if (b1 == 0xFF) { /* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */ return 0; } if ((b1 & 0x80) == 0) { /* X.690-0207 8.1.3.4 short form length octets */ *len = b1; return 1; } if (b1 == 0x80) { /* Indefinite length is not allowed in DER. */ return 0; } /* X.690-207 8.1.3.5 long form length octets */ lenleft = b1 & 0x7F; /* lenleft is at least 1 */ if (lenleft > (size_t)(sigend - *sigp)) { return 0; } if (**sigp == 0) { /* Not the shortest possible length encoding. */ return 0; } if (lenleft > sizeof(size_t)) { /* The resulting length would exceed the range of a size_t, so * certainly longer than the passed array size. */ return 0; } while (lenleft > 0) { *len = (*len << 8) | **sigp; (*sigp)++; lenleft--; } if (*len > (size_t)(sigend - *sigp)) { /* Result exceeds the length of the passed array. */ return 0; } if (*len < 128) { /* Not the shortest possible length encoding. */ return 0; } return 1; } static int rustsecp256k1_v0_8_1_der_parse_integer(rustsecp256k1_v0_8_1_scalar *r, const unsigned char **sig, const unsigned char *sigend) { int overflow = 0; unsigned char ra[32] = {0}; size_t rlen; if (*sig == sigend || **sig != 0x02) { /* Not a primitive integer (X.690-0207 8.3.1). */ return 0; } (*sig)++; if (rustsecp256k1_v0_8_1_der_read_len(&rlen, sig, sigend) == 0) { return 0; } if (rlen == 0 || rlen > (size_t)(sigend - *sig)) { /* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1). */ return 0; } if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) { /* Excessive 0x00 padding. */ return 0; } if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) { /* Excessive 0xFF padding. */ return 0; } if ((**sig & 0x80) == 0x80) { /* Negative. */ overflow = 1; } /* There is at most one leading zero byte: * if there were two leading zero bytes, we would have failed and returned 0 * because of excessive 0x00 padding already. */ if (rlen > 0 && **sig == 0) { /* Skip leading zero byte */ rlen--; (*sig)++; } if (rlen > 32) { overflow = 1; } if (!overflow) { if (rlen) memcpy(ra + 32 - rlen, *sig, rlen); rustsecp256k1_v0_8_1_scalar_set_b32(r, ra, &overflow); } if (overflow) { rustsecp256k1_v0_8_1_scalar_set_int(r, 0); } (*sig) += rlen; return 1; } static int rustsecp256k1_v0_8_1_ecdsa_sig_parse(rustsecp256k1_v0_8_1_scalar *rr, rustsecp256k1_v0_8_1_scalar *rs, const unsigned char *sig, size_t size) { const unsigned char *sigend = sig + size; size_t rlen; if (sig == sigend || *(sig++) != 0x30) { /* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */ return 0; } if (rustsecp256k1_v0_8_1_der_read_len(&rlen, &sig, sigend) == 0) { return 0; } if (rlen != (size_t)(sigend - sig)) { /* Tuple exceeds bounds or garage after tuple. */ return 0; } if (!rustsecp256k1_v0_8_1_der_parse_integer(rr, &sig, sigend)) { return 0; } if (!rustsecp256k1_v0_8_1_der_parse_integer(rs, &sig, sigend)) { return 0; } if (sig != sigend) { /* Trailing garbage inside tuple. */ return 0; } return 1; } static int rustsecp256k1_v0_8_1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const rustsecp256k1_v0_8_1_scalar* ar, const rustsecp256k1_v0_8_1_scalar* as) { unsigned char r[33] = {0}, s[33] = {0}; unsigned char *rp = r, *sp = s; size_t lenR = 33, lenS = 33; rustsecp256k1_v0_8_1_scalar_get_b32(&r[1], ar); rustsecp256k1_v0_8_1_scalar_get_b32(&s[1], as); while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; } while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; } if (*size < 6+lenS+lenR) { *size = 6 + lenS + lenR; return 0; } *size = 6 + lenS + lenR; sig[0] = 0x30; sig[1] = 4 + lenS + lenR; sig[2] = 0x02; sig[3] = lenR; memcpy(sig+4, rp, lenR); sig[4+lenR] = 0x02; sig[5+lenR] = lenS; memcpy(sig+lenR+6, sp, lenS); return 1; } static int rustsecp256k1_v0_8_1_ecdsa_sig_verify(const rustsecp256k1_v0_8_1_scalar *sigr, const rustsecp256k1_v0_8_1_scalar *sigs, const rustsecp256k1_v0_8_1_ge *pubkey, const rustsecp256k1_v0_8_1_scalar *message) { unsigned char c[32]; rustsecp256k1_v0_8_1_scalar sn, u1, u2; #if !defined(EXHAUSTIVE_TEST_ORDER) rustsecp256k1_v0_8_1_fe xr; #endif rustsecp256k1_v0_8_1_gej pubkeyj; rustsecp256k1_v0_8_1_gej pr; if (rustsecp256k1_v0_8_1_scalar_is_zero(sigr) || rustsecp256k1_v0_8_1_scalar_is_zero(sigs)) { return 0; } rustsecp256k1_v0_8_1_scalar_inverse_var(&sn, sigs); rustsecp256k1_v0_8_1_scalar_mul(&u1, &sn, message); rustsecp256k1_v0_8_1_scalar_mul(&u2, &sn, sigr); rustsecp256k1_v0_8_1_gej_set_ge(&pubkeyj, pubkey); rustsecp256k1_v0_8_1_ecmult(&pr, &pubkeyj, &u2, &u1); if (rustsecp256k1_v0_8_1_gej_is_infinity(&pr)) { return 0; } #if defined(EXHAUSTIVE_TEST_ORDER) { rustsecp256k1_v0_8_1_scalar computed_r; rustsecp256k1_v0_8_1_ge pr_ge; rustsecp256k1_v0_8_1_ge_set_gej(&pr_ge, &pr); rustsecp256k1_v0_8_1_fe_normalize(&pr_ge.x); rustsecp256k1_v0_8_1_fe_get_b32(c, &pr_ge.x); rustsecp256k1_v0_8_1_scalar_set_b32(&computed_r, c, NULL); return rustsecp256k1_v0_8_1_scalar_eq(sigr, &computed_r); } #else rustsecp256k1_v0_8_1_scalar_get_b32(c, sigr); rustsecp256k1_v0_8_1_fe_set_b32(&xr, c); /** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n) * in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p), * compute the remainder modulo n, and compare it to xr. However: * * xr == X(pr) mod n * <=> exists h. (xr + h * n < p && xr + h * n == X(pr)) * [Since 2 * n > p, h can only be 0 or 1] * <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr)) * [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p] * <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p) * [Multiplying both sides of the equations by pr.z^2 mod p] * <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x) * * Thus, we can avoid the inversion, but we have to check both cases separately. * rustsecp256k1_v0_8_1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test. */ if (rustsecp256k1_v0_8_1_gej_eq_x_var(&xr, &pr)) { /* xr * pr.z^2 mod p == pr.x, so the signature is valid. */ return 1; } if (rustsecp256k1_v0_8_1_fe_cmp_var(&xr, &rustsecp256k1_v0_8_1_ecdsa_const_p_minus_order) >= 0) { /* xr + n >= p, so we can skip testing the second case. */ return 0; } rustsecp256k1_v0_8_1_fe_add(&xr, &rustsecp256k1_v0_8_1_ecdsa_const_order_as_fe); if (rustsecp256k1_v0_8_1_gej_eq_x_var(&xr, &pr)) { /* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */ return 1; } return 0; #endif } static int rustsecp256k1_v0_8_1_ecdsa_sig_sign(const rustsecp256k1_v0_8_1_ecmult_gen_context *ctx, rustsecp256k1_v0_8_1_scalar *sigr, rustsecp256k1_v0_8_1_scalar *sigs, const rustsecp256k1_v0_8_1_scalar *seckey, const rustsecp256k1_v0_8_1_scalar *message, const rustsecp256k1_v0_8_1_scalar *nonce, int *recid) { unsigned char b[32]; rustsecp256k1_v0_8_1_gej rp; rustsecp256k1_v0_8_1_ge r; rustsecp256k1_v0_8_1_scalar n; int overflow = 0; int high; rustsecp256k1_v0_8_1_ecmult_gen(ctx, &rp, nonce); rustsecp256k1_v0_8_1_ge_set_gej(&r, &rp); rustsecp256k1_v0_8_1_fe_normalize(&r.x); rustsecp256k1_v0_8_1_fe_normalize(&r.y); rustsecp256k1_v0_8_1_fe_get_b32(b, &r.x); rustsecp256k1_v0_8_1_scalar_set_b32(sigr, b, &overflow); if (recid) { /* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log * of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria. */ *recid = (overflow << 1) | rustsecp256k1_v0_8_1_fe_is_odd(&r.y); } rustsecp256k1_v0_8_1_scalar_mul(&n, sigr, seckey); rustsecp256k1_v0_8_1_scalar_add(&n, &n, message); rustsecp256k1_v0_8_1_scalar_inverse(sigs, nonce); rustsecp256k1_v0_8_1_scalar_mul(sigs, sigs, &n); rustsecp256k1_v0_8_1_scalar_clear(&n); rustsecp256k1_v0_8_1_gej_clear(&rp); rustsecp256k1_v0_8_1_ge_clear(&r); high = rustsecp256k1_v0_8_1_scalar_is_high(sigs); rustsecp256k1_v0_8_1_scalar_cond_negate(sigs, high); if (recid) { *recid ^= high; } /* P.x = order is on the curve, so technically sig->r could end up being zero, which would be an invalid signature. * This is cryptographically unreachable as hitting it requires finding the discrete log of P.x = N. */ return (int)(!rustsecp256k1_v0_8_1_scalar_is_zero(sigr)) & (int)(!rustsecp256k1_v0_8_1_scalar_is_zero(sigs)); } #endif /* SECP256K1_ECDSA_IMPL_H */