/********************************************************************** * Copyright (c) 2017 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #include #include "include/secp256k1.h" #include "util.h" #include "hash_impl.h" #include "num_impl.h" #include "field_impl.h" #include "group_impl.h" #include "scalar_impl.h" #include "ecmult_impl.h" #include "bench.h" #include "secp256k1.c" #define POINTS 32768 #define ITERS 10000 typedef struct { /* Setup once in advance */ secp256k1_context* ctx; secp256k1_scratch_space* scratch; secp256k1_scalar* scalars; secp256k1_ge* pubkeys; secp256k1_scalar* seckeys; secp256k1_gej* expected_output; secp256k1_ecmult_multi_func ecmult_multi; /* Changes per test */ size_t count; int includes_g; /* Changes per test iteration */ size_t offset1; size_t offset2; /* Test output. */ secp256k1_gej* output; } bench_data; static int bench_callback(secp256k1_scalar* sc, secp256k1_ge* ge, size_t idx, void* arg) { bench_data* data = (bench_data*)arg; if (data->includes_g) ++idx; if (idx == 0) { *sc = data->scalars[data->offset1]; *ge = secp256k1_ge_const_g; } else { *sc = data->scalars[(data->offset1 + idx) % POINTS]; *ge = data->pubkeys[(data->offset2 + idx - 1) % POINTS]; } return 1; } static void bench_ecmult(void* arg) { bench_data* data = (bench_data*)arg; size_t count = data->count; int includes_g = data->includes_g; size_t iters = 1 + ITERS / count; size_t iter; for (iter = 0; iter < iters; ++iter) { data->ecmult_multi(&data->ctx->ecmult_ctx, data->scratch, &data->output[iter], data->includes_g ? &data->scalars[data->offset1] : NULL, bench_callback, arg, count - includes_g); data->offset1 = (data->offset1 + count) % POINTS; data->offset2 = (data->offset2 + count - 1) % POINTS; } } static void bench_ecmult_setup(void* arg) { bench_data* data = (bench_data*)arg; data->offset1 = (data->count * 0x537b7f6f + 0x8f66a481) % POINTS; data->offset2 = (data->count * 0x7f6f537b + 0x6a1a8f49) % POINTS; } static void bench_ecmult_teardown(void* arg) { bench_data* data = (bench_data*)arg; size_t iters = 1 + ITERS / data->count; size_t iter; /* Verify the results in teardown, to avoid doing comparisons while benchmarking. */ for (iter = 0; iter < iters; ++iter) { secp256k1_gej tmp; secp256k1_gej_add_var(&tmp, &data->output[iter], &data->expected_output[iter], NULL); CHECK(secp256k1_gej_is_infinity(&tmp)); } } static void generate_scalar(uint32_t num, secp256k1_scalar* scalar) { secp256k1_sha256 sha256; unsigned char c[11] = {'e', 'c', 'm', 'u', 'l', 't', 0, 0, 0, 0}; unsigned char buf[32]; int overflow = 0; c[6] = num; c[7] = num >> 8; c[8] = num >> 16; c[9] = num >> 24; secp256k1_sha256_initialize(&sha256); secp256k1_sha256_write(&sha256, c, sizeof(c)); secp256k1_sha256_finalize(&sha256, buf); secp256k1_scalar_set_b32(scalar, buf, &overflow); CHECK(!overflow); } static void run_test(bench_data* data, size_t count, int includes_g) { char str[32]; static const secp256k1_scalar zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); size_t iters = 1 + ITERS / count; size_t iter; data->count = count; data->includes_g = includes_g; /* Compute (the negation of) the expected results directly. */ data->offset1 = (data->count * 0x537b7f6f + 0x8f66a481) % POINTS; data->offset2 = (data->count * 0x7f6f537b + 0x6a1a8f49) % POINTS; for (iter = 0; iter < iters; ++iter) { secp256k1_scalar tmp; secp256k1_scalar total = data->scalars[(data->offset1++) % POINTS]; size_t i = 0; for (i = 0; i + 1 < count; ++i) { secp256k1_scalar_mul(&tmp, &data->seckeys[(data->offset2++) % POINTS], &data->scalars[(data->offset1++) % POINTS]); secp256k1_scalar_add(&total, &total, &tmp); } secp256k1_scalar_negate(&total, &total); secp256k1_ecmult(&data->ctx->ecmult_ctx, &data->expected_output[iter], NULL, &zero, &total); } /* Run the benchmark. */ sprintf(str, includes_g ? "ecmult_%ig" : "ecmult_%i", (int)count); run_benchmark(str, bench_ecmult, bench_ecmult_setup, bench_ecmult_teardown, data, 10, count * (1 + ITERS / count)); } int main(int argc, char **argv) { bench_data data; int i, p; secp256k1_gej* pubkeys_gej; size_t scratch_size; if (argc > 1) { if(have_flag(argc, argv, "pippenger_wnaf")) { printf("Using pippenger_wnaf:\n"); data.ecmult_multi = secp256k1_ecmult_pippenger_batch_single; } else if(have_flag(argc, argv, "strauss_wnaf")) { printf("Using strauss_wnaf:\n"); data.ecmult_multi = secp256k1_ecmult_strauss_batch_single; } } else { data.ecmult_multi = secp256k1_ecmult_multi_var; } /* Allocate stuff */ data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); scratch_size = secp256k1_strauss_scratch_size(POINTS) + STRAUSS_SCRATCH_OBJECTS*16; data.scratch = secp256k1_scratch_space_create(data.ctx, scratch_size); data.scalars = malloc(sizeof(secp256k1_scalar) * POINTS); data.seckeys = malloc(sizeof(secp256k1_scalar) * POINTS); data.pubkeys = malloc(sizeof(secp256k1_ge) * POINTS); data.expected_output = malloc(sizeof(secp256k1_gej) * (ITERS + 1)); data.output = malloc(sizeof(secp256k1_gej) * (ITERS + 1)); /* Generate a set of scalars, and private/public keypairs. */ pubkeys_gej = malloc(sizeof(secp256k1_gej) * POINTS); secp256k1_gej_set_ge(&pubkeys_gej[0], &secp256k1_ge_const_g); secp256k1_scalar_set_int(&data.seckeys[0], 1); for (i = 0; i < POINTS; ++i) { generate_scalar(i, &data.scalars[i]); if (i) { secp256k1_gej_double_var(&pubkeys_gej[i], &pubkeys_gej[i - 1], NULL); secp256k1_scalar_add(&data.seckeys[i], &data.seckeys[i - 1], &data.seckeys[i - 1]); } } secp256k1_ge_set_all_gej_var(data.pubkeys, pubkeys_gej, POINTS, &data.ctx->error_callback); free(pubkeys_gej); for (i = 1; i <= 8; ++i) { run_test(&data, i, 1); } for (p = 0; p <= 11; ++p) { for (i = 9; i <= 16; ++i) { run_test(&data, i << p, 1); } } secp256k1_context_destroy(data.ctx); secp256k1_scratch_space_destroy(data.scratch); free(data.scalars); free(data.pubkeys); free(data.seckeys); free(data.output); free(data.expected_output); return(0); }