// Bitcoin secp256k1 bindings // Written in 2014 by // Dawid Ciężarkiewicz // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! Public/Private keys use std::intrinsics::copy_nonoverlapping; use std::{fmt, marker, ops}; use rand::Rng; use serialize::{Decoder, Decodable, Encoder, Encodable}; use serde::{Serialize, Deserialize, Serializer, Deserializer}; use super::init; use super::Error::{self, InvalidPublicKey, InvalidSecretKey, Unknown}; use constants; use ffi; /// Secret 256-bit key used as `x` in an ECDSA signature pub struct SecretKey([u8; constants::SECRET_KEY_SIZE]); impl_array_newtype!(SecretKey, u8, constants::SECRET_KEY_SIZE); /// The number 1 encoded as a secret key pub static ONE: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]); /// Public key #[derive(Clone, Copy, PartialEq, Eq, Debug)] pub struct PublicKey(PublicKeyData); #[derive(Copy, Eq)] enum PublicKeyData { Compressed([u8; constants::COMPRESSED_PUBLIC_KEY_SIZE]), Uncompressed([u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]) } fn random_32_bytes(rng: &mut R) -> [u8; 32] { let mut ret = [0u8; 32]; rng.fill_bytes(&mut ret); ret } impl SecretKey { /// Creates a new random secret key #[inline] pub fn new(rng: &mut R) -> SecretKey { init(); let mut data = random_32_bytes(rng); unsafe { while ffi::secp256k1_ec_seckey_verify(data.as_ptr()) == 0 { data = random_32_bytes(rng); } } SecretKey(data) } /// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key #[inline] pub fn from_slice(data: &[u8]) -> Result { init(); match data.len() { constants::SECRET_KEY_SIZE => { let mut ret = [0; constants::SECRET_KEY_SIZE]; unsafe { if ffi::secp256k1_ec_seckey_verify(data.as_ptr()) == 0 { return Err(InvalidSecretKey); } copy_nonoverlapping(data.as_ptr(), ret.as_mut_ptr(), data.len()); } Ok(SecretKey(ret)) } _ => Err(InvalidSecretKey) } } #[inline] /// Adds one secret key to another, modulo the curve order /// Marked `unsafe` since you must /// call `init()` (or construct a `Secp256k1`, which does this for you) before /// using this function pub fn add_assign(&mut self, other: &SecretKey) -> Result<(), Error> { init(); unsafe { if ffi::secp256k1_ec_privkey_tweak_add(self.as_mut_ptr(), other.as_ptr()) != 1 { Err(Unknown) } else { Ok(()) } } } } impl PublicKey { /// Creates a new zeroed out public key #[inline] pub fn new(compressed: bool) -> PublicKey { PublicKey( if compressed { PublicKeyData::Compressed([0; constants::COMPRESSED_PUBLIC_KEY_SIZE]) } else { PublicKeyData::Uncompressed([0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]) } ) } /// Creates a new public key from a secret key. #[inline] pub fn from_secret_key(sk: &SecretKey, compressed: bool) -> PublicKey { let mut pk = PublicKey::new(compressed); let compressed = if compressed {1} else {0}; let mut len = 0; init(); unsafe { // We can assume the return value because it's not possible to construct // an invalid `SecretKey` without transmute trickery or something assert_eq!(ffi::secp256k1_ec_pubkey_create( pk.as_mut_ptr(), &mut len, sk.as_ptr(), compressed), 1); } assert_eq!(len as usize, pk.len()); pk } /// Creates a public key directly from a slice #[inline] pub fn from_slice(data: &[u8]) -> Result { match data.len() { constants::COMPRESSED_PUBLIC_KEY_SIZE => { let mut ret = [0; constants::COMPRESSED_PUBLIC_KEY_SIZE]; unsafe { if ffi::secp256k1_ec_pubkey_verify(data.as_ptr(), data.len() as ::libc::c_int) == 0 { return Err(InvalidPublicKey); } copy_nonoverlapping(data.as_ptr(), ret.as_mut_ptr(), data.len()); } Ok(PublicKey(PublicKeyData::Compressed(ret))) } constants::UNCOMPRESSED_PUBLIC_KEY_SIZE => { let mut ret = [0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]; unsafe { copy_nonoverlapping(data.as_ptr(), ret.as_mut_ptr(), data.len()); } Ok(PublicKey(PublicKeyData::Uncompressed(ret))) } _ => Err(InvalidPublicKey) } } /// Returns whether the public key is compressed or uncompressed #[inline] pub fn is_compressed(&self) -> bool { let &PublicKey(ref data) = self; match *data { PublicKeyData::Compressed(_) => true, PublicKeyData::Uncompressed(_) => false } } /// Returns the length of the public key #[inline] pub fn len(&self) -> usize { let &PublicKey(ref data) = self; match *data { PublicKeyData::Compressed(ref x) => x.len(), PublicKeyData::Uncompressed(ref x) => x.len() } } /// Converts the public key to a raw pointer suitable for use /// with the FFI functions #[inline] pub fn as_ptr(&self) -> *const u8 { let &PublicKey(ref data) = self; match *data { PublicKeyData::Compressed(ref x) => x.as_ptr(), PublicKeyData::Uncompressed(ref x) => x.as_ptr() } } /// Converts the public key to a mutable raw pointer suitable for use /// with the FFI functions #[inline] pub fn as_mut_ptr(&mut self) -> *mut u8 { let &mut PublicKey(ref mut data) = self; match *data { PublicKeyData::Compressed(ref mut x) => x.as_mut_ptr(), PublicKeyData::Uncompressed(ref mut x) => x.as_mut_ptr() } } #[inline] /// Adds the pk corresponding to `other` to the pk `self` in place pub fn add_exp_assign(&mut self, other: &SecretKey) -> Result<(), Error> { init(); unsafe { if ffi::secp256k1_ec_pubkey_tweak_add(self.as_mut_ptr(), self.len() as ::libc::c_int, other.as_ptr()) != 1 { Err(Unknown) } else { Ok(()) } } } } // We have to do all these impls ourselves as Rust can't derive // them for arrays impl Clone for PublicKeyData { fn clone(&self) -> PublicKeyData { *self } } impl PartialEq for PublicKeyData { fn eq(&self, other: &PublicKeyData) -> bool { &self[..] == &other[..] } } impl fmt::Debug for PublicKeyData { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (&self[..]).fmt(f) } } impl ops::Index for PublicKeyData { type Output = u8; #[inline] fn index(&self, index: usize) -> &u8 { match *self { PublicKeyData::Compressed(ref x) => &x[index], PublicKeyData::Uncompressed(ref x) => &x[index] } } } impl ops::Index for PublicKey { type Output = u8; #[inline] fn index(&self, index: usize) -> &u8 { let &PublicKey(ref dat) = self; &dat[index] } } impl ops::Index> for PublicKeyData { type Output = [u8]; #[inline] fn index(&self, index: ops::Range) -> &[u8] { match *self { PublicKeyData::Compressed(ref x) => &x[index], PublicKeyData::Uncompressed(ref x) => &x[index] } } } impl ops::Index> for PublicKey { type Output = [u8]; #[inline] fn index(&self, index: ops::Range) -> &[u8] { let &PublicKey(ref dat) = self; &dat[index] } } impl ops::Index> for PublicKeyData { type Output = [u8]; #[inline] fn index(&self, index: ops::RangeTo) -> &[u8] { match *self { PublicKeyData::Compressed(ref x) => &x[index], PublicKeyData::Uncompressed(ref x) => &x[index] } } } impl ops::Index> for PublicKey { type Output = [u8]; #[inline] fn index(&self, index: ops::RangeTo) -> &[u8] { let &PublicKey(ref dat) = self; &dat[index] } } impl ops::Index> for PublicKeyData { type Output = [u8]; #[inline] fn index(&self, index: ops::RangeFrom) -> &[u8] { match *self { PublicKeyData::Compressed(ref x) => &x[index], PublicKeyData::Uncompressed(ref x) => &x[index] } } } impl ops::Index> for PublicKey { type Output = [u8]; #[inline] fn index(&self, index: ops::RangeFrom) -> &[u8] { let &PublicKey(ref dat) = self; &dat[index] } } impl ops::Index for PublicKeyData { type Output = [u8]; #[inline] fn index(&self, _: ops::RangeFull) -> &[u8] { match *self { PublicKeyData::Compressed(ref x) => &x[..], PublicKeyData::Uncompressed(ref x) => &x[..] } } } impl ops::Index for PublicKey { type Output = [u8]; #[inline] fn index(&self, _: ops::RangeFull) -> &[u8] { let &PublicKey(ref dat) = self; &dat[..] } } impl Decodable for PublicKey { fn decode(d: &mut D) -> Result { d.read_seq(|d, len| { if len == constants::UNCOMPRESSED_PUBLIC_KEY_SIZE { unsafe { use std::mem; let mut ret: [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized(); for i in 0..len { ret[i] = try!(d.read_seq_elt(i, |d| Decodable::decode(d))); } Ok(PublicKey(PublicKeyData::Uncompressed(ret))) } } else if len == constants::COMPRESSED_PUBLIC_KEY_SIZE { unsafe { use std::mem; let mut ret: [u8; constants::COMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized(); for i in 0..len { ret[i] = try!(d.read_seq_elt(i, |d| Decodable::decode(d))); } Ok(PublicKey(PublicKeyData::Compressed(ret))) } } else { Err(d.error("Invalid length")) } }) } } impl Encodable for PublicKey { fn encode(&self, s: &mut S) -> Result<(), S::Error> { (&self[..]).encode(s) } } impl Deserialize for PublicKey { fn deserialize(d: &mut D) -> Result where D: Deserializer { use serde::de; struct Visitor { marker: marker::PhantomData, } impl de::Visitor for Visitor { type Value = PublicKey; #[inline] fn visit_seq(&mut self, mut v: V) -> Result where V: de::SeqVisitor { assert!(constants::UNCOMPRESSED_PUBLIC_KEY_SIZE >= constants::COMPRESSED_PUBLIC_KEY_SIZE); unsafe { use std::mem; let mut ret_u: [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized(); let mut ret_c: [u8; constants::COMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized(); let mut read_len = 0; while read_len < constants::UNCOMPRESSED_PUBLIC_KEY_SIZE { let read_ch = match try!(v.visit()) { Some(c) => c, None => break }; ret_u[read_len] = read_ch; if read_len < constants::COMPRESSED_PUBLIC_KEY_SIZE { ret_c[read_len] = read_ch; } read_len += 1; } try!(v.end()); if read_len == constants::UNCOMPRESSED_PUBLIC_KEY_SIZE { Ok(PublicKey(PublicKeyData::Uncompressed(ret_u))) } else if read_len == constants::COMPRESSED_PUBLIC_KEY_SIZE { Ok(PublicKey(PublicKeyData::Compressed(ret_c))) } else { return Err(de::Error::syntax_error()); } } } } // Begin actual function d.visit(Visitor { marker: ::std::marker::PhantomData }) } } impl Serialize for PublicKey { fn serialize(&self, s: &mut S) -> Result<(), S::Error> where S: Serializer { (&self.0[..]).serialize(s) } } impl fmt::Debug for SecretKey { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { (&self[..]).fmt(f) } } #[cfg(test)] mod test { use super::super::Secp256k1; use super::super::Error::{InvalidPublicKey, InvalidSecretKey}; use super::{PublicKey, SecretKey}; #[test] fn skey_from_slice() { let sk = SecretKey::from_slice(&[1; 31]); assert_eq!(sk, Err(InvalidSecretKey)); let sk = SecretKey::from_slice(&[1; 32]); assert!(sk.is_ok()); } #[test] fn pubkey_from_slice() { assert_eq!(PublicKey::from_slice(&[]), Err(InvalidPublicKey)); assert_eq!(PublicKey::from_slice(&[1, 2, 3]), Err(InvalidPublicKey)); let uncompressed = PublicKey::from_slice(&[4, 54, 57, 149, 239, 162, 148, 175, 246, 254, 239, 75, 154, 152, 10, 82, 234, 224, 85, 220, 40, 100, 57, 121, 30, 162, 94, 156, 135, 67, 74, 49, 179, 57, 236, 53, 162, 124, 149, 144, 168, 77, 74, 30, 72, 211, 229, 110, 111, 55, 96, 193, 86, 227, 183, 152, 195, 155, 51, 247, 123, 113, 60, 228, 188]); assert!(uncompressed.is_ok()); assert!(!uncompressed.unwrap().is_compressed()); let compressed = PublicKey::from_slice(&[3, 23, 183, 225, 206, 31, 159, 148, 195, 42, 67, 115, 146, 41, 248, 140, 11, 3, 51, 41, 111, 180, 110, 143, 114, 134, 88, 73, 198, 174, 52, 184, 78]); assert!(compressed.is_ok()); assert!(compressed.unwrap().is_compressed()); } #[test] fn keypair_slice_round_trip() { let mut s = Secp256k1::new().unwrap(); let (sk1, pk1) = s.generate_keypair(true); assert_eq!(SecretKey::from_slice(&sk1[..]), Ok(sk1)); assert_eq!(PublicKey::from_slice(&pk1[..]), Ok(pk1)); let (sk2, pk2) = s.generate_keypair(false); assert_eq!(SecretKey::from_slice(&sk2[..]), Ok(sk2)); assert_eq!(PublicKey::from_slice(&pk2[..]), Ok(pk2)); } #[test] fn invalid_secret_key() { // Zero assert_eq!(SecretKey::from_slice(&[0; 32]), Err(InvalidSecretKey)); // -1 assert_eq!(SecretKey::from_slice(&[0xff; 32]), Err(InvalidSecretKey)); // Top of range assert!(SecretKey::from_slice(&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]).is_ok()); // One past top of range assert!(SecretKey::from_slice(&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]).is_err()); } #[test] fn test_serialize() { use std::io::Cursor; use serialize::{json, Decodable, Encodable}; macro_rules! round_trip ( ($var:ident) => ({ let start = $var; let mut encoded = String::new(); { let mut encoder = json::Encoder::new(&mut encoded); start.encode(&mut encoder).unwrap(); } let json = json::Json::from_reader(&mut Cursor::new(encoded.as_bytes())).unwrap(); let mut decoder = json::Decoder::new(json); let decoded = Decodable::decode(&mut decoder); assert_eq!(Some(start), decoded.ok()); }) ); let mut s = Secp256k1::new().unwrap(); for _ in 0..500 { let (sk, pk) = s.generate_keypair(false); round_trip!(sk); round_trip!(pk); let (sk, pk) = s.generate_keypair(true); round_trip!(sk); round_trip!(pk); } } #[test] fn test_serialize_serde() { use serde::{json, Serialize, Deserialize}; macro_rules! round_trip ( ($var:ident) => ({ let start = $var; let mut encoded = Vec::new(); { let mut serializer = json::ser::Serializer::new(&mut encoded); start.serialize(&mut serializer).unwrap(); } let mut deserializer = json::de::Deserializer::new(encoded.iter().map(|c| Ok(*c))).unwrap(); let decoded = Deserialize::deserialize(&mut deserializer); assert_eq!(Some(start), decoded.ok()); }) ); let mut s = Secp256k1::new().unwrap(); for _ in 0..500 { let (sk, pk) = s.generate_keypair(false); round_trip!(sk); round_trip!(pk); let (sk, pk) = s.generate_keypair(true); round_trip!(sk); round_trip!(pk); } } #[test] fn test_addition() { let mut s = Secp256k1::new().unwrap(); let (mut sk1, mut pk1) = s.generate_keypair(true); let (mut sk2, mut pk2) = s.generate_keypair(true); assert_eq!(PublicKey::from_secret_key(&sk1, true), pk1); assert!(sk1.add_assign(&sk2).is_ok()); assert!(pk1.add_exp_assign(&sk2).is_ok()); assert_eq!(PublicKey::from_secret_key(&sk1, true), pk1); assert_eq!(PublicKey::from_secret_key(&sk2, true), pk2); assert!(sk2.add_assign(&sk1).is_ok()); assert!(pk2.add_exp_assign(&sk1).is_ok()); assert_eq!(PublicKey::from_secret_key(&sk2, true), pk2); } }