// Bitcoin secp256k1 bindings // Written in 2014 by // Dawid Ciężarkiewicz // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! Public/Private keys use std::intrinsics::copy_nonoverlapping_memory; use std::cmp; use std::fmt; use std::rand::Rng; use constants; use ffi; use crypto::digest::Digest; use crypto::sha2::Sha512; use crypto::hmac::Hmac; use crypto::mac::Mac; use super::init; use super::{Result, InvalidNonce, InvalidPublicKey, InvalidSecretKey, Unknown}; /// Secret 256-bit nonce used as `k` in an ECDSA signature pub struct Nonce([u8, ..constants::NONCE_SIZE]); impl_array_newtype!(Nonce, u8, constants::NONCE_SIZE) /// Secret 256-bit key used as `x` in an ECDSA signature pub struct SecretKey([u8, ..constants::SECRET_KEY_SIZE]); impl_array_newtype!(SecretKey, u8, constants::SECRET_KEY_SIZE) /// The number 1 encoded as a secret key pub static ONE: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]); /// Public key #[deriving(Clone, PartialEq, Eq, Show)] pub struct PublicKey(PublicKeyData); enum PublicKeyData { Compressed([u8, ..constants::COMPRESSED_PUBLIC_KEY_SIZE]), Uncompressed([u8, ..constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]), } fn random_32_bytes(rng: &mut R) -> [u8, ..32] { let mut ret = [0u8, ..32]; rng.fill_bytes(ret); ret } /// As described in RFC 6979 fn bits2octets(data: &[u8]) -> [u8, ..32] { let mut ret = [0, ..32]; unsafe { copy_nonoverlapping_memory(ret.as_mut_ptr(), data.as_ptr(), cmp::min(data.len(), 32)); } ret } impl Nonce { /// Creates a new random nonce #[inline] pub fn new(rng: &mut R) -> Nonce { Nonce(random_32_bytes(rng)) } /// Converts a `NONCE_SIZE`-byte slice to a nonce #[inline] pub fn from_slice(data: &[u8]) -> Result { match data.len() { constants::NONCE_SIZE => { let mut ret = [0, ..constants::NONCE_SIZE]; unsafe { copy_nonoverlapping_memory(ret.as_mut_ptr(), data.as_ptr(), data.len()); } Ok(Nonce(ret)) } _ => Err(InvalidNonce) } } /// Generates a deterministic nonce by RFC6979 with HMAC-SHA512 #[inline] #[allow(non_snake_case)] // so we can match the names in the RFC pub fn deterministic(msg: &[u8], key: &SecretKey) -> Nonce { static HMAC_SIZE: uint = 64; macro_rules! hmac( ($res:expr <- key $key:expr, data $($data:expr),+) => ({ let mut hmacker = Hmac::new(Sha512::new(), $key.as_slice()); $(hmacker.input($data.as_slice());)+ hmacker.raw_result($res.as_mut_slice()); }) ) // Section 3.2a // Goofy block just to avoid marking `msg_hash` as mutable let mut hasher = Sha512::new(); hasher.input(msg); let mut x = [0, ..HMAC_SIZE]; hasher.result(x.as_mut_slice()); let msg_hash = bits2octets(x.as_slice()); // Section 3.2b let mut V = [0x01u8, ..HMAC_SIZE]; // Section 3.2c let mut K = [0x00u8, ..HMAC_SIZE]; // Section 3.2d hmac!(K <- key K, data V, [0x00], key, msg_hash) // Section 3.2e hmac!(V <- key K, data V) // Section 3.2f hmac!(K <- key K, data V, [0x01], key, msg_hash) // Section 3.2g hmac!(V <- key K, data V) // Section 3.2 let mut k = Err(InvalidSecretKey); while k.is_err() { // Try to generate the nonce let mut T = [0x00u8, ..HMAC_SIZE]; hmac!(T <- key K, data V) k = Nonce::from_slice(T.slice_to(constants::NONCE_SIZE)); // Replace K, V if k.is_err() { hmac!(K <- key K, data V, [0x00]) hmac!(V <- key K, data V) } } k.unwrap() } } impl SecretKey { /// Creates a new random secret key #[inline] pub fn new(rng: &mut R) -> SecretKey { init(); let mut data = random_32_bytes(rng); unsafe { while ffi::secp256k1_ecdsa_seckey_verify(data.as_ptr()) == 0 { data = random_32_bytes(rng); } } SecretKey(data) } /// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key #[inline] pub fn from_slice(data: &[u8]) -> Result { init(); match data.len() { constants::SECRET_KEY_SIZE => { let mut ret = [0, ..constants::SECRET_KEY_SIZE]; unsafe { if ffi::secp256k1_ecdsa_seckey_verify(data.as_ptr()) == 0 { return Err(InvalidSecretKey); } copy_nonoverlapping_memory(ret.as_mut_ptr(), data.as_ptr(), data.len()); } Ok(SecretKey(ret)) } _ => Err(InvalidSecretKey) } } #[inline] /// Adds one secret key to another, modulo the curve order /// Marked `unsafe` since you must /// call `init()` (or construct a `Secp256k1`, which does this for you) before /// using this function pub fn add_assign(&mut self, other: &SecretKey) -> Result<()> { init(); unsafe { if ffi::secp256k1_ecdsa_privkey_tweak_add(self.as_mut_ptr(), other.as_ptr()) != 1 { Err(Unknown) } else { Ok(()) } } } #[inline] /// Returns an iterator for the (sk, pk) pairs starting one after this one, /// and incrementing by one each time pub fn sequence(&self, compressed: bool) -> Sequence { Sequence { last_sk: *self, compressed: compressed } } } /// An iterator of keypairs `(sk + 1, pk*G)`, `(sk + 2, pk*2G)`, ... pub struct Sequence { compressed: bool, last_sk: SecretKey, } impl<'a> Iterator<(SecretKey, PublicKey)> for Sequence { #[inline] fn next(&mut self) -> Option<(SecretKey, PublicKey)> { self.last_sk.add_assign(&ONE).unwrap(); Some((self.last_sk, PublicKey::from_secret_key(&self.last_sk, self.compressed))) } } impl PublicKey { /// Creates a new zeroed out public key #[inline] pub fn new(compressed: bool) -> PublicKey { PublicKey( if compressed { Compressed([0, ..constants::COMPRESSED_PUBLIC_KEY_SIZE]) } else { Uncompressed([0, ..constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]) } ) } /// Creates a new public key from a secret key. #[inline] pub fn from_secret_key(sk: &SecretKey, compressed: bool) -> PublicKey { let mut pk = PublicKey::new(compressed); let compressed = if compressed {1} else {0}; let mut len = 0; init(); unsafe { // We can assume the return value because it's not possible to construct // an invalid `SecretKey` without transmute trickery or something assert_eq!(ffi::secp256k1_ecdsa_pubkey_create( pk.as_mut_ptr(), &mut len, sk.as_ptr(), compressed), 1); } assert_eq!(len as uint, pk.len()); pk } /// Creates a public key directly from a slice #[inline] pub fn from_slice(data: &[u8]) -> Result { match data.len() { constants::COMPRESSED_PUBLIC_KEY_SIZE => { let mut ret = [0, ..constants::COMPRESSED_PUBLIC_KEY_SIZE]; unsafe { if ffi::secp256k1_ecdsa_pubkey_verify(data.as_ptr(), data.len() as ::libc::c_int) == 0 { return Err(InvalidPublicKey); } copy_nonoverlapping_memory(ret.as_mut_ptr(), data.as_ptr(), data.len()); } Ok(PublicKey(Compressed(ret))) } constants::UNCOMPRESSED_PUBLIC_KEY_SIZE => { let mut ret = [0, ..constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]; unsafe { copy_nonoverlapping_memory(ret.as_mut_ptr(), data.as_ptr(), data.len()); } Ok(PublicKey(Uncompressed(ret))) } _ => Err(InvalidPublicKey) } } /// Returns whether the public key is compressed or uncompressed #[inline] pub fn is_compressed(&self) -> bool { let &PublicKey(ref data) = self; match *data { Compressed(_) => true, Uncompressed(_) => false } } /// Returns the length of the public key #[inline] pub fn len(&self) -> uint { let &PublicKey(ref data) = self; match *data { Compressed(ref x) => x.len(), Uncompressed(ref x) => x.len() } } /// Converts the public key into a byte slice #[inline] pub fn as_slice<'a>(&'a self) -> &'a [u8] { let &PublicKey(ref data) = self; data.as_slice() } /// Converts the public key to a raw pointer suitable for use /// with the FFI functions #[inline] pub fn as_ptr(&self) -> *const u8 { let &PublicKey(ref data) = self; match *data { Compressed(ref x) => x.as_ptr(), Uncompressed(ref x) => x.as_ptr() } } /// Converts the public key to a mutable raw pointer suitable for use /// with the FFI functions #[inline] pub fn as_mut_ptr(&mut self) -> *mut u8 { let &PublicKey(ref mut data) = self; match *data { Compressed(ref mut x) => x.as_mut_ptr(), Uncompressed(ref mut x) => x.as_mut_ptr() } } #[inline] /// Adds the pk corresponding to `other` to the pk `self` in place pub fn add_exp_assign(&mut self, other: &SecretKey) -> Result<()> { init(); unsafe { if ffi::secp256k1_ecdsa_pubkey_tweak_add(self.as_mut_ptr(), self.len() as ::libc::c_int, other.as_ptr()) != 1 { Err(Unknown) } else { Ok(()) } } } } impl PublicKeyData { #[inline] fn as_slice<'a>(&'a self) -> &'a [u8] { match *self { Compressed(ref x) => x.as_slice(), Uncompressed(ref x) => x.as_slice() } } } // We have to do all these impls ourselves as Rust can't derive // them for arrays impl fmt::Show for Nonce { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.as_slice().fmt(f) } } impl Clone for PublicKeyData { fn clone(&self) -> PublicKeyData { *self } } impl PartialEq for PublicKeyData { fn eq(&self, other: &PublicKeyData) -> bool { self.as_slice() == other.as_slice() } } impl Eq for PublicKeyData {} impl fmt::Show for PublicKeyData { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.as_slice().fmt(f) } } impl fmt::Show for SecretKey { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.as_slice().fmt(f) } } #[cfg(test)] mod test { use serialize::hex::FromHex; use std::rand::task_rng; use test::Bencher; use super::super::{Secp256k1, InvalidNonce, InvalidPublicKey, InvalidSecretKey}; use super::{Nonce, PublicKey, SecretKey}; #[test] fn nonce_from_slice() { let n = Nonce::from_slice([1, ..31]); assert_eq!(n, Err(InvalidNonce)); let n = SecretKey::from_slice([1, ..32]); assert!(n.is_ok()); } #[test] fn skey_from_slice() { let sk = SecretKey::from_slice([1, ..31]); assert_eq!(sk, Err(InvalidSecretKey)); let sk = SecretKey::from_slice([1, ..32]); assert!(sk.is_ok()); } #[test] fn pubkey_from_slice() { assert_eq!(PublicKey::from_slice([]), Err(InvalidPublicKey)); assert_eq!(PublicKey::from_slice([1, 2, 3]), Err(InvalidPublicKey)); let uncompressed = PublicKey::from_slice([4, 54, 57, 149, 239, 162, 148, 175, 246, 254, 239, 75, 154, 152, 10, 82, 234, 224, 85, 220, 40, 100, 57, 121, 30, 162, 94, 156, 135, 67, 74, 49, 179, 57, 236, 53, 162, 124, 149, 144, 168, 77, 74, 30, 72, 211, 229, 110, 111, 55, 96, 193, 86, 227, 183, 152, 195, 155, 51, 247, 123, 113, 60, 228, 188]); assert!(uncompressed.is_ok()); assert!(!uncompressed.unwrap().is_compressed()); let compressed = PublicKey::from_slice([3, 23, 183, 225, 206, 31, 159, 148, 195, 42, 67, 115, 146, 41, 248, 140, 11, 3, 51, 41, 111, 180, 110, 143, 114, 134, 88, 73, 198, 174, 52, 184, 78]); assert!(compressed.is_ok()); assert!(compressed.unwrap().is_compressed()); } #[test] fn keypair_slice_round_trip() { let mut s = Secp256k1::new().unwrap(); let (sk1, pk1) = s.generate_keypair(true); assert_eq!(SecretKey::from_slice(sk1.as_slice()), Ok(sk1)); assert_eq!(PublicKey::from_slice(pk1.as_slice()), Ok(pk1)); let (sk2, pk2) = s.generate_keypair(false); assert_eq!(SecretKey::from_slice(sk2.as_slice()), Ok(sk2)); assert_eq!(PublicKey::from_slice(pk2.as_slice()), Ok(pk2)); } #[test] fn nonce_slice_round_trip() { let mut rng = task_rng(); let nonce = Nonce::new(&mut rng); assert_eq!(Nonce::from_slice(nonce.as_slice()), Ok(nonce)); } #[test] fn invalid_secret_key() { // Zero assert_eq!(SecretKey::from_slice([0, ..32]), Err(InvalidSecretKey)); // -1 assert_eq!(SecretKey::from_slice([0xff, ..32]), Err(InvalidSecretKey)); // Top of range assert!(SecretKey::from_slice([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]).is_ok()); // One past top of range assert!(SecretKey::from_slice([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]).is_err()); } #[test] fn test_addition() { let mut s = Secp256k1::new().unwrap(); let (mut sk1, mut pk1) = s.generate_keypair(true); let (mut sk2, mut pk2) = s.generate_keypair(true); assert_eq!(PublicKey::from_secret_key(&sk1, true), pk1); assert!(sk1.add_assign(&sk2).is_ok()); assert!(pk1.add_exp_assign(&sk2).is_ok()); assert_eq!(PublicKey::from_secret_key(&sk1, true), pk1); assert_eq!(PublicKey::from_secret_key(&sk2, true), pk2); assert!(sk2.add_assign(&sk1).is_ok()); assert!(pk2.add_exp_assign(&sk1).is_ok()); assert_eq!(PublicKey::from_secret_key(&sk2, true), pk2); } #[test] fn test_deterministic() { // nb code in comments is equivalent python // from ecdsa import rfc6979 // from ecdsa.curves import SECP256k1 // # This key was generated randomly // sk = 0x09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f81 let sk = SecretKey::from_slice(hex_slice!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f81")).unwrap(); // "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('').digest()) let nonce = Nonce::deterministic([], &sk); assert_eq!(nonce.as_slice(), hex_slice!("d954eddd184cac2b60edcd0e6be9ec54d93f633b28b366420d38ed9c346ffe27")); // "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('test').digest()) let nonce = Nonce::deterministic(b"test", &sk); assert_eq!(nonce.as_slice(), hex_slice!("609cc24acce2f19e46e38a82afc56c1745dee16e04f2b27e24999e1fefeb08bd")); // # Decrease the secret key by one // sk = 0x09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f80 let sk = SecretKey::from_slice(hex_slice!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f80")).unwrap(); // "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('').digest()) let nonce = Nonce::deterministic([], &sk); assert_eq!(nonce.as_slice(), hex_slice!("9f45f8d0a28e8956673c8da6db3db86ca4f172f0a2dbd62364fdbf786c7d96df")); // "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('test').digest()) let nonce = Nonce::deterministic(b"test", &sk); assert_eq!(nonce.as_slice(), hex_slice!("355c589ff662c838aee454d62b12c50a87b7e95ede2431c7cfa40b6ba2fddccd")); } #[bench] pub fn sequence_iterate(bh: &mut Bencher) { let mut s = Secp256k1::new().unwrap(); let (sk, _) = s.generate_keypair(true); let mut iter = sk.sequence(true); bh.iter(|| iter.next()) } }