/*********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_FIELD_IMPL_H #define SECP256K1_FIELD_IMPL_H #if defined HAVE_CONFIG_H #include "libsecp256k1-config.h" #endif #include "util.h" #if defined(SECP256K1_WIDEMUL_INT128) #include "field_5x52_impl.h" #elif defined(SECP256K1_WIDEMUL_INT64) #include "field_10x26_impl.h" #else #error "Please select wide multiplication implementation" #endif SECP256K1_INLINE static int rustsecp256k1_v0_8_1_fe_equal(const rustsecp256k1_v0_8_1_fe *a, const rustsecp256k1_v0_8_1_fe *b) { rustsecp256k1_v0_8_1_fe na; rustsecp256k1_v0_8_1_fe_negate(&na, a, 1); rustsecp256k1_v0_8_1_fe_add(&na, b); return rustsecp256k1_v0_8_1_fe_normalizes_to_zero(&na); } SECP256K1_INLINE static int rustsecp256k1_v0_8_1_fe_equal_var(const rustsecp256k1_v0_8_1_fe *a, const rustsecp256k1_v0_8_1_fe *b) { rustsecp256k1_v0_8_1_fe na; rustsecp256k1_v0_8_1_fe_negate(&na, a, 1); rustsecp256k1_v0_8_1_fe_add(&na, b); return rustsecp256k1_v0_8_1_fe_normalizes_to_zero_var(&na); } static int rustsecp256k1_v0_8_1_fe_sqrt(rustsecp256k1_v0_8_1_fe *r, const rustsecp256k1_v0_8_1_fe *a) { /** Given that p is congruent to 3 mod 4, we can compute the square root of * a mod p as the (p+1)/4'th power of a. * * As (p+1)/4 is an even number, it will have the same result for a and for * (-a). Only one of these two numbers actually has a square root however, * so we test at the end by squaring and comparing to the input. * Also because (p+1)/4 is an even number, the computed square root is * itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)). */ rustsecp256k1_v0_8_1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; int j; VERIFY_CHECK(r != a); /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in * { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block: * 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223] */ rustsecp256k1_v0_8_1_fe_sqr(&x2, a); rustsecp256k1_v0_8_1_fe_mul(&x2, &x2, a); rustsecp256k1_v0_8_1_fe_sqr(&x3, &x2); rustsecp256k1_v0_8_1_fe_mul(&x3, &x3, a); x6 = x3; for (j=0; j<3; j++) { rustsecp256k1_v0_8_1_fe_sqr(&x6, &x6); } rustsecp256k1_v0_8_1_fe_mul(&x6, &x6, &x3); x9 = x6; for (j=0; j<3; j++) { rustsecp256k1_v0_8_1_fe_sqr(&x9, &x9); } rustsecp256k1_v0_8_1_fe_mul(&x9, &x9, &x3); x11 = x9; for (j=0; j<2; j++) { rustsecp256k1_v0_8_1_fe_sqr(&x11, &x11); } rustsecp256k1_v0_8_1_fe_mul(&x11, &x11, &x2); x22 = x11; for (j=0; j<11; j++) { rustsecp256k1_v0_8_1_fe_sqr(&x22, &x22); } rustsecp256k1_v0_8_1_fe_mul(&x22, &x22, &x11); x44 = x22; for (j=0; j<22; j++) { rustsecp256k1_v0_8_1_fe_sqr(&x44, &x44); } rustsecp256k1_v0_8_1_fe_mul(&x44, &x44, &x22); x88 = x44; for (j=0; j<44; j++) { rustsecp256k1_v0_8_1_fe_sqr(&x88, &x88); } rustsecp256k1_v0_8_1_fe_mul(&x88, &x88, &x44); x176 = x88; for (j=0; j<88; j++) { rustsecp256k1_v0_8_1_fe_sqr(&x176, &x176); } rustsecp256k1_v0_8_1_fe_mul(&x176, &x176, &x88); x220 = x176; for (j=0; j<44; j++) { rustsecp256k1_v0_8_1_fe_sqr(&x220, &x220); } rustsecp256k1_v0_8_1_fe_mul(&x220, &x220, &x44); x223 = x220; for (j=0; j<3; j++) { rustsecp256k1_v0_8_1_fe_sqr(&x223, &x223); } rustsecp256k1_v0_8_1_fe_mul(&x223, &x223, &x3); /* The final result is then assembled using a sliding window over the blocks. */ t1 = x223; for (j=0; j<23; j++) { rustsecp256k1_v0_8_1_fe_sqr(&t1, &t1); } rustsecp256k1_v0_8_1_fe_mul(&t1, &t1, &x22); for (j=0; j<6; j++) { rustsecp256k1_v0_8_1_fe_sqr(&t1, &t1); } rustsecp256k1_v0_8_1_fe_mul(&t1, &t1, &x2); rustsecp256k1_v0_8_1_fe_sqr(&t1, &t1); rustsecp256k1_v0_8_1_fe_sqr(r, &t1); /* Check that a square root was actually calculated */ rustsecp256k1_v0_8_1_fe_sqr(&t1, r); return rustsecp256k1_v0_8_1_fe_equal(&t1, a); } #endif /* SECP256K1_FIELD_IMPL_H */