// Bitcoin secp256k1 bindings
// Written in 2014 by
// Dawid Ciężarkiewicz
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see .
//
//! # Secp256k1
//! Rust bindings for Pieter Wuille's secp256k1 library, which is used for
//! fast and accurate manipulation of ECDSA signatures on the secp256k1
//! curve. Such signatures are used extensively by the Bitcoin network
//! and its derivatives.
//!
//! To minimize dependencies, some functions are feature-gated. To generate
//! random keys or to re-randomize a context object, compile with the "rand"
//! feature. To de/serialize objects with serde, compile with "serde".
//!
//! Where possible, the bindings use the Rust type system to ensure that
//! API usage errors are impossible. For example, the library uses context
//! objects that contain precomputation tables which are created on object
//! construction. Since this is a slow operation (10+ milliseconds, vs ~50
//! microseconds for typical crypto operations, on a 2.70 Ghz i7-6820HQ)
//! the tables are optional, giving a performance boost for users who only
//! care about signing, only care about verification, or only care about
//! parsing. In the upstream library, if you attempt to sign a message using
//! a context that does not support this, it will trigger an assertion
//! failure and terminate the program. In `rust-secp256k1`, this is caught
//! at compile-time; in fact, it is impossible to compile code that will
//! trigger any assertion failures in the upstream library.
//!
//! ```rust
//! # #[cfg(all(feature="rand", feature="bitcoin_hashes"))] {
//! use secp256k1::rand::rngs::OsRng;
//! use secp256k1::{Secp256k1, Message};
//! use secp256k1::hashes::sha256;
//!
//! let secp = Secp256k1::new();
//! let mut rng = OsRng::new().expect("OsRng");
//! let (secret_key, public_key) = secp.generate_keypair(&mut rng);
//! let message = Message::from_hashed_data::("Hello World!".as_bytes());
//!
//! let sig = secp.sign(&message, &secret_key);
//! assert!(secp.verify(&message, &sig, &public_key).is_ok());
//! # }
//! ```
//!
//! The above code requires `rust-secp256k1` to be compiled with the `rand` and `bitcoin_hashes`
//! feature enabled, to get access to [`generate_keypair`](struct.Secp256k1.html#method.generate_keypair)
//! Alternately, keys and messages can be parsed from slices, like
//!
//! ```rust
//! use self::secp256k1::{Secp256k1, Message, SecretKey, PublicKey};
//!
//! let secp = Secp256k1::new();
//! let secret_key = SecretKey::from_slice(&[0xcd; 32]).expect("32 bytes, within curve order");
//! let public_key = PublicKey::from_secret_key(&secp, &secret_key);
//! // This is unsafe unless the supplied byte slice is the output of a cryptographic hash function.
//! // See the above example for how to use this library together with bitcoin_hashes.
//! let message = Message::from_slice(&[0xab; 32]).expect("32 bytes");
//!
//! let sig = secp.sign(&message, &secret_key);
//! assert!(secp.verify(&message, &sig, &public_key).is_ok());
//! ```
//!
//! Users who only want to verify signatures can use a cheaper context, like so:
//!
//! ```rust
//! use secp256k1::{Secp256k1, Message, Signature, PublicKey};
//!
//! let secp = Secp256k1::verification_only();
//!
//! let public_key = PublicKey::from_slice(&[
//! 0x02,
//! 0xc6, 0x6e, 0x7d, 0x89, 0x66, 0xb5, 0xc5, 0x55,
//! 0xaf, 0x58, 0x05, 0x98, 0x9d, 0xa9, 0xfb, 0xf8,
//! 0xdb, 0x95, 0xe1, 0x56, 0x31, 0xce, 0x35, 0x8c,
//! 0x3a, 0x17, 0x10, 0xc9, 0x62, 0x67, 0x90, 0x63,
//! ]).expect("public keys must be 33 or 65 bytes, serialized according to SEC 2");
//!
//! let message = Message::from_slice(&[
//! 0xaa, 0xdf, 0x7d, 0xe7, 0x82, 0x03, 0x4f, 0xbe,
//! 0x3d, 0x3d, 0xb2, 0xcb, 0x13, 0xc0, 0xcd, 0x91,
//! 0xbf, 0x41, 0xcb, 0x08, 0xfa, 0xc7, 0xbd, 0x61,
//! 0xd5, 0x44, 0x53, 0xcf, 0x6e, 0x82, 0xb4, 0x50,
//! ]).expect("messages must be 32 bytes and are expected to be hashes");
//!
//! let sig = Signature::from_compact(&[
//! 0xdc, 0x4d, 0xc2, 0x64, 0xa9, 0xfe, 0xf1, 0x7a,
//! 0x3f, 0x25, 0x34, 0x49, 0xcf, 0x8c, 0x39, 0x7a,
//! 0xb6, 0xf1, 0x6f, 0xb3, 0xd6, 0x3d, 0x86, 0x94,
//! 0x0b, 0x55, 0x86, 0x82, 0x3d, 0xfd, 0x02, 0xae,
//! 0x3b, 0x46, 0x1b, 0xb4, 0x33, 0x6b, 0x5e, 0xcb,
//! 0xae, 0xfd, 0x66, 0x27, 0xaa, 0x92, 0x2e, 0xfc,
//! 0x04, 0x8f, 0xec, 0x0c, 0x88, 0x1c, 0x10, 0xc4,
//! 0xc9, 0x42, 0x8f, 0xca, 0x69, 0xc1, 0x32, 0xa2,
//! ]).expect("compact signatures are 64 bytes; DER signatures are 68-72 bytes");
//!
//! # #[cfg(not(fuzzing))]
//! assert!(secp.verify(&message, &sig, &public_key).is_ok());
//! ```
//!
//! Observe that the same code using, say [`signing_only`](struct.Secp256k1.html#method.signing_only)
//! to generate a context would simply not compile.
//!
// Coding conventions
#![deny(non_upper_case_globals)]
#![deny(non_camel_case_types)]
#![deny(non_snake_case)]
#![deny(unused_mut)]
#![warn(missing_docs)]
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
#![cfg_attr(all(test, feature = "unstable"), feature(test))]
#[macro_use]
pub extern crate secp256k1_sys;
pub use secp256k1_sys as ffi;
#[cfg(feature = "bitcoin_hashes")] pub extern crate bitcoin_hashes as hashes;
#[cfg(all(test, feature = "unstable"))] extern crate test;
#[cfg(any(test, feature = "rand"))] pub extern crate rand;
#[cfg(any(test))] extern crate rand_core;
#[cfg(feature = "serde")] pub extern crate serde;
#[cfg(all(test, feature = "serde"))] extern crate serde_test;
#[cfg(any(test, feature = "rand"))] use rand::Rng;
#[cfg(any(test, feature = "std"))] extern crate core;
#[cfg(all(test, target_arch = "wasm32"))] extern crate wasm_bindgen_test;
#[cfg(feature = "alloc")] extern crate alloc;
#[macro_use]
mod macros;
#[macro_use]
mod secret;
mod context;
mod key;
pub mod constants;
pub mod ecdh;
pub mod schnorrsig;
#[cfg(feature = "recovery")]
pub mod recovery;
#[cfg(feature = "serde")]
mod serde_util;
pub use key::SecretKey;
pub use key::PublicKey;
pub use key::ONE_KEY;
pub use context::*;
use core::marker::PhantomData;
use core::ops::Deref;
use core::{mem, fmt, ptr, str};
use ffi::{CPtr, types::AlignedType};
#[cfg(feature = "global-context-less-secure")]
pub use context::global::SECP256K1;
#[cfg(feature = "bitcoin_hashes")]
use hashes::Hash;
/// An ECDSA signature
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Signature(ffi::Signature);
/// A DER serialized Signature
#[derive(Copy, Clone)]
pub struct SerializedSignature {
data: [u8; 72],
len: usize,
}
impl fmt::Debug for Signature {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl fmt::Display for Signature {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let sig = self.serialize_der();
for v in sig.iter() {
write!(f, "{:02x}", v)?;
}
Ok(())
}
}
impl str::FromStr for Signature {
type Err = Error;
fn from_str(s: &str) -> Result {
let mut res = [0u8; 72];
match from_hex(s, &mut res) {
Ok(x) => Signature::from_der(&res[0..x]),
_ => Err(Error::InvalidSignature),
}
}
}
/// Trait describing something that promises to be a 32-byte random number; in particular,
/// it has negligible probability of being zero or overflowing the group order. Such objects
/// may be converted to `Message`s without any error paths.
pub trait ThirtyTwoByteHash {
/// Converts the object into a 32-byte array
fn into_32(self) -> [u8; 32];
}
#[cfg(feature = "bitcoin_hashes")]
impl ThirtyTwoByteHash for hashes::sha256::Hash {
fn into_32(self) -> [u8; 32] {
self.into_inner()
}
}
#[cfg(feature = "bitcoin_hashes")]
impl ThirtyTwoByteHash for hashes::sha256d::Hash {
fn into_32(self) -> [u8; 32] {
self.into_inner()
}
}
#[cfg(feature = "bitcoin_hashes")]
impl ThirtyTwoByteHash for hashes::sha256t::Hash {
fn into_32(self) -> [u8; 32] {
self.into_inner()
}
}
impl SerializedSignature {
/// Get a pointer to the underlying data with the specified capacity.
pub(crate) fn get_data_mut_ptr(&mut self) -> *mut u8 {
self.data.as_mut_ptr()
}
/// Get the capacity of the underlying data buffer.
pub fn capacity(&self) -> usize {
self.data.len()
}
/// Get the len of the used data.
pub fn len(&self) -> usize {
self.len
}
/// Set the length of the object.
pub(crate) fn set_len(&mut self, len: usize) {
self.len = len;
}
/// Convert the serialized signature into the Signature struct.
/// (This DER deserializes it)
pub fn to_signature(&self) -> Result {
Signature::from_der(&self)
}
/// Create a SerializedSignature from a Signature.
/// (this DER serializes it)
pub fn from_signature(sig: &Signature) -> SerializedSignature {
sig.serialize_der()
}
/// Check if the space is zero.
pub fn is_empty(&self) -> bool { self.len() == 0 }
}
impl Signature {
#[inline]
/// Converts a DER-encoded byte slice to a signature
pub fn from_der(data: &[u8]) -> Result {
if data.is_empty() {return Err(Error::InvalidSignature);}
unsafe {
let mut ret = ffi::Signature::new();
if ffi::secp256k1_ecdsa_signature_parse_der(
ffi::secp256k1_context_no_precomp,
&mut ret,
data.as_c_ptr(),
data.len() as usize,
) == 1
{
Ok(Signature(ret))
} else {
Err(Error::InvalidSignature)
}
}
}
/// Converts a 64-byte compact-encoded byte slice to a signature
pub fn from_compact(data: &[u8]) -> Result {
if data.len() != 64 {
return Err(Error::InvalidSignature)
}
unsafe {
let mut ret = ffi::Signature::new();
if ffi::secp256k1_ecdsa_signature_parse_compact(
ffi::secp256k1_context_no_precomp,
&mut ret,
data.as_c_ptr(),
) == 1
{
Ok(Signature(ret))
} else {
Err(Error::InvalidSignature)
}
}
}
/// Converts a "lax DER"-encoded byte slice to a signature. This is basically
/// only useful for validating signatures in the Bitcoin blockchain from before
/// 2016. It should never be used in new applications. This library does not
/// support serializing to this "format"
pub fn from_der_lax(data: &[u8]) -> Result {
if data.is_empty() {return Err(Error::InvalidSignature);}
unsafe {
let mut ret = ffi::Signature::new();
if ffi::ecdsa_signature_parse_der_lax(
ffi::secp256k1_context_no_precomp,
&mut ret,
data.as_c_ptr(),
data.len() as usize,
) == 1
{
Ok(Signature(ret))
} else {
Err(Error::InvalidSignature)
}
}
}
/// Normalizes a signature to a "low S" form. In ECDSA, signatures are
/// of the form (r, s) where r and s are numbers lying in some finite
/// field. The verification equation will pass for (r, s) iff it passes
/// for (r, -s), so it is possible to ``modify'' signatures in transit
/// by flipping the sign of s. This does not constitute a forgery since
/// the signed message still cannot be changed, but for some applications,
/// changing even the signature itself can be a problem. Such applications
/// require a "strong signature". It is believed that ECDSA is a strong
/// signature except for this ambiguity in the sign of s, so to accommodate
/// these applications libsecp256k1 will only accept signatures for which
/// s is in the lower half of the field range. This eliminates the
/// ambiguity.
///
/// However, for some systems, signatures with high s-values are considered
/// valid. (For example, parsing the historic Bitcoin blockchain requires
/// this.) For these applications we provide this normalization function,
/// which ensures that the s value lies in the lower half of its range.
pub fn normalize_s(&mut self) {
unsafe {
// Ignore return value, which indicates whether the sig
// was already normalized. We don't care.
ffi::secp256k1_ecdsa_signature_normalize(
ffi::secp256k1_context_no_precomp,
self.as_mut_c_ptr(),
self.as_c_ptr(),
);
}
}
/// Obtains a raw pointer suitable for use with FFI functions
#[inline]
pub fn as_ptr(&self) -> *const ffi::Signature {
&self.0
}
/// Obtains a raw mutable pointer suitable for use with FFI functions
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut ffi::Signature {
&mut self.0
}
#[inline]
/// Serializes the signature in DER format
pub fn serialize_der(&self) -> SerializedSignature {
let mut ret = SerializedSignature::default();
let mut len: usize = ret.capacity();
unsafe {
let err = ffi::secp256k1_ecdsa_signature_serialize_der(
ffi::secp256k1_context_no_precomp,
ret.get_data_mut_ptr(),
&mut len,
self.as_c_ptr(),
);
debug_assert!(err == 1);
ret.set_len(len);
}
ret
}
#[inline]
/// Serializes the signature in compact format
pub fn serialize_compact(&self) -> [u8; 64] {
let mut ret = [0u8; 64];
unsafe {
let err = ffi::secp256k1_ecdsa_signature_serialize_compact(
ffi::secp256k1_context_no_precomp,
ret.as_mut_c_ptr(),
self.as_c_ptr(),
);
debug_assert!(err == 1);
}
ret
}
}
impl CPtr for Signature {
type Target = ffi::Signature;
fn as_c_ptr(&self) -> *const Self::Target {
self.as_ptr()
}
fn as_mut_c_ptr(&mut self) -> *mut Self::Target {
self.as_mut_ptr()
}
}
/// Creates a new signature from a FFI signature
impl From for Signature {
#[inline]
fn from(sig: ffi::Signature) -> Signature {
Signature(sig)
}
}
#[cfg(feature = "serde")]
impl ::serde::Serialize for Signature {
fn serialize(&self, s: S) -> Result {
if s.is_human_readable() {
s.collect_str(self)
} else {
s.serialize_bytes(&self.serialize_der())
}
}
}
#[cfg(feature = "serde")]
impl<'de> ::serde::Deserialize<'de> for Signature {
fn deserialize>(d: D) -> Result {
if d.is_human_readable() {
d.deserialize_str(serde_util::FromStrVisitor::new(
"a hex string representing a DER encoded Signature"
))
} else {
d.deserialize_bytes(serde_util::BytesVisitor::new(
"raw byte stream, that represents a DER encoded Signature",
Signature::from_der
))
}
}
}
/// A (hashed) message input to an ECDSA signature
pub struct Message([u8; constants::MESSAGE_SIZE]);
impl_array_newtype!(Message, u8, constants::MESSAGE_SIZE);
impl_pretty_debug!(Message);
impl Message {
/// **If you just want to sign an arbitrary message use `Message::from_hashed_data` instead.**
///
/// Converts a `MESSAGE_SIZE`-byte slice to a message object. **WARNING:** the slice has to be a
/// cryptographically secure hash of the actual message that's going to be signed. Otherwise
/// the result of signing isn't a
/// [secure signature](https://twitter.com/pwuille/status/1063582706288586752).
#[inline]
pub fn from_slice(data: &[u8]) -> Result {
match data.len() {
constants::MESSAGE_SIZE => {
let mut ret = [0u8; constants::MESSAGE_SIZE];
ret[..].copy_from_slice(data);
Ok(Message(ret))
}
_ => Err(Error::InvalidMessage)
}
}
/// Constructs a `Message` by hashing `data` with hash algorithm `H`. This requires the feature
/// `bitcoin_hashes` to be enabled.
/// ```rust
/// extern crate bitcoin_hashes;
/// # extern crate secp256k1;
/// use secp256k1::Message;
/// use bitcoin_hashes::sha256;
/// use bitcoin_hashes::Hash;
///
/// let m1 = Message::from_hashed_data::("Hello world!".as_bytes());
/// // is equivalent to
/// let m2 = Message::from(sha256::Hash::hash("Hello world!".as_bytes()));
///
/// assert_eq!(m1, m2);
/// ```
#[cfg(feature = "bitcoin_hashes")]
pub fn from_hashed_data(data: &[u8]) -> Self {
::hash(data).into()
}
}
impl From for Message {
/// Converts a 32-byte hash directly to a message without error paths
fn from(t: T) -> Message {
Message(t.into_32())
}
}
/// An ECDSA error
#[derive(Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Clone, Debug)]
pub enum Error {
/// Signature failed verification
IncorrectSignature,
/// Badly sized message ("messages" are actually fixed-sized digests; see the `MESSAGE_SIZE`
/// constant)
InvalidMessage,
/// Bad public key
InvalidPublicKey,
/// Bad signature
InvalidSignature,
/// Bad secret key
InvalidSecretKey,
/// Bad recovery id
InvalidRecoveryId,
/// Invalid tweak for add_*_assign or mul_*_assign
InvalidTweak,
/// Didn't pass enough memory to context creation with preallocated memory
NotEnoughMemory,
/// Bad set of public keys
InvalidPublicKeySum,
}
impl Error {
fn as_str(&self) -> &str {
match *self {
Error::IncorrectSignature => "secp: signature failed verification",
Error::InvalidMessage => "secp: message was not 32 bytes (do you need to hash?)",
Error::InvalidPublicKey => "secp: malformed public key",
Error::InvalidSignature => "secp: malformed signature",
Error::InvalidSecretKey => "secp: malformed or out-of-range secret key",
Error::InvalidRecoveryId => "secp: bad recovery id",
Error::InvalidTweak => "secp: bad tweak",
Error::NotEnoughMemory => "secp: not enough memory allocated",
Error::InvalidPublicKeySum => "secp: the sum of public keys was invalid or the input vector lengths was less than 1",
}
}
}
// Passthrough Debug to Display, since errors should be user-visible
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
f.write_str(self.as_str())
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
/// The secp256k1 engine, used to execute all signature operations
pub struct Secp256k1 {
ctx: *mut ffi::Context,
phantom: PhantomData,
size: usize,
}
// The underlying secp context does not contain any references to memory it does not own
unsafe impl Send for Secp256k1 {}
// The API does not permit any mutation of `Secp256k1` objects except through `&mut` references
unsafe impl Sync for Secp256k1 {}
impl PartialEq for Secp256k1 {
fn eq(&self, _other: &Secp256k1) -> bool { true }
}
impl Default for SerializedSignature {
fn default() -> SerializedSignature {
SerializedSignature {
data: [0u8; 72],
len: 0,
}
}
}
impl PartialEq for SerializedSignature {
fn eq(&self, other: &SerializedSignature) -> bool {
self.data[..self.len] == other.data[..other.len]
}
}
impl AsRef<[u8]> for SerializedSignature {
fn as_ref(&self) -> &[u8] {
&self.data[..self.len]
}
}
impl Deref for SerializedSignature {
type Target = [u8];
fn deref(&self) -> &[u8] {
&self.data[..self.len]
}
}
impl Eq for SerializedSignature {}
impl Eq for Secp256k1 { }
impl Drop for Secp256k1 {
fn drop(&mut self) {
unsafe {
ffi::secp256k1_context_preallocated_destroy(self.ctx);
C::deallocate(self.ctx as _, self.size);
}
}
}
impl fmt::Debug for Secp256k1 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "", self.ctx, C::DESCRIPTION)
}
}
impl Secp256k1 {
/// Getter for the raw pointer to the underlying secp256k1 context. This
/// shouldn't be needed with normal usage of the library. It enables
/// extending the Secp256k1 with more cryptographic algorithms outside of
/// this crate.
pub fn ctx(&self) -> &*mut ffi::Context {
&self.ctx
}
/// Returns the required memory for a preallocated context buffer in a generic manner(sign/verify/all)
pub fn preallocate_size_gen() -> usize {
let word_size = mem::size_of::();
let bytes = unsafe { ffi::secp256k1_context_preallocated_size(C::FLAGS) };
(bytes + word_size - 1) / word_size
}
/// (Re)randomizes the Secp256k1 context for cheap sidechannel resistance;
/// see comment in libsecp256k1 commit d2275795f by Gregory Maxwell. Requires
/// compilation with "rand" feature.
#[cfg(any(test, feature = "rand"))]
pub fn randomize(&mut self, rng: &mut R) {
let mut seed = [0u8; 32];
rng.fill_bytes(&mut seed);
self.seeded_randomize(&seed);
}
/// (Re)randomizes the Secp256k1 context for cheap sidechannel resistance given 32 bytes of
/// cryptographically-secure random data;
/// see comment in libsecp256k1 commit d2275795f by Gregory Maxwell.
pub fn seeded_randomize(&mut self, seed: &[u8; 32]) {
unsafe {
let err = ffi::secp256k1_context_randomize(self.ctx, seed.as_c_ptr());
// This function cannot fail; it has an error return for future-proofing.
// We do not expose this error since it is impossible to hit, and we have
// precedent for not exposing impossible errors (for example in
// `PublicKey::from_secret_key` where it is impossible to create an invalid
// secret key through the API.)
// However, if this DOES fail, the result is potentially weaker side-channel
// resistance, which is deadly and undetectable, so we take out the entire
// thread to be on the safe side.
assert_eq!(err, 1);
}
}
}
fn der_length_check(sig: &ffi::Signature, max_len: usize) -> bool {
let mut ser_ret = [0u8; 72];
let mut len: usize = ser_ret.len();
unsafe {
let err = ffi::secp256k1_ecdsa_signature_serialize_der(
ffi::secp256k1_context_no_precomp,
ser_ret.as_mut_c_ptr(),
&mut len,
sig,
);
debug_assert!(err == 1);
}
len <= max_len
}
fn compact_sig_has_zero_first_bit(sig: &ffi::Signature) -> bool {
let mut compact = [0u8; 64];
unsafe {
let err = ffi::secp256k1_ecdsa_signature_serialize_compact(
ffi::secp256k1_context_no_precomp,
compact.as_mut_c_ptr(),
sig,
);
debug_assert!(err == 1);
}
compact[0] < 0x80
}
impl Secp256k1 {
/// Constructs a signature for `msg` using the secret key `sk` and RFC6979 nonce
/// Requires a signing-capable context.
pub fn sign(&self, msg: &Message, sk: &key::SecretKey)
-> Signature {
unsafe {
let mut ret = ffi::Signature::new();
// We can assume the return value because it's not possible to construct
// an invalid signature from a valid `Message` and `SecretKey`
assert_eq!(ffi::secp256k1_ecdsa_sign(self.ctx, &mut ret, msg.as_c_ptr(),
sk.as_c_ptr(), ffi::secp256k1_nonce_function_rfc6979,
ptr::null()), 1);
Signature::from(ret)
}
}
fn sign_grind_with_check(
&self, msg: &Message,
sk: &key::SecretKey,
check: impl Fn(&ffi::Signature) -> bool) -> Signature {
let mut entropy_p : *const ffi::types::c_void = ptr::null();
let mut counter : u32 = 0;
let mut extra_entropy = [0u8; 32];
loop {
unsafe {
let mut ret = ffi::Signature::new();
// We can assume the return value because it's not possible to construct
// an invalid signature from a valid `Message` and `SecretKey`
assert_eq!(ffi::secp256k1_ecdsa_sign(self.ctx, &mut ret, msg.as_c_ptr(),
sk.as_c_ptr(), ffi::secp256k1_nonce_function_rfc6979,
entropy_p), 1);
if check(&ret) {
return Signature::from(ret);
}
counter += 1;
// From 1.32 can use `to_le_bytes` instead
let le_counter = counter.to_le();
let le_counter_bytes : [u8; 4] = mem::transmute(le_counter);
for (i, b) in le_counter_bytes.iter().enumerate() {
extra_entropy[i] = *b;
}
entropy_p = extra_entropy.as_ptr() as *const ffi::types::c_void;
// When fuzzing, these checks will usually spinloop forever, so just short-circuit them.
#[cfg(fuzzing)]
return Signature::from(ret);
}
}
}
/// Constructs a signature for `msg` using the secret key `sk`, RFC6979 nonce
/// and "grinds" the nonce by passing extra entropy if necessary to produce
/// a signature that is less than 71 - bytes_to_grund bytes. The number
/// of signing operation performed by this function is exponential in the
/// number of bytes grinded.
/// Requires a signing capable context.
pub fn sign_grind_r(&self, msg: &Message, sk: &key::SecretKey, bytes_to_grind: usize) -> Signature {
let len_check = |s : &ffi::Signature| der_length_check(s, 71 - bytes_to_grind);
return self.sign_grind_with_check(msg, sk, len_check);
}
/// Constructs a signature for `msg` using the secret key `sk`, RFC6979 nonce
/// and "grinds" the nonce by passing extra entropy if necessary to produce
/// a signature that is less than 71 bytes and compatible with the low r
/// signature implementation of bitcoin core. In average, this function
/// will perform two signing operations.
/// Requires a signing capable context.
pub fn sign_low_r(&self, msg: &Message, sk: &key::SecretKey) -> Signature {
return self.sign_grind_with_check(msg, sk, compact_sig_has_zero_first_bit)
}
/// Generates a random keypair. Convenience function for `key::SecretKey::new`
/// and `key::PublicKey::from_secret_key`; call those functions directly for
/// batch key generation. Requires a signing-capable context. Requires compilation
/// with the "rand" feature.
#[inline]
#[cfg(any(test, feature = "rand"))]
pub fn generate_keypair(&self, rng: &mut R)
-> (key::SecretKey, key::PublicKey) {
let sk = key::SecretKey::new(rng);
let pk = key::PublicKey::from_secret_key(self, &sk);
(sk, pk)
}
}
impl Secp256k1 {
/// Checks that `sig` is a valid ECDSA signature for `msg` using the public
/// key `pubkey`. Returns `Ok(())` on success. Note that this function cannot
/// be used for Bitcoin consensus checking since there may exist signatures
/// which OpenSSL would verify but not libsecp256k1, or vice-versa. Requires a
/// verify-capable context.
///
/// ```rust
/// # #[cfg(feature="rand")] {
/// # use secp256k1::rand::rngs::OsRng;
/// # use secp256k1::{Secp256k1, Message, Error};
/// #
/// # let secp = Secp256k1::new();
/// # let mut rng = OsRng::new().expect("OsRng");
/// # let (secret_key, public_key) = secp.generate_keypair(&mut rng);
/// #
/// let message = Message::from_slice(&[0xab; 32]).expect("32 bytes");
/// let sig = secp.sign(&message, &secret_key);
/// assert_eq!(secp.verify(&message, &sig, &public_key), Ok(()));
///
/// let message = Message::from_slice(&[0xcd; 32]).expect("32 bytes");
/// assert_eq!(secp.verify(&message, &sig, &public_key), Err(Error::IncorrectSignature));
/// # }
/// ```
#[inline]
pub fn verify(&self, msg: &Message, sig: &Signature, pk: &key::PublicKey) -> Result<(), Error> {
unsafe {
if ffi::secp256k1_ecdsa_verify(self.ctx, sig.as_c_ptr(), msg.as_c_ptr(), pk.as_c_ptr()) == 0 {
Err(Error::IncorrectSignature)
} else {
Ok(())
}
}
}
}
/// Utility function used to parse hex into a target u8 buffer. Returns
/// the number of bytes converted or an error if it encounters an invalid
/// character or unexpected end of string.
fn from_hex(hex: &str, target: &mut [u8]) -> Result {
if hex.len() % 2 == 1 || hex.len() > target.len() * 2 {
return Err(());
}
let mut b = 0;
let mut idx = 0;
for c in hex.bytes() {
b <<= 4;
match c {
b'A'..=b'F' => b |= c - b'A' + 10,
b'a'..=b'f' => b |= c - b'a' + 10,
b'0'..=b'9' => b |= c - b'0',
_ => return Err(()),
}
if (idx & 1) == 1 {
target[idx / 2] = b;
b = 0;
}
idx += 1;
}
Ok(idx / 2)
}
/// Utility function used to encode hex into a target u8 buffer. Returns
/// a reference to the target buffer as an str. Returns an error if the target
/// buffer isn't big enough.
#[inline]
fn to_hex<'a>(src: &[u8], target: &'a mut [u8]) -> Result<&'a str, ()> {
let hex_len = src.len() * 2;
if target.len() < hex_len {
return Err(());
}
const HEX_TABLE: [u8; 16] = *b"0123456789abcdef";
let mut i = 0;
for &b in src {
target[i] = HEX_TABLE[usize::from(b >> 4)];
target[i+1] = HEX_TABLE[usize::from(b & 0b00001111)];
i +=2 ;
}
let result = &target[..hex_len];
debug_assert!(str::from_utf8(result).is_ok());
return unsafe { Ok(str::from_utf8_unchecked(result)) };
}
#[cfg(test)]
mod tests {
use rand::{RngCore, thread_rng};
use std::str::FromStr;
use std::marker::PhantomData;
use key::{SecretKey, PublicKey};
use super::{from_hex, to_hex};
use super::constants;
use super::{Secp256k1, Signature, Message};
use super::Error::{InvalidMessage, IncorrectSignature, InvalidSignature};
use ffi::{self, types::AlignedType};
use context::*;
#[cfg(target_arch = "wasm32")]
use wasm_bindgen_test::wasm_bindgen_test as test;
macro_rules! hex {
($hex:expr) => ({
let mut result = vec![0; $hex.len() / 2];
from_hex($hex, &mut result).expect("valid hex string");
result
});
}
#[test]
fn test_manual_create_destroy() {
let ctx_full = unsafe { ffi::secp256k1_context_create(AllPreallocated::FLAGS) };
let ctx_sign = unsafe { ffi::secp256k1_context_create(SignOnlyPreallocated::FLAGS) };
let ctx_vrfy = unsafe { ffi::secp256k1_context_create(VerifyOnlyPreallocated::FLAGS) };
let size = 0;
let full: Secp256k1 = Secp256k1{ctx: ctx_full, phantom: PhantomData, size};
let sign: Secp256k1 = Secp256k1{ctx: ctx_sign, phantom: PhantomData, size};
let vrfy: Secp256k1 = Secp256k1{ctx: ctx_vrfy, phantom: PhantomData, size};
let (sk, pk) = full.generate_keypair(&mut thread_rng());
let msg = Message::from_slice(&[2u8; 32]).unwrap();
// Try signing
assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk));
let sig = full.sign(&msg, &sk);
// Try verifying
assert!(vrfy.verify(&msg, &sig, &pk).is_ok());
assert!(full.verify(&msg, &sig, &pk).is_ok());
drop(full);drop(sign);drop(vrfy);
unsafe { ffi::secp256k1_context_destroy(ctx_vrfy) };
unsafe { ffi::secp256k1_context_destroy(ctx_sign) };
unsafe { ffi::secp256k1_context_destroy(ctx_full) };
}
#[test]
fn test_raw_ctx() {
use std::mem::ManuallyDrop;
let ctx_full = Secp256k1::new();
let ctx_sign = Secp256k1::signing_only();
let ctx_vrfy = Secp256k1::verification_only();
let mut full = unsafe {Secp256k1::from_raw_all(ctx_full.ctx)};
let mut sign = unsafe {Secp256k1::from_raw_signining_only(ctx_sign.ctx)};
let mut vrfy = unsafe {Secp256k1::from_raw_verification_only(ctx_vrfy.ctx)};
let (sk, pk) = full.generate_keypair(&mut thread_rng());
let msg = Message::from_slice(&[2u8; 32]).unwrap();
// Try signing
assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk));
let sig = full.sign(&msg, &sk);
// Try verifying
assert!(vrfy.verify(&msg, &sig, &pk).is_ok());
assert!(full.verify(&msg, &sig, &pk).is_ok());
unsafe {
ManuallyDrop::drop(&mut full);
ManuallyDrop::drop(&mut sign);
ManuallyDrop::drop(&mut vrfy);
}
drop(ctx_full);
drop(ctx_sign);
drop(ctx_vrfy);
}
#[cfg(not(target_arch = "wasm32"))]
#[test]
#[ignore] // Panicking from C may trap (SIGILL) intentionally, so we test this manually.
fn test_panic_raw_ctx_should_terminate_abnormally() {
let ctx_vrfy = Secp256k1::verification_only();
let raw_ctx_verify_as_full = unsafe {Secp256k1::from_raw_all(ctx_vrfy.ctx)};
// Generating a key pair in verify context will panic (ARG_CHECK).
raw_ctx_verify_as_full.generate_keypair(&mut thread_rng());
}
#[test]
fn test_preallocation() {
let mut buf_ful = vec![AlignedType::zeroed(); Secp256k1::preallocate_size()];
let mut buf_sign = vec![AlignedType::zeroed(); Secp256k1::preallocate_signing_size()];
let mut buf_vfy = vec![AlignedType::zeroed(); Secp256k1::preallocate_verification_size()];
let full = Secp256k1::preallocated_new(&mut buf_ful).unwrap();
let sign = Secp256k1::preallocated_signing_only(&mut buf_sign).unwrap();
let vrfy = Secp256k1::preallocated_verification_only(&mut buf_vfy).unwrap();
// drop(buf_vfy); // The buffer can't get dropped before the context.
// println!("{:?}", buf_ful[5]); // Can't even read the data thanks to the borrow checker.
let (sk, pk) = full.generate_keypair(&mut thread_rng());
let msg = Message::from_slice(&[2u8; 32]).unwrap();
// Try signing
assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk));
let sig = full.sign(&msg, &sk);
// Try verifying
assert!(vrfy.verify(&msg, &sig, &pk).is_ok());
assert!(full.verify(&msg, &sig, &pk).is_ok());
}
#[test]
fn capabilities() {
let sign = Secp256k1::signing_only();
let vrfy = Secp256k1::verification_only();
let full = Secp256k1::new();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
// Try key generation
let (sk, pk) = full.generate_keypair(&mut thread_rng());
// Try signing
assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk));
let sig = full.sign(&msg, &sk);
// Try verifying
assert!(vrfy.verify(&msg, &sig, &pk).is_ok());
assert!(full.verify(&msg, &sig, &pk).is_ok());
// Check that we can produce keys from slices with no precomputation
let (pk_slice, sk_slice) = (&pk.serialize(), &sk[..]);
let new_pk = PublicKey::from_slice(pk_slice).unwrap();
let new_sk = SecretKey::from_slice(sk_slice).unwrap();
assert_eq!(sk, new_sk);
assert_eq!(pk, new_pk);
}
#[test]
fn signature_serialize_roundtrip() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
let mut msg = [0u8; 32];
for _ in 0..100 {
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, _) = s.generate_keypair(&mut thread_rng());
let sig1 = s.sign(&msg, &sk);
let der = sig1.serialize_der();
let sig2 = Signature::from_der(&der[..]).unwrap();
assert_eq!(sig1, sig2);
let compact = sig1.serialize_compact();
let sig2 = Signature::from_compact(&compact[..]).unwrap();
assert_eq!(sig1, sig2);
assert!(Signature::from_compact(&der[..]).is_err());
assert!(Signature::from_compact(&compact[0..4]).is_err());
assert!(Signature::from_der(&compact[..]).is_err());
assert!(Signature::from_der(&der[0..4]).is_err());
}
}
#[test]
fn signature_display() {
let hex_str = "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45";
let byte_str = hex!(hex_str);
assert_eq!(
Signature::from_der(&byte_str).expect("byte str decode"),
Signature::from_str(&hex_str).expect("byte str decode")
);
let sig = Signature::from_str(&hex_str).expect("byte str decode");
assert_eq!(&sig.to_string(), hex_str);
assert_eq!(&format!("{:?}", sig), hex_str);
assert!(Signature::from_str(
"3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\
72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab4"
).is_err());
assert!(Signature::from_str(
"3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\
72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab"
).is_err());
assert!(Signature::from_str(
"3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\
72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eabxx"
).is_err());
assert!(Signature::from_str(
"3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\
72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\
72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\
72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\
72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\
72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45"
).is_err());
// 71 byte signature
let hex_str = "30450221009d0bad576719d32ae76bedb34c774866673cbde3f4e12951555c9408e6ce774b02202876e7102f204f6bfee26c967c3926ce702cf97d4b010062e193f763190f6776";
let sig = Signature::from_str(&hex_str).expect("byte str decode");
assert_eq!(&format!("{}", sig), hex_str);
}
#[test]
fn signature_lax_der() {
macro_rules! check_lax_sig(
($hex:expr) => ({
let sig = hex!($hex);
assert!(Signature::from_der_lax(&sig[..]).is_ok());
})
);
check_lax_sig!("304402204c2dd8a9b6f8d425fcd8ee9a20ac73b619906a6367eac6cb93e70375225ec0160220356878eff111ff3663d7e6bf08947f94443845e0dcc54961664d922f7660b80c");
check_lax_sig!("304402202ea9d51c7173b1d96d331bd41b3d1b4e78e66148e64ed5992abd6ca66290321c0220628c47517e049b3e41509e9d71e480a0cdc766f8cdec265ef0017711c1b5336f");
check_lax_sig!("3045022100bf8e050c85ffa1c313108ad8c482c4849027937916374617af3f2e9a881861c9022023f65814222cab09d5ec41032ce9c72ca96a5676020736614de7b78a4e55325a");
check_lax_sig!("3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45");
check_lax_sig!("3046022100eaa5f90483eb20224616775891397d47efa64c68b969db1dacb1c30acdfc50aa022100cf9903bbefb1c8000cf482b0aeeb5af19287af20bd794de11d82716f9bae3db1");
check_lax_sig!("3045022047d512bc85842ac463ca3b669b62666ab8672ee60725b6c06759e476cebdc6c102210083805e93bd941770109bcc797784a71db9e48913f702c56e60b1c3e2ff379a60");
check_lax_sig!("3044022023ee4e95151b2fbbb08a72f35babe02830d14d54bd7ed1320e4751751d1baa4802206235245254f58fd1be6ff19ca291817da76da65c2f6d81d654b5185dd86b8acf");
}
#[test]
fn sign_and_verify() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
let mut msg = [0u8; 32];
for _ in 0..100 {
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, pk) = s.generate_keypair(&mut thread_rng());
let sig = s.sign(&msg, &sk);
assert_eq!(s.verify(&msg, &sig, &pk), Ok(()));
let low_r_sig = s.sign_low_r(&msg, &sk);
assert_eq!(s.verify(&msg, &low_r_sig, &pk), Ok(()));
let grind_r_sig = s.sign_grind_r(&msg, &sk, 1);
assert_eq!(s.verify(&msg, &grind_r_sig, &pk), Ok(()));
let compact = sig.serialize_compact();
if compact[0] < 0x80 {
assert_eq!(sig, low_r_sig);
} else {
#[cfg(not(fuzzing))] // mocked sig generation doesn't produce low-R sigs
assert_ne!(sig, low_r_sig);
}
#[cfg(not(fuzzing))] // mocked sig generation doesn't produce low-R sigs
assert!(super::compact_sig_has_zero_first_bit(&low_r_sig.0));
#[cfg(not(fuzzing))] // mocked sig generation doesn't produce low-R sigs
assert!(super::der_length_check(&grind_r_sig.0, 70));
}
}
#[test]
fn sign_and_verify_extreme() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
// Wild keys: 1, CURVE_ORDER - 1
// Wild msgs: 1, CURVE_ORDER - 1
let mut wild_keys = [[0u8; 32]; 2];
let mut wild_msgs = [[0u8; 32]; 2];
wild_keys[0][0] = 1;
wild_msgs[0][0] = 1;
use constants;
wild_keys[1][..].copy_from_slice(&constants::CURVE_ORDER[..]);
wild_msgs[1][..].copy_from_slice(&constants::CURVE_ORDER[..]);
wild_keys[1][0] -= 1;
wild_msgs[1][0] -= 1;
for key in wild_keys.iter().map(|k| SecretKey::from_slice(&k[..]).unwrap()) {
for msg in wild_msgs.iter().map(|m| Message::from_slice(&m[..]).unwrap()) {
let sig = s.sign(&msg, &key);
let low_r_sig = s.sign_low_r(&msg, &key);
let grind_r_sig = s.sign_grind_r(&msg, &key, 1);
let pk = PublicKey::from_secret_key(&s, &key);
assert_eq!(s.verify(&msg, &sig, &pk), Ok(()));
assert_eq!(s.verify(&msg, &low_r_sig, &pk), Ok(()));
assert_eq!(s.verify(&msg, &grind_r_sig, &pk), Ok(()));
}
}
}
#[test]
fn sign_and_verify_fail() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, pk) = s.generate_keypair(&mut thread_rng());
let sig = s.sign(&msg, &sk);
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
assert_eq!(s.verify(&msg, &sig, &pk), Err(IncorrectSignature));
}
#[test]
fn test_bad_slice() {
assert_eq!(Signature::from_der(&[0; constants::MAX_SIGNATURE_SIZE + 1]),
Err(InvalidSignature));
assert_eq!(Signature::from_der(&[0; constants::MAX_SIGNATURE_SIZE]),
Err(InvalidSignature));
assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE - 1]),
Err(InvalidMessage));
assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE + 1]),
Err(InvalidMessage));
assert!(Message::from_slice(&[0; constants::MESSAGE_SIZE]).is_ok());
assert!(Message::from_slice(&[1; constants::MESSAGE_SIZE]).is_ok());
}
#[test]
fn test_hex() {
let mut rng = thread_rng();
const AMOUNT: usize = 1024;
for i in 0..AMOUNT {
// 255 isn't a valid utf8 character.
let mut hex_buf = [255u8; AMOUNT*2];
let mut src_buf = [0u8; AMOUNT];
let mut result_buf = [0u8; AMOUNT];
let src = &mut src_buf[0..i];
rng.fill_bytes(src);
let hex = to_hex(src, &mut hex_buf).unwrap();
assert_eq!(from_hex(hex, &mut result_buf).unwrap(), i);
assert_eq!(src, &result_buf[..i]);
}
assert!(to_hex(&[1;2], &mut [0u8; 3]).is_err());
assert!(to_hex(&[1;2], &mut [0u8; 4]).is_ok());
assert!(from_hex("deadbeaf", &mut [0u8; 3]).is_err());
assert!(from_hex("deadbeaf", &mut [0u8; 4]).is_ok());
assert!(from_hex("a", &mut [0u8; 4]).is_err());
assert!(from_hex("ag", &mut [0u8; 4]).is_err());
}
#[test]
#[cfg(not(fuzzing))] // fixed sig vectors can't work with fuzz-sigs
fn test_low_s() {
// nb this is a transaction on testnet
// txid 8ccc87b72d766ab3128f03176bb1c98293f2d1f85ebfaf07b82cc81ea6891fa9
// input number 3
let sig = hex!("3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45");
let pk = hex!("031ee99d2b786ab3b0991325f2de8489246a6a3fdb700f6d0511b1d80cf5f4cd43");
let msg = hex!("a4965ca63b7d8562736ceec36dfa5a11bf426eb65be8ea3f7a49ae363032da0d");
let secp = Secp256k1::new();
let mut sig = Signature::from_der(&sig[..]).unwrap();
let pk = PublicKey::from_slice(&pk[..]).unwrap();
let msg = Message::from_slice(&msg[..]).unwrap();
// without normalization we expect this will fail
assert_eq!(secp.verify(&msg, &sig, &pk), Err(IncorrectSignature));
// after normalization it should pass
sig.normalize_s();
assert_eq!(secp.verify(&msg, &sig, &pk), Ok(()));
}
#[test]
#[cfg(not(fuzzing))] // fuzz-sigs have fixed size/format
fn test_low_r() {
let secp = Secp256k1::new();
let msg = hex!("887d04bb1cf1b1554f1b268dfe62d13064ca67ae45348d50d1392ce2d13418ac");
let msg = Message::from_slice(&msg).unwrap();
let sk = SecretKey::from_str("57f0148f94d13095cfda539d0da0d1541304b678d8b36e243980aab4e1b7cead").unwrap();
let expected_sig = hex!("047dd4d049db02b430d24c41c7925b2725bcd5a85393513bdec04b4dc363632b1054d0180094122b380f4cfa391e6296244da773173e78fc745c1b9c79f7b713");
let expected_sig = Signature::from_compact(&expected_sig).unwrap();
let sig = secp.sign_low_r(&msg, &sk);
assert_eq!(expected_sig, sig);
}
#[test]
#[cfg(not(fuzzing))] // fuzz-sigs have fixed size/format
fn test_grind_r() {
let secp = Secp256k1::new();
let msg = hex!("ef2d5b9a7c61865a95941d0f04285420560df7e9d76890ac1b8867b12ce43167");
let msg = Message::from_slice(&msg).unwrap();
let sk = SecretKey::from_str("848355d75fe1c354cf05539bb29b2015f1863065bcb6766b44d399ab95c3fa0b").unwrap();
let expected_sig = Signature::from_str("304302202ffc447100d518c8ba643d11f3e6a83a8640488e7d2537b1954b942408be6ea3021f26e1248dd1e52160c3a38af9769d91a1a806cab5f9d508c103464d3c02d6e1").unwrap();
let sig = secp.sign_grind_r(&msg, &sk, 2);
assert_eq!(expected_sig, sig);
}
#[cfg(feature = "serde")]
#[cfg(not(fuzzing))] // fixed sig vectors can't work with fuzz-sigs
#[test]
fn test_serde() {
use serde_test::{Configure, Token, assert_tokens};
let s = Secp256k1::new();
let msg = Message::from_slice(&[1; 32]).unwrap();
let sk = SecretKey::from_slice(&[2; 32]).unwrap();
let sig = s.sign(&msg, &sk);
static SIG_BYTES: [u8; 71] = [
48, 69, 2, 33, 0, 157, 11, 173, 87, 103, 25, 211, 42, 231, 107, 237,
179, 76, 119, 72, 102, 103, 60, 189, 227, 244, 225, 41, 81, 85, 92, 148,
8, 230, 206, 119, 75, 2, 32, 40, 118, 231, 16, 47, 32, 79, 107, 254,
226, 108, 150, 124, 57, 38, 206, 112, 44, 249, 125, 75, 1, 0, 98, 225,
147, 247, 99, 25, 15, 103, 118
];
static SIG_STR: &'static str = "\
30450221009d0bad576719d32ae76bedb34c774866673cbde3f4e12951555c9408e6ce77\
4b02202876e7102f204f6bfee26c967c3926ce702cf97d4b010062e193f763190f6776\
";
assert_tokens(&sig.compact(), &[Token::BorrowedBytes(&SIG_BYTES[..])]);
assert_tokens(&sig.compact(), &[Token::Bytes(&SIG_BYTES)]);
assert_tokens(&sig.compact(), &[Token::ByteBuf(&SIG_BYTES)]);
assert_tokens(&sig.readable(), &[Token::BorrowedStr(SIG_STR)]);
assert_tokens(&sig.readable(), &[Token::Str(SIG_STR)]);
assert_tokens(&sig.readable(), &[Token::String(SIG_STR)]);
}
#[cfg(feature = "global-context-less-secure")]
#[test]
fn test_global_context() {
use super::SECP256K1;
let sk_data = hex!("e6dd32f8761625f105c39a39f19370b3521d845a12456d60ce44debd0a362641");
let sk = SecretKey::from_slice(&sk_data).unwrap();
let msg_data = hex!("a4965ca63b7d8562736ceec36dfa5a11bf426eb65be8ea3f7a49ae363032da0d");
let msg = Message::from_slice(&msg_data).unwrap();
// Check usage as explicit parameter
let pk = PublicKey::from_secret_key(&SECP256K1, &sk);
// Check usage as self
let sig = SECP256K1.sign(&msg, &sk);
assert!(SECP256K1.verify(&msg, &sig, &pk).is_ok());
}
#[cfg(feature = "bitcoin_hashes")]
#[test]
fn test_from_hash() {
use hashes;
use hashes::Hash;
let test_bytes = "Hello world!".as_bytes();
let hash = hashes::sha256::Hash::hash(test_bytes);
let msg = Message::from(hash);
assert_eq!(msg.0, hash.into_inner());
assert_eq!(
msg,
Message::from_hashed_data::(test_bytes)
);
let hash = hashes::sha256d::Hash::hash(test_bytes);
let msg = Message::from(hash);
assert_eq!(msg.0, hash.into_inner());
assert_eq!(
msg,
Message::from_hashed_data::(test_bytes)
);
}
}
#[cfg(all(test, feature = "unstable"))]
mod benches {
use rand::{thread_rng, RngCore};
use test::{Bencher, black_box};
use super::{Secp256k1, Message};
#[bench]
pub fn generate(bh: &mut Bencher) {
struct CounterRng(u64);
impl RngCore for CounterRng {
fn next_u32(&mut self) -> u32 {
self.next_u64() as u32
}
fn next_u64(&mut self) -> u64 {
self.0 += 1;
self.0
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
for chunk in dest.chunks_mut(64/8) {
let rand: [u8; 64/8] = unsafe {std::mem::transmute(self.next_u64())};
chunk.copy_from_slice(&rand[..chunk.len()]);
}
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> {
Ok(self.fill_bytes(dest))
}
}
let s = Secp256k1::new();
let mut r = CounterRng(0);
bh.iter( || {
let (sk, pk) = s.generate_keypair(&mut r);
black_box(sk);
black_box(pk);
});
}
#[bench]
pub fn bench_sign(bh: &mut Bencher) {
let s = Secp256k1::new();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, _) = s.generate_keypair(&mut thread_rng());
bh.iter(|| {
let sig = s.sign(&msg, &sk);
black_box(sig);
});
}
#[bench]
pub fn bench_verify(bh: &mut Bencher) {
let s = Secp256k1::new();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, pk) = s.generate_keypair(&mut thread_rng());
let sig = s.sign(&msg, &sk);
bh.iter(|| {
let res = s.verify(&msg, &sig, &pk).unwrap();
black_box(res);
});
}
}