// Bitcoin secp256k1 bindings
// Written in 2015 by
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see .
//
//! # ECDH
//! Support for shared secret computations
//!
use core::ptr;
use core::ops::Deref;
use key::{SecretKey, PublicKey};
use ffi::{self, CPtr};
/// A tag used for recovering the public key from a compact signature
#[derive(Copy, Clone)]
pub struct SharedSecret {
data: [u8; 256],
len: usize,
}
impl_raw_debug!(SharedSecret);
// This implementes `From` for all `[u8; N]` arrays from 128bits(16 byte) to 2048bits allowing known hash lengths.
// Lower than 128 bits isn't resistant to collisions any more.
impl_from_array_len!(SharedSecret, 256, (16 20 28 32 48 64 96 128 256));
impl SharedSecret {
/// Create an empty SharedSecret
pub(crate) fn empty() -> SharedSecret {
SharedSecret {
data: [0u8; 256],
len: 0,
}
}
/// Get a pointer to the underlying data with the specified capacity.
pub(crate) fn get_data_mut_ptr(&mut self) -> *mut u8 {
self.data.as_mut_ptr()
}
/// Get the capacity of the underlying data buffer.
pub fn capacity(&self) -> usize {
self.data.len()
}
/// Get the len of the used data.
pub fn len(&self) -> usize {
self.len
}
/// Set the length of the object.
pub(crate) fn set_len(&mut self, len: usize) {
self.len = len;
}
}
impl PartialEq for SharedSecret {
fn eq(&self, other: &SharedSecret) -> bool {
&self.data[..self.len] == &other.data[..other.len]
}
}
impl AsRef<[u8]> for SharedSecret {
fn as_ref(&self) -> &[u8] {
&self.data[..self.len]
}
}
impl Deref for SharedSecret {
type Target = [u8];
fn deref(&self) -> &[u8] {
&self.data[..self.len]
}
}
impl SharedSecret {
/// Creates a new shared secret from a pubkey and secret key
#[inline]
pub fn new(point: &PublicKey, scalar: &SecretKey) -> SharedSecret {
let mut ss = SharedSecret::empty();
let res = unsafe {
ffi::secp256k1_ecdh(
ffi::secp256k1_context_no_precomp,
ss.get_data_mut_ptr(),
point.as_c_ptr(),
scalar.as_c_ptr(),
ffi::secp256k1_ecdh_hash_function_default,
ptr::null_mut(),
)
};
debug_assert_eq!(res, 1); // The default `secp256k1_ecdh_hash_function_default` should always return 1.
ss.set_len(32); // The default hash function is SHA256, which is 32 bytes long.
ss
}
}
#[cfg(test)]
mod tests {
use rand::thread_rng;
use super::SharedSecret;
use super::super::Secp256k1;
#[test]
fn ecdh() {
let s = Secp256k1::signing_only();
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
let sec1 = SharedSecret::new(&pk1, &sk2);
let sec2 = SharedSecret::new(&pk2, &sk1);
let sec_odd = SharedSecret::new(&pk1, &sk1);
assert_eq!(sec1, sec2);
assert!(sec_odd != sec2);
}
}
#[cfg(all(test, feature = "unstable"))]
mod benches {
use rand::thread_rng;
use test::{Bencher, black_box};
use super::SharedSecret;
use super::super::Secp256k1;
#[bench]
pub fn bench_ecdh(bh: &mut Bencher) {
let s = Secp256k1::signing_only();
let (sk, pk) = s.generate_keypair(&mut thread_rng());
let s = Secp256k1::new();
bh.iter( || {
let res = SharedSecret::new(&pk, &sk);
black_box(res);
});
}
}