/********************************************************************** * Copyright (c) 2014, 2015 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ /* This file contains code snippets that parse DER private keys with * various errors and violations. This is not a part of the library * itself, because the allowed violations are chosen arbitrarily and * do not follow or establish any standard. * * It also contains code to serialize private keys in a compatible * manner. * * These functions are meant for compatibility with applications * that require BER encoded keys. When working with secp256k1-specific * code, the simple 32-byte private keys normally used by the * library are sufficient. */ #ifndef _SECP256K1_CONTRIB_BER_PRIVATEKEY_H_ #define _SECP256K1_CONTRIB_BER_PRIVATEKEY_H_ #include #include /** Export a private key in DER format. * * Returns: 1 if the private key was valid. * Args: ctx: pointer to a context object, initialized for signing (cannot * be NULL) * Out: privkey: pointer to an array for storing the private key in BER. * Should have space for 279 bytes, and cannot be NULL. * privkeylen: Pointer to an int where the length of the private key in * privkey will be stored. * In: seckey: pointer to a 32-byte secret key to export. * compressed: 1 if the key should be exported in * compressed format, 0 otherwise * * This function is purely meant for compatibility with applications that * require BER encoded keys. When working with secp256k1-specific code, the * simple 32-byte private keys are sufficient. * * Note that this function does not guarantee correct DER output. It is * guaranteed to be parsable by secp256k1_ec_privkey_import_der */ static SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_export_der( const secp256k1_context* ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *seckey, int compressed ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4); /** Import a private key in DER format. * Returns: 1 if a private key was extracted. * Args: ctx: pointer to a context object (cannot be NULL). * Out: seckey: pointer to a 32-byte array for storing the private key. * (cannot be NULL). * In: privkey: pointer to a private key in DER format (cannot be NULL). * privkeylen: length of the DER private key pointed to be privkey. * * This function will accept more than just strict DER, and even allow some BER * violations. The public key stored inside the DER-encoded private key is not * verified for correctness, nor are the curve parameters. Use this function * only if you know in advance it is supposed to contain a secp256k1 private * key. */ static SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_import_der( const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *privkey, size_t privkeylen ) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3); static int secp256k1_eckey_privkey_parse(secp256k1_scalar *key, const unsigned char *privkey, size_t privkeylen) { unsigned char c[32] = {0}; const unsigned char *end = privkey + privkeylen; int lenb = 0; int len = 0; int overflow = 0; /* sequence header */ if (end < privkey+1 || *privkey != 0x30) { return 0; } privkey++; /* sequence length constructor */ if (end < privkey+1 || !(*privkey & 0x80)) { return 0; } lenb = *privkey & ~0x80; privkey++; if (lenb < 1 || lenb > 2) { return 0; } if (end < privkey+lenb) { return 0; } /* sequence length */ len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0); privkey += lenb; if (end < privkey+len) { return 0; } /* sequence element 0: version number (=1) */ if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01) { return 0; } privkey += 3; /* sequence element 1: octet string, up to 32 bytes */ if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1]) { return 0; } memcpy(c + 32 - privkey[1], privkey + 2, privkey[1]); secp256k1_scalar_set_b32(key, c, &overflow); memset(c, 0, 32); return !overflow; } static int secp256k1_eckey_privkey_serialize(const secp256k1_ecmult_gen_context *ctx, unsigned char *privkey, size_t *privkeylen, const secp256k1_scalar *key, int compressed) { secp256k1_gej rp; secp256k1_ge r; size_t pubkeylen = 0; secp256k1_ecmult_gen(ctx, &rp, key); secp256k1_ge_set_gej(&r, &rp); if (compressed) { static const unsigned char begin[] = { 0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20 }; static const unsigned char middle[] = { 0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48, 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04, 0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87, 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8, 0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E, 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00 }; unsigned char *ptr = privkey; memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin); secp256k1_scalar_get_b32(ptr, key); ptr += 32; memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle); if (!secp256k1_eckey_pubkey_serialize(&r, ptr, &pubkeylen, 1)) { return 0; } ptr += pubkeylen; *privkeylen = ptr - privkey; } else { static const unsigned char begin[] = { 0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20 }; static const unsigned char middle[] = { 0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48, 0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04, 0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87, 0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8, 0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11, 0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10, 0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E, 0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00 }; unsigned char *ptr = privkey; memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin); secp256k1_scalar_get_b32(ptr, key); ptr += 32; memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle); if (!secp256k1_eckey_pubkey_serialize(&r, ptr, &pubkeylen, 0)) { return 0; } ptr += pubkeylen; *privkeylen = ptr - privkey; } return 1; } static int secp256k1_ec_privkey_export_der(const secp256k1_context* ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *seckey, int compressed) { secp256k1_scalar key; int ret = 0; VERIFY_CHECK(ctx != NULL); ARG_CHECK(seckey != NULL); ARG_CHECK(privkey != NULL); ARG_CHECK(privkeylen != NULL); ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)); secp256k1_scalar_set_b32(&key, seckey, NULL); ret = secp256k1_eckey_privkey_serialize(&ctx->ecmult_gen_ctx, privkey, privkeylen, &key, compressed); secp256k1_scalar_clear(&key); return ret; } static int secp256k1_ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *privkey, size_t privkeylen) { secp256k1_scalar key; int ret = 0; ARG_CHECK(seckey != NULL); ARG_CHECK(privkey != NULL); (void)ctx; ret = secp256k1_eckey_privkey_parse(&key, privkey, privkeylen); if (ret) { secp256k1_scalar_get_b32(seckey, &key); } secp256k1_scalar_clear(&key); return ret; } #endif