/********************************************************************** * Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef SECP256K1_ECMULT_GEN_IMPL_H #define SECP256K1_ECMULT_GEN_IMPL_H #include "util.h" #include "scalar.h" #include "group.h" #include "ecmult_gen.h" #include "hash_impl.h" #ifdef USE_ECMULT_STATIC_PRECOMPUTATION #include "ecmult_static_context.h" #endif #ifndef USE_ECMULT_STATIC_PRECOMPUTATION static const size_t SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE = ROUND_TO_ALIGN(sizeof(*((secp256k1_ecmult_gen_context*) NULL)->prec)); #else static const size_t SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE = 0; #endif static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) { ctx->prec = NULL; } static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, void **prealloc) { #ifndef USE_ECMULT_STATIC_PRECOMPUTATION secp256k1_ge prec[1024]; secp256k1_gej gj; secp256k1_gej nums_gej; int i, j; size_t const prealloc_size = SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE; void* const base = *prealloc; #endif if (ctx->prec != NULL) { return; } #ifndef USE_ECMULT_STATIC_PRECOMPUTATION ctx->prec = (secp256k1_ge_storage (*)[64][16])manual_alloc(prealloc, prealloc_size, base, prealloc_size); /* get the generator */ secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g); /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */ { static const unsigned char nums_b32[33] = "The scalar for this x is unknown"; secp256k1_fe nums_x; secp256k1_ge nums_ge; int r; r = secp256k1_fe_set_b32(&nums_x, nums_b32); (void)r; VERIFY_CHECK(r); r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0); (void)r; VERIFY_CHECK(r); secp256k1_gej_set_ge(&nums_gej, &nums_ge); /* Add G to make the bits in x uniformly distributed. */ secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL); } /* compute prec. */ { secp256k1_gej precj[1024]; /* Jacobian versions of prec. */ secp256k1_gej gbase; secp256k1_gej numsbase; gbase = gj; /* 16^j * G */ numsbase = nums_gej; /* 2^j * nums. */ for (j = 0; j < 64; j++) { /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */ precj[j*16] = numsbase; for (i = 1; i < 16; i++) { secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL); } /* Multiply gbase by 16. */ for (i = 0; i < 4; i++) { secp256k1_gej_double_var(&gbase, &gbase, NULL); } /* Multiply numbase by 2. */ secp256k1_gej_double_var(&numsbase, &numsbase, NULL); if (j == 62) { /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */ secp256k1_gej_neg(&numsbase, &numsbase); secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL); } } secp256k1_ge_set_all_gej_var(prec, precj, 1024); } for (j = 0; j < 64; j++) { for (i = 0; i < 16; i++) { secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]); } } #else (void)prealloc; ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context; #endif secp256k1_ecmult_gen_blind(ctx, NULL); } static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) { return ctx->prec != NULL; } static void secp256k1_ecmult_gen_context_finalize_memcpy(secp256k1_ecmult_gen_context *dst, const secp256k1_ecmult_gen_context *src) { #ifndef USE_ECMULT_STATIC_PRECOMPUTATION if (src->prec != NULL) { /* We cast to void* first to suppress a -Wcast-align warning. */ dst->prec = (secp256k1_ge_storage (*)[64][16])(void*)((unsigned char*)dst + ((unsigned char*)src->prec - (unsigned char*)src)); } #else (void)dst, (void)src; #endif } static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) { secp256k1_scalar_clear(&ctx->blind); secp256k1_gej_clear(&ctx->initial); ctx->prec = NULL; } static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) { secp256k1_ge add; secp256k1_ge_storage adds; secp256k1_scalar gnb; int bits; int i, j; memset(&adds, 0, sizeof(adds)); *r = ctx->initial; /* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */ secp256k1_scalar_add(&gnb, gn, &ctx->blind); add.infinity = 0; for (j = 0; j < 64; j++) { bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4); for (i = 0; i < 16; i++) { /** This uses a conditional move to avoid any secret data in array indexes. * _Any_ use of secret indexes has been demonstrated to result in timing * sidechannels, even when the cache-line access patterns are uniform. * See also: * "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe * (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and * "Cache Attacks and Countermeasures: the Case of AES", RSA 2006, * by Dag Arne Osvik, Adi Shamir, and Eran Tromer * (http://www.tau.ac.il/~tromer/papers/cache.pdf) */ secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits); } secp256k1_ge_from_storage(&add, &adds); secp256k1_gej_add_ge(r, r, &add); } bits = 0; secp256k1_ge_clear(&add); secp256k1_scalar_clear(&gnb); } /* Setup blinding values for secp256k1_ecmult_gen. */ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) { secp256k1_scalar b; secp256k1_gej gb; secp256k1_fe s; unsigned char nonce32[32]; secp256k1_rfc6979_hmac_sha256 rng; int retry; unsigned char keydata[64] = {0}; if (seed32 == NULL) { /* When seed is NULL, reset the initial point and blinding value. */ secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g); secp256k1_gej_neg(&ctx->initial, &ctx->initial); secp256k1_scalar_set_int(&ctx->blind, 1); } /* The prior blinding value (if not reset) is chained forward by including it in the hash. */ secp256k1_scalar_get_b32(nonce32, &ctx->blind); /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data, * and guards against weak or adversarial seeds. This is a simpler and safer interface than * asking the caller for blinding values directly and expecting them to retry on failure. */ memcpy(keydata, nonce32, 32); if (seed32 != NULL) { memcpy(keydata + 32, seed32, 32); } secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32); memset(keydata, 0, sizeof(keydata)); /* Retry for out of range results to achieve uniformity. */ do { secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); retry = !secp256k1_fe_set_b32(&s, nonce32); retry |= secp256k1_fe_is_zero(&s); } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > Fp. */ /* Randomize the projection to defend against multiplier sidechannels. */ secp256k1_gej_rescale(&ctx->initial, &s); secp256k1_fe_clear(&s); do { secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); secp256k1_scalar_set_b32(&b, nonce32, &retry); /* A blinding value of 0 works, but would undermine the projection hardening. */ retry |= secp256k1_scalar_is_zero(&b); } while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > order. */ secp256k1_rfc6979_hmac_sha256_finalize(&rng); memset(nonce32, 0, 32); secp256k1_ecmult_gen(ctx, &gb, &b); secp256k1_scalar_negate(&b, &b); ctx->blind = b; ctx->initial = gb; secp256k1_scalar_clear(&b); secp256k1_gej_clear(&gb); } #endif /* SECP256K1_ECMULT_GEN_IMPL_H */