/*********************************************************************** * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_ECMULT_CONST_IMPL_H #define SECP256K1_ECMULT_CONST_IMPL_H #include "scalar.h" #include "group.h" #include "ecmult_const.h" #include "ecmult_impl.h" /** Fill a table 'pre' with precomputed odd multiples of a. * * The resulting point set is brought to a single constant Z denominator, stores the X and Y * coordinates as ge_storage points in pre, and stores the global Z in globalz. * It only operates on tables sized for WINDOW_A wnaf multiples. */ static void rustsecp256k1_v0_5_0_ecmult_odd_multiples_table_globalz_windowa(rustsecp256k1_v0_5_0_ge *pre, rustsecp256k1_v0_5_0_fe *globalz, const rustsecp256k1_v0_5_0_gej *a) { rustsecp256k1_v0_5_0_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)]; rustsecp256k1_v0_5_0_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)]; /* Compute the odd multiples in Jacobian form. */ rustsecp256k1_v0_5_0_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a); /* Bring them to the same Z denominator. */ rustsecp256k1_v0_5_0_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr); } /* This is like `ECMULT_TABLE_GET_GE` but is constant time */ #define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \ int m = 0; \ /* Extract the sign-bit for a constant time absolute-value. */ \ int mask = (n) >> (sizeof(n) * CHAR_BIT - 1); \ int abs_n = ((n) + mask) ^ mask; \ int idx_n = abs_n >> 1; \ rustsecp256k1_v0_5_0_fe neg_y; \ VERIFY_CHECK(((n) & 1) == 1); \ VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ VERIFY_SETUP(rustsecp256k1_v0_5_0_fe_clear(&(r)->x)); \ VERIFY_SETUP(rustsecp256k1_v0_5_0_fe_clear(&(r)->y)); \ /* Unconditionally set r->x = (pre)[m].x. r->y = (pre)[m].y. because it's either the correct one \ * or will get replaced in the later iterations, this is needed to make sure `r` is initialized. */ \ (r)->x = (pre)[m].x; \ (r)->y = (pre)[m].y; \ for (m = 1; m < ECMULT_TABLE_SIZE(w); m++) { \ /* This loop is used to avoid secret data in array indices. See * the comment in ecmult_gen_impl.h for rationale. */ \ rustsecp256k1_v0_5_0_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \ rustsecp256k1_v0_5_0_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \ } \ (r)->infinity = 0; \ rustsecp256k1_v0_5_0_fe_negate(&neg_y, &(r)->y, 1); \ rustsecp256k1_v0_5_0_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \ } while(0) /** Convert a number to WNAF notation. * The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val. * It has the following guarantees: * - each wnaf[i] an odd integer between -(1 << w) and (1 << w) * - each wnaf[i] is nonzero * - the number of words set is always WNAF_SIZE(w) + 1 * * Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar * Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.) * CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlag Berlin Heidelberg 2003 * * Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335 */ static int rustsecp256k1_v0_5_0_wnaf_const(int *wnaf, const rustsecp256k1_v0_5_0_scalar *scalar, int w, int size) { int global_sign; int skew; int word = 0; /* 1 2 3 */ int u_last; int u; int flip; rustsecp256k1_v0_5_0_scalar s = *scalar; VERIFY_CHECK(w > 0); VERIFY_CHECK(size > 0); /* Note that we cannot handle even numbers by negating them to be odd, as is * done in other implementations, since if our scalars were specified to have * width < 256 for performance reasons, their negations would have width 256 * and we'd lose any performance benefit. Instead, we use a variation of a * technique from Section 4.2 of the Okeya/Tagaki paper, which is to add 1 to the * number we are encoding when it is even, returning a skew value indicating * this, and having the caller compensate after doing the multiplication. * * In fact, we _do_ want to negate numbers to minimize their bit-lengths (and in * particular, to ensure that the outputs from the endomorphism-split fit into * 128 bits). If we negate, the parity of our number flips, affecting whether * we want to add to the scalar to ensure that it's odd. */ flip = rustsecp256k1_v0_5_0_scalar_is_high(&s); skew = flip ^ rustsecp256k1_v0_5_0_scalar_is_even(&s); rustsecp256k1_v0_5_0_scalar_cadd_bit(&s, 0, skew); global_sign = rustsecp256k1_v0_5_0_scalar_cond_negate(&s, flip); /* 4 */ u_last = rustsecp256k1_v0_5_0_scalar_shr_int(&s, w); do { int even; /* 4.1 4.4 */ u = rustsecp256k1_v0_5_0_scalar_shr_int(&s, w); /* 4.2 */ even = ((u & 1) == 0); /* In contrast to the original algorithm, u_last is always > 0 and * therefore we do not need to check its sign. In particular, it's easy * to see that u_last is never < 0 because u is never < 0. Moreover, * u_last is never = 0 because u is never even after a loop * iteration. The same holds analogously for the initial value of * u_last (in the first loop iteration). */ VERIFY_CHECK(u_last > 0); VERIFY_CHECK((u_last & 1) == 1); u += even; u_last -= even * (1 << w); /* 4.3, adapted for global sign change */ wnaf[word++] = u_last * global_sign; u_last = u; } while (word * w < size); wnaf[word] = u * global_sign; VERIFY_CHECK(rustsecp256k1_v0_5_0_scalar_is_zero(&s)); VERIFY_CHECK(word == WNAF_SIZE_BITS(size, w)); return skew; } static void rustsecp256k1_v0_5_0_ecmult_const(rustsecp256k1_v0_5_0_gej *r, const rustsecp256k1_v0_5_0_ge *a, const rustsecp256k1_v0_5_0_scalar *scalar, int size) { rustsecp256k1_v0_5_0_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; rustsecp256k1_v0_5_0_ge tmpa; rustsecp256k1_v0_5_0_fe Z; int skew_1; rustsecp256k1_v0_5_0_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)]; int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)]; int skew_lam; rustsecp256k1_v0_5_0_scalar q_1, q_lam; int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)]; int i; /* build wnaf representation for q. */ int rsize = size; if (size > 128) { rsize = 128; /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */ rustsecp256k1_v0_5_0_scalar_split_lambda(&q_1, &q_lam, scalar); skew_1 = rustsecp256k1_v0_5_0_wnaf_const(wnaf_1, &q_1, WINDOW_A - 1, 128); skew_lam = rustsecp256k1_v0_5_0_wnaf_const(wnaf_lam, &q_lam, WINDOW_A - 1, 128); } else { skew_1 = rustsecp256k1_v0_5_0_wnaf_const(wnaf_1, scalar, WINDOW_A - 1, size); skew_lam = 0; } /* Calculate odd multiples of a. * All multiples are brought to the same Z 'denominator', which is stored * in Z. Due to secp256k1' isomorphism we can do all operations pretending * that the Z coordinate was 1, use affine addition formulae, and correct * the Z coordinate of the result once at the end. */ VERIFY_CHECK(!a->infinity); rustsecp256k1_v0_5_0_gej_set_ge(r, a); rustsecp256k1_v0_5_0_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r); for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { rustsecp256k1_v0_5_0_fe_normalize_weak(&pre_a[i].y); } if (size > 128) { for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) { rustsecp256k1_v0_5_0_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]); } } /* first loop iteration (separated out so we can directly set r, rather * than having it start at infinity, get doubled several times, then have * its new value added to it) */ i = wnaf_1[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)]; VERIFY_CHECK(i != 0); ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A); rustsecp256k1_v0_5_0_gej_set_ge(r, &tmpa); if (size > 128) { i = wnaf_lam[WNAF_SIZE_BITS(rsize, WINDOW_A - 1)]; VERIFY_CHECK(i != 0); ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A); rustsecp256k1_v0_5_0_gej_add_ge(r, r, &tmpa); } /* remaining loop iterations */ for (i = WNAF_SIZE_BITS(rsize, WINDOW_A - 1) - 1; i >= 0; i--) { int n; int j; for (j = 0; j < WINDOW_A - 1; ++j) { rustsecp256k1_v0_5_0_gej_double(r, r); } n = wnaf_1[i]; ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); VERIFY_CHECK(n != 0); rustsecp256k1_v0_5_0_gej_add_ge(r, r, &tmpa); if (size > 128) { n = wnaf_lam[i]; ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A); VERIFY_CHECK(n != 0); rustsecp256k1_v0_5_0_gej_add_ge(r, r, &tmpa); } } { /* Correct for wNAF skew */ rustsecp256k1_v0_5_0_gej tmpj; rustsecp256k1_v0_5_0_ge_neg(&tmpa, &pre_a[0]); rustsecp256k1_v0_5_0_gej_add_ge(&tmpj, r, &tmpa); rustsecp256k1_v0_5_0_gej_cmov(r, &tmpj, skew_1); if (size > 128) { rustsecp256k1_v0_5_0_ge_neg(&tmpa, &pre_a_lam[0]); rustsecp256k1_v0_5_0_gej_add_ge(&tmpj, r, &tmpa); rustsecp256k1_v0_5_0_gej_cmov(r, &tmpj, skew_lam); } } rustsecp256k1_v0_5_0_fe_mul(&r->z, &r->z, &Z); } #endif /* SECP256K1_ECMULT_CONST_IMPL_H */