/*********************************************************************** * Copyright (c) 2016 Andrew Poelstra * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #if defined HAVE_CONFIG_H #include "libsecp256k1-config.h" #endif #include #include #include #ifndef EXHAUSTIVE_TEST_ORDER /* see group_impl.h for allowable values */ #define EXHAUSTIVE_TEST_ORDER 13 #endif #include "secp256k1.c" #include "../include/secp256k1.h" #include "assumptions.h" #include "group.h" #include "testrand_impl.h" #include "ecmult_compute_table_impl.h" #include "ecmult_gen_compute_table_impl.h" static int count = 2; /** stolen from tests.c */ void ge_equals_ge(const rustsecp256k1_v0_5_0_ge *a, const rustsecp256k1_v0_5_0_ge *b) { CHECK(a->infinity == b->infinity); if (a->infinity) { return; } CHECK(rustsecp256k1_v0_5_0_fe_equal_var(&a->x, &b->x)); CHECK(rustsecp256k1_v0_5_0_fe_equal_var(&a->y, &b->y)); } void ge_equals_gej(const rustsecp256k1_v0_5_0_ge *a, const rustsecp256k1_v0_5_0_gej *b) { rustsecp256k1_v0_5_0_fe z2s; rustsecp256k1_v0_5_0_fe u1, u2, s1, s2; CHECK(a->infinity == b->infinity); if (a->infinity) { return; } /* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */ rustsecp256k1_v0_5_0_fe_sqr(&z2s, &b->z); rustsecp256k1_v0_5_0_fe_mul(&u1, &a->x, &z2s); u2 = b->x; rustsecp256k1_v0_5_0_fe_normalize_weak(&u2); rustsecp256k1_v0_5_0_fe_mul(&s1, &a->y, &z2s); rustsecp256k1_v0_5_0_fe_mul(&s1, &s1, &b->z); s2 = b->y; rustsecp256k1_v0_5_0_fe_normalize_weak(&s2); CHECK(rustsecp256k1_v0_5_0_fe_equal_var(&u1, &u2)); CHECK(rustsecp256k1_v0_5_0_fe_equal_var(&s1, &s2)); } void random_fe(rustsecp256k1_v0_5_0_fe *x) { unsigned char bin[32]; do { rustsecp256k1_v0_5_0_testrand256(bin); if (rustsecp256k1_v0_5_0_fe_set_b32(x, bin)) { return; } } while(1); } /** END stolen from tests.c */ static uint32_t num_cores = 1; static uint32_t this_core = 0; SECP256K1_INLINE static int skip_section(uint64_t* iter) { if (num_cores == 1) return 0; *iter += 0xe7037ed1a0b428dbULL; return ((((uint32_t)*iter ^ (*iter >> 32)) * num_cores) >> 32) != this_core; } int rustsecp256k1_v0_5_0_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int attempt) { rustsecp256k1_v0_5_0_scalar s; int *idata = data; (void)msg32; (void)key32; (void)algo16; /* Some nonces cannot be used because they'd cause s and/or r to be zero. * The signing function has retry logic here that just re-calls the nonce * function with an increased `attempt`. So if attempt > 0 this means we * need to change the nonce to avoid an infinite loop. */ if (attempt > 0) { *idata = (*idata + 1) % EXHAUSTIVE_TEST_ORDER; } rustsecp256k1_v0_5_0_scalar_set_int(&s, *idata); rustsecp256k1_v0_5_0_scalar_get_b32(nonce32, &s); return 1; } void test_exhaustive_endomorphism(const rustsecp256k1_v0_5_0_ge *group) { int i; for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) { rustsecp256k1_v0_5_0_ge res; rustsecp256k1_v0_5_0_ge_mul_lambda(&res, &group[i]); ge_equals_ge(&group[i * EXHAUSTIVE_TEST_LAMBDA % EXHAUSTIVE_TEST_ORDER], &res); } } void test_exhaustive_addition(const rustsecp256k1_v0_5_0_ge *group, const rustsecp256k1_v0_5_0_gej *groupj) { int i, j; uint64_t iter = 0; /* Sanity-check (and check infinity functions) */ CHECK(rustsecp256k1_v0_5_0_ge_is_infinity(&group[0])); CHECK(rustsecp256k1_v0_5_0_gej_is_infinity(&groupj[0])); for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { CHECK(!rustsecp256k1_v0_5_0_ge_is_infinity(&group[i])); CHECK(!rustsecp256k1_v0_5_0_gej_is_infinity(&groupj[i])); } /* Check all addition formulae */ for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) { rustsecp256k1_v0_5_0_fe fe_inv; if (skip_section(&iter)) continue; rustsecp256k1_v0_5_0_fe_inv(&fe_inv, &groupj[j].z); for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) { rustsecp256k1_v0_5_0_ge zless_gej; rustsecp256k1_v0_5_0_gej tmp; /* add_var */ rustsecp256k1_v0_5_0_gej_add_var(&tmp, &groupj[i], &groupj[j], NULL); ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp); /* add_ge */ if (j > 0) { rustsecp256k1_v0_5_0_gej_add_ge(&tmp, &groupj[i], &group[j]); ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp); } /* add_ge_var */ rustsecp256k1_v0_5_0_gej_add_ge_var(&tmp, &groupj[i], &group[j], NULL); ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp); /* add_zinv_var */ zless_gej.infinity = groupj[j].infinity; zless_gej.x = groupj[j].x; zless_gej.y = groupj[j].y; rustsecp256k1_v0_5_0_gej_add_zinv_var(&tmp, &groupj[i], &zless_gej, &fe_inv); ge_equals_gej(&group[(i + j) % EXHAUSTIVE_TEST_ORDER], &tmp); } } /* Check doubling */ for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) { rustsecp256k1_v0_5_0_gej tmp; rustsecp256k1_v0_5_0_gej_double(&tmp, &groupj[i]); ge_equals_gej(&group[(2 * i) % EXHAUSTIVE_TEST_ORDER], &tmp); rustsecp256k1_v0_5_0_gej_double_var(&tmp, &groupj[i], NULL); ge_equals_gej(&group[(2 * i) % EXHAUSTIVE_TEST_ORDER], &tmp); } /* Check negation */ for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { rustsecp256k1_v0_5_0_ge tmp; rustsecp256k1_v0_5_0_gej tmpj; rustsecp256k1_v0_5_0_ge_neg(&tmp, &group[i]); ge_equals_ge(&group[EXHAUSTIVE_TEST_ORDER - i], &tmp); rustsecp256k1_v0_5_0_gej_neg(&tmpj, &groupj[i]); ge_equals_gej(&group[EXHAUSTIVE_TEST_ORDER - i], &tmpj); } } void test_exhaustive_ecmult(const rustsecp256k1_v0_5_0_ge *group, const rustsecp256k1_v0_5_0_gej *groupj) { int i, j, r_log; uint64_t iter = 0; for (r_log = 1; r_log < EXHAUSTIVE_TEST_ORDER; r_log++) { for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) { if (skip_section(&iter)) continue; for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) { rustsecp256k1_v0_5_0_gej tmp; rustsecp256k1_v0_5_0_scalar na, ng; rustsecp256k1_v0_5_0_scalar_set_int(&na, i); rustsecp256k1_v0_5_0_scalar_set_int(&ng, j); rustsecp256k1_v0_5_0_ecmult(&tmp, &groupj[r_log], &na, &ng); ge_equals_gej(&group[(i * r_log + j) % EXHAUSTIVE_TEST_ORDER], &tmp); if (i > 0) { rustsecp256k1_v0_5_0_ecmult_const(&tmp, &group[i], &ng, 256); ge_equals_gej(&group[(i * j) % EXHAUSTIVE_TEST_ORDER], &tmp); } } } } } typedef struct { rustsecp256k1_v0_5_0_scalar sc[2]; rustsecp256k1_v0_5_0_ge pt[2]; } ecmult_multi_data; static int ecmult_multi_callback(rustsecp256k1_v0_5_0_scalar *sc, rustsecp256k1_v0_5_0_ge *pt, size_t idx, void *cbdata) { ecmult_multi_data *data = (ecmult_multi_data*) cbdata; *sc = data->sc[idx]; *pt = data->pt[idx]; return 1; } void test_exhaustive_ecmult_multi(const rustsecp256k1_v0_5_0_context *ctx, const rustsecp256k1_v0_5_0_ge *group) { int i, j, k, x, y; uint64_t iter = 0; rustsecp256k1_v0_5_0_scratch *scratch = rustsecp256k1_v0_5_0_scratch_create(&ctx->error_callback, 4096); for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) { for (j = 0; j < EXHAUSTIVE_TEST_ORDER; j++) { for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) { for (x = 0; x < EXHAUSTIVE_TEST_ORDER; x++) { if (skip_section(&iter)) continue; for (y = 0; y < EXHAUSTIVE_TEST_ORDER; y++) { rustsecp256k1_v0_5_0_gej tmp; rustsecp256k1_v0_5_0_scalar g_sc; ecmult_multi_data data; rustsecp256k1_v0_5_0_scalar_set_int(&data.sc[0], i); rustsecp256k1_v0_5_0_scalar_set_int(&data.sc[1], j); rustsecp256k1_v0_5_0_scalar_set_int(&g_sc, k); data.pt[0] = group[x]; data.pt[1] = group[y]; rustsecp256k1_v0_5_0_ecmult_multi_var(&ctx->error_callback, scratch, &tmp, &g_sc, ecmult_multi_callback, &data, 2); ge_equals_gej(&group[(i * x + j * y + k) % EXHAUSTIVE_TEST_ORDER], &tmp); } } } } } rustsecp256k1_v0_5_0_scratch_destroy(&ctx->error_callback, scratch); } void r_from_k(rustsecp256k1_v0_5_0_scalar *r, const rustsecp256k1_v0_5_0_ge *group, int k, int* overflow) { rustsecp256k1_v0_5_0_fe x; unsigned char x_bin[32]; k %= EXHAUSTIVE_TEST_ORDER; x = group[k].x; rustsecp256k1_v0_5_0_fe_normalize(&x); rustsecp256k1_v0_5_0_fe_get_b32(x_bin, &x); rustsecp256k1_v0_5_0_scalar_set_b32(r, x_bin, overflow); } void test_exhaustive_verify(const rustsecp256k1_v0_5_0_context *ctx, const rustsecp256k1_v0_5_0_ge *group) { int s, r, msg, key; uint64_t iter = 0; for (s = 1; s < EXHAUSTIVE_TEST_ORDER; s++) { for (r = 1; r < EXHAUSTIVE_TEST_ORDER; r++) { for (msg = 1; msg < EXHAUSTIVE_TEST_ORDER; msg++) { for (key = 1; key < EXHAUSTIVE_TEST_ORDER; key++) { rustsecp256k1_v0_5_0_ge nonconst_ge; rustsecp256k1_v0_5_0_ecdsa_signature sig; rustsecp256k1_v0_5_0_pubkey pk; rustsecp256k1_v0_5_0_scalar sk_s, msg_s, r_s, s_s; rustsecp256k1_v0_5_0_scalar s_times_k_s, msg_plus_r_times_sk_s; int k, should_verify; unsigned char msg32[32]; if (skip_section(&iter)) continue; rustsecp256k1_v0_5_0_scalar_set_int(&s_s, s); rustsecp256k1_v0_5_0_scalar_set_int(&r_s, r); rustsecp256k1_v0_5_0_scalar_set_int(&msg_s, msg); rustsecp256k1_v0_5_0_scalar_set_int(&sk_s, key); /* Verify by hand */ /* Run through every k value that gives us this r and check that *one* works. * Note there could be none, there could be multiple, ECDSA is weird. */ should_verify = 0; for (k = 0; k < EXHAUSTIVE_TEST_ORDER; k++) { rustsecp256k1_v0_5_0_scalar check_x_s; r_from_k(&check_x_s, group, k, NULL); if (r_s == check_x_s) { rustsecp256k1_v0_5_0_scalar_set_int(&s_times_k_s, k); rustsecp256k1_v0_5_0_scalar_mul(&s_times_k_s, &s_times_k_s, &s_s); rustsecp256k1_v0_5_0_scalar_mul(&msg_plus_r_times_sk_s, &r_s, &sk_s); rustsecp256k1_v0_5_0_scalar_add(&msg_plus_r_times_sk_s, &msg_plus_r_times_sk_s, &msg_s); should_verify |= rustsecp256k1_v0_5_0_scalar_eq(&s_times_k_s, &msg_plus_r_times_sk_s); } } /* nb we have a "high s" rule */ should_verify &= !rustsecp256k1_v0_5_0_scalar_is_high(&s_s); /* Verify by calling verify */ rustsecp256k1_v0_5_0_ecdsa_signature_save(&sig, &r_s, &s_s); memcpy(&nonconst_ge, &group[sk_s], sizeof(nonconst_ge)); rustsecp256k1_v0_5_0_pubkey_save(&pk, &nonconst_ge); rustsecp256k1_v0_5_0_scalar_get_b32(msg32, &msg_s); CHECK(should_verify == rustsecp256k1_v0_5_0_ecdsa_verify(ctx, &sig, msg32, &pk)); } } } } } void test_exhaustive_sign(const rustsecp256k1_v0_5_0_context *ctx, const rustsecp256k1_v0_5_0_ge *group) { int i, j, k; uint64_t iter = 0; /* Loop */ for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { /* message */ for (j = 1; j < EXHAUSTIVE_TEST_ORDER; j++) { /* key */ if (skip_section(&iter)) continue; for (k = 1; k < EXHAUSTIVE_TEST_ORDER; k++) { /* nonce */ const int starting_k = k; int ret; rustsecp256k1_v0_5_0_ecdsa_signature sig; rustsecp256k1_v0_5_0_scalar sk, msg, r, s, expected_r; unsigned char sk32[32], msg32[32]; rustsecp256k1_v0_5_0_scalar_set_int(&msg, i); rustsecp256k1_v0_5_0_scalar_set_int(&sk, j); rustsecp256k1_v0_5_0_scalar_get_b32(sk32, &sk); rustsecp256k1_v0_5_0_scalar_get_b32(msg32, &msg); ret = rustsecp256k1_v0_5_0_ecdsa_sign(ctx, &sig, msg32, sk32, rustsecp256k1_v0_5_0_nonce_function_smallint, &k); CHECK(ret == 1); rustsecp256k1_v0_5_0_ecdsa_signature_load(ctx, &r, &s, &sig); /* Note that we compute expected_r *after* signing -- this is important * because our nonce-computing function function might change k during * signing. */ r_from_k(&expected_r, group, k, NULL); CHECK(r == expected_r); CHECK((k * s) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER || (k * (EXHAUSTIVE_TEST_ORDER - s)) % EXHAUSTIVE_TEST_ORDER == (i + r * j) % EXHAUSTIVE_TEST_ORDER); /* Overflow means we've tried every possible nonce */ if (k < starting_k) { break; } } } } /* We would like to verify zero-knowledge here by counting how often every * possible (s, r) tuple appears, but because the group order is larger * than the field order, when coercing the x-values to scalar values, some * appear more often than others, so we are actually not zero-knowledge. * (This effect also appears in the real code, but the difference is on the * order of 1/2^128th the field order, so the deviation is not useful to a * computationally bounded attacker.) */ } #ifdef ENABLE_MODULE_RECOVERY #include "src/modules/recovery/tests_exhaustive_impl.h" #endif #ifdef ENABLE_MODULE_EXTRAKEYS #include "src/modules/extrakeys/tests_exhaustive_impl.h" #endif #ifdef ENABLE_MODULE_SCHNORRSIG #include "src/modules/schnorrsig/tests_exhaustive_impl.h" #endif int main(int argc, char** argv) { int i; rustsecp256k1_v0_5_0_gej groupj[EXHAUSTIVE_TEST_ORDER]; rustsecp256k1_v0_5_0_ge group[EXHAUSTIVE_TEST_ORDER]; unsigned char rand32[32]; rustsecp256k1_v0_5_0_context *ctx; /* Disable buffering for stdout to improve reliability of getting * diagnostic information. Happens right at the start of main because * setbuf must be used before any other operation on the stream. */ setbuf(stdout, NULL); /* Also disable buffering for stderr because it's not guaranteed that it's * unbuffered on all systems. */ setbuf(stderr, NULL); printf("Exhaustive tests for order %lu\n", (unsigned long)EXHAUSTIVE_TEST_ORDER); /* find iteration count */ if (argc > 1) { count = strtol(argv[1], NULL, 0); } printf("test count = %i\n", count); /* find random seed */ rustsecp256k1_v0_5_0_testrand_init(argc > 2 ? argv[2] : NULL); /* set up split processing */ if (argc > 4) { num_cores = strtol(argv[3], NULL, 0); this_core = strtol(argv[4], NULL, 0); if (num_cores < 1 || this_core >= num_cores) { fprintf(stderr, "Usage: %s [count] [seed] [numcores] [thiscore]\n", argv[0]); return 1; } printf("running tests for core %lu (out of [0..%lu])\n", (unsigned long)this_core, (unsigned long)num_cores - 1); } /* Recreate the ecmult{,_gen} tables using the right generator (as selected via EXHAUSTIVE_TEST_ORDER) */ rustsecp256k1_v0_5_0_ecmult_gen_compute_table(&rustsecp256k1_v0_5_0_ecmult_gen_prec_table[0][0], &rustsecp256k1_v0_5_0_ge_const_g, ECMULT_GEN_PREC_BITS); rustsecp256k1_v0_5_0_ecmult_compute_two_tables(rustsecp256k1_v0_5_0_pre_g, rustsecp256k1_v0_5_0_pre_g_128, WINDOW_G, &rustsecp256k1_v0_5_0_ge_const_g); while (count--) { /* Build context */ ctx = rustsecp256k1_v0_5_0_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY); rustsecp256k1_v0_5_0_testrand256(rand32); CHECK(rustsecp256k1_v0_5_0_context_randomize(ctx, rand32)); /* Generate the entire group */ rustsecp256k1_v0_5_0_gej_set_infinity(&groupj[0]); rustsecp256k1_v0_5_0_ge_set_gej(&group[0], &groupj[0]); for (i = 1; i < EXHAUSTIVE_TEST_ORDER; i++) { rustsecp256k1_v0_5_0_gej_add_ge(&groupj[i], &groupj[i - 1], &rustsecp256k1_v0_5_0_ge_const_g); rustsecp256k1_v0_5_0_ge_set_gej(&group[i], &groupj[i]); if (count != 0) { /* Set a different random z-value for each Jacobian point, except z=1 is used in the last iteration. */ rustsecp256k1_v0_5_0_fe z; random_fe(&z); rustsecp256k1_v0_5_0_gej_rescale(&groupj[i], &z); } /* Verify against ecmult_gen */ { rustsecp256k1_v0_5_0_scalar scalar_i; rustsecp256k1_v0_5_0_gej generatedj; rustsecp256k1_v0_5_0_ge generated; rustsecp256k1_v0_5_0_scalar_set_int(&scalar_i, i); rustsecp256k1_v0_5_0_ecmult_gen(&ctx->ecmult_gen_ctx, &generatedj, &scalar_i); rustsecp256k1_v0_5_0_ge_set_gej(&generated, &generatedj); CHECK(group[i].infinity == 0); CHECK(generated.infinity == 0); CHECK(rustsecp256k1_v0_5_0_fe_equal_var(&generated.x, &group[i].x)); CHECK(rustsecp256k1_v0_5_0_fe_equal_var(&generated.y, &group[i].y)); } } /* Run the tests */ test_exhaustive_endomorphism(group); test_exhaustive_addition(group, groupj); test_exhaustive_ecmult(group, groupj); test_exhaustive_ecmult_multi(ctx, group); test_exhaustive_sign(ctx, group); test_exhaustive_verify(ctx, group); #ifdef ENABLE_MODULE_RECOVERY test_exhaustive_recovery(ctx, group); #endif #ifdef ENABLE_MODULE_EXTRAKEYS test_exhaustive_extrakeys(ctx, group); #endif #ifdef ENABLE_MODULE_SCHNORRSIG test_exhaustive_schnorrsig(ctx); #endif rustsecp256k1_v0_5_0_context_destroy(ctx); } rustsecp256k1_v0_5_0_testrand_finish(); printf("no problems found\n"); return 0; }