// Bitcoin secp256k1 bindings // Written in 2014 by // Dawid Ciężarkiewicz // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! # Secp256k1 //! Rust bindings for Pieter Wuille's secp256k1 library, which is used for //! fast and accurate manipulation of ECDSA signatures on the secp256k1 //! curve. Such signatures are used extensively by the Bitcoin network //! and its derivatives. //! //! To minimize dependencies, some functions are feature-gated. To generate //! random keys or to re-randomize a context object, compile with the "rand" //! feature. To de/serialize objects with serde, compile with "serde". //! //! Where possible, the bindings use the Rust type system to ensure that //! API usage errors are impossible. For example, the library uses context //! objects that contain precomputation tables which are created on object //! construction. Since this is a slow operation (10+ milliseconds, vs ~50 //! microseconds for typical crypto operations, on a 2.70 Ghz i7-6820HQ) //! the tables are optional, giving a performance boost for users who only //! care about signing, only care about verification, or only care about //! parsing. In the upstream library, if you attempt to sign a message using //! a context that does not support this, it will trigger an assertion //! failure and terminate the program. In `rust-secp256k1`, this is caught //! at compile-time; in fact, it is impossible to compile code that will //! trigger any assertion failures in the upstream library. //! //! ```rust //! # #[cfg(all(feature="rand", feature="bitcoin_hashes"))] { //! use secp256k1::rand::rngs::OsRng; //! use secp256k1::{Secp256k1, Message}; //! use secp256k1::bitcoin_hashes::sha256; //! //! let secp = Secp256k1::new(); //! let mut rng = OsRng::new().expect("OsRng"); //! let (secret_key, public_key) = secp.generate_keypair(&mut rng); //! let message = Message::from_hashed_data::("Hello World!".as_bytes()); //! //! let sig = secp.sign(&message, &secret_key); //! assert!(secp.verify(&message, &sig, &public_key).is_ok()); //! # } //! ``` //! //! The above code requires `rust-secp256k1` to be compiled with the `rand` and `bitcoin_hashes` //! feature enabled, to get access to [`generate_keypair`](struct.Secp256k1.html#method.generate_keypair) //! Alternately, keys and messages can be parsed from slices, like //! //! ```rust //! use self::secp256k1::{Secp256k1, Message, SecretKey, PublicKey}; //! //! let secp = Secp256k1::new(); //! let secret_key = SecretKey::from_slice(&[0xcd; 32]).expect("32 bytes, within curve order"); //! let public_key = PublicKey::from_secret_key(&secp, &secret_key); //! // This is unsafe unless the supplied byte slice is the output of a cryptographic hash function. //! // See the above example for how to use this library together with bitcoin_hashes. //! let message = Message::from_slice(&[0xab; 32]).expect("32 bytes"); //! //! let sig = secp.sign(&message, &secret_key); //! assert!(secp.verify(&message, &sig, &public_key).is_ok()); //! ``` //! //! Users who only want to verify signatures can use a cheaper context, like so: //! //! ```rust //! use secp256k1::{Secp256k1, Message, Signature, PublicKey}; //! //! let secp = Secp256k1::verification_only(); //! //! let public_key = PublicKey::from_slice(&[ //! 0x02, //! 0xc6, 0x6e, 0x7d, 0x89, 0x66, 0xb5, 0xc5, 0x55, //! 0xaf, 0x58, 0x05, 0x98, 0x9d, 0xa9, 0xfb, 0xf8, //! 0xdb, 0x95, 0xe1, 0x56, 0x31, 0xce, 0x35, 0x8c, //! 0x3a, 0x17, 0x10, 0xc9, 0x62, 0x67, 0x90, 0x63, //! ]).expect("public keys must be 33 or 65 bytes, serialized according to SEC 2"); //! //! let message = Message::from_slice(&[ //! 0xaa, 0xdf, 0x7d, 0xe7, 0x82, 0x03, 0x4f, 0xbe, //! 0x3d, 0x3d, 0xb2, 0xcb, 0x13, 0xc0, 0xcd, 0x91, //! 0xbf, 0x41, 0xcb, 0x08, 0xfa, 0xc7, 0xbd, 0x61, //! 0xd5, 0x44, 0x53, 0xcf, 0x6e, 0x82, 0xb4, 0x50, //! ]).expect("messages must be 32 bytes and are expected to be hashes"); //! //! let sig = Signature::from_compact(&[ //! 0xdc, 0x4d, 0xc2, 0x64, 0xa9, 0xfe, 0xf1, 0x7a, //! 0x3f, 0x25, 0x34, 0x49, 0xcf, 0x8c, 0x39, 0x7a, //! 0xb6, 0xf1, 0x6f, 0xb3, 0xd6, 0x3d, 0x86, 0x94, //! 0x0b, 0x55, 0x86, 0x82, 0x3d, 0xfd, 0x02, 0xae, //! 0x3b, 0x46, 0x1b, 0xb4, 0x33, 0x6b, 0x5e, 0xcb, //! 0xae, 0xfd, 0x66, 0x27, 0xaa, 0x92, 0x2e, 0xfc, //! 0x04, 0x8f, 0xec, 0x0c, 0x88, 0x1c, 0x10, 0xc4, //! 0xc9, 0x42, 0x8f, 0xca, 0x69, 0xc1, 0x32, 0xa2, //! ]).expect("compact signatures are 64 bytes; DER signatures are 68-72 bytes"); //! //! assert!(secp.verify(&message, &sig, &public_key).is_ok()); //! ``` //! //! Observe that the same code using, say [`signing_only`](struct.Secp256k1.html#method.signing_only) //! to generate a context would simply not compile. //! // Coding conventions #![deny(non_upper_case_globals)] #![deny(non_camel_case_types)] #![deny(non_snake_case)] #![deny(unused_mut)] #![warn(missing_docs)] #![cfg_attr(all(not(test), not(feature = "std")), no_std)] #![cfg_attr(all(test, feature = "unstable"), feature(test))] #[macro_use] pub extern crate secp256k1_sys; pub use secp256k1_sys as ffi; #[cfg(feature = "bitcoin_hashes")] pub extern crate bitcoin_hashes; #[cfg(all(test, feature = "unstable"))] extern crate test; #[cfg(any(test, feature = "rand"))] pub extern crate rand; #[cfg(any(test))] extern crate rand_core; #[cfg(feature = "serde")] pub extern crate serde; #[cfg(all(test, feature = "serde"))] extern crate serde_test; #[cfg(any(test, feature = "rand"))] use rand::Rng; #[cfg(any(test, feature = "std"))] extern crate core; #[cfg(all(test, target_arch = "wasm32"))] extern crate wasm_bindgen_test; use core::{fmt, ptr, str}; #[macro_use] mod macros; mod context; pub mod constants; pub mod ecdh; pub mod key; pub mod schnorrsig; #[cfg(feature = "recovery")] pub mod recovery; pub use key::SecretKey; pub use key::PublicKey; pub use context::*; use core::marker::PhantomData; use core::ops::Deref; use core::mem; use ffi::{CPtr, types::AlignedType}; #[cfg(feature = "global-context")] pub use context::global::SECP256K1; #[cfg(feature = "bitcoin_hashes")] use bitcoin_hashes::Hash; /// An ECDSA signature #[derive(Copy, Clone, PartialEq, Eq)] pub struct Signature(ffi::Signature); /// A DER serialized Signature #[derive(Copy, Clone)] pub struct SerializedSignature { data: [u8; 72], len: usize, } impl fmt::Debug for Signature { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(self, f) } } impl fmt::Display for Signature { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let sig = self.serialize_der(); for v in sig.iter() { write!(f, "{:02x}", v)?; } Ok(()) } } impl str::FromStr for Signature { type Err = Error; fn from_str(s: &str) -> Result { let mut res = [0; 72]; match from_hex(s, &mut res) { Ok(x) => Signature::from_der(&res[0..x]), _ => Err(Error::InvalidSignature), } } } /// Trait describing something that promises to be a 32-byte random number; in particular, /// it has negligible probability of being zero or overflowing the group order. Such objects /// may be converted to `Message`s without any error paths. pub trait ThirtyTwoByteHash { /// Converts the object into a 32-byte array fn into_32(self) -> [u8; 32]; } #[cfg(feature = "bitcoin_hashes")] impl ThirtyTwoByteHash for bitcoin_hashes::sha256::Hash { fn into_32(self) -> [u8; 32] { self.into_inner() } } #[cfg(feature = "bitcoin_hashes")] impl ThirtyTwoByteHash for bitcoin_hashes::sha256d::Hash { fn into_32(self) -> [u8; 32] { self.into_inner() } } #[cfg(feature = "bitcoin_hashes")] impl ThirtyTwoByteHash for bitcoin_hashes::sha256t::Hash { fn into_32(self) -> [u8; 32] { self.into_inner() } } impl SerializedSignature { /// Get a pointer to the underlying data with the specified capacity. pub(crate) fn get_data_mut_ptr(&mut self) -> *mut u8 { self.data.as_mut_ptr() } /// Get the capacity of the underlying data buffer. pub fn capacity(&self) -> usize { self.data.len() } /// Get the len of the used data. pub fn len(&self) -> usize { self.len } /// Set the length of the object. pub(crate) fn set_len(&mut self, len: usize) { self.len = len; } /// Convert the serialized signature into the Signature struct. /// (This DER deserializes it) pub fn to_signature(&self) -> Result { Signature::from_der(&self) } /// Create a SerializedSignature from a Signature. /// (this DER serializes it) pub fn from_signature(sig: &Signature) -> SerializedSignature { sig.serialize_der() } /// Check if the space is zero. pub fn is_empty(&self) -> bool { self.len() == 0 } } impl Signature { #[inline] /// Converts a DER-encoded byte slice to a signature pub fn from_der(data: &[u8]) -> Result { if data.is_empty() {return Err(Error::InvalidSignature);} unsafe { let mut ret = ffi::Signature::new(); if ffi::secp256k1_ecdsa_signature_parse_der( ffi::secp256k1_context_no_precomp, &mut ret, data.as_c_ptr(), data.len() as usize, ) == 1 { Ok(Signature(ret)) } else { Err(Error::InvalidSignature) } } } /// Converts a 64-byte compact-encoded byte slice to a signature pub fn from_compact(data: &[u8]) -> Result { if data.len() != 64 { return Err(Error::InvalidSignature) } unsafe { let mut ret = ffi::Signature::new(); if ffi::secp256k1_ecdsa_signature_parse_compact( ffi::secp256k1_context_no_precomp, &mut ret, data.as_c_ptr(), ) == 1 { Ok(Signature(ret)) } else { Err(Error::InvalidSignature) } } } /// Converts a "lax DER"-encoded byte slice to a signature. This is basically /// only useful for validating signatures in the Bitcoin blockchain from before /// 2016. It should never be used in new applications. This library does not /// support serializing to this "format" pub fn from_der_lax(data: &[u8]) -> Result { if data.is_empty() {return Err(Error::InvalidSignature);} unsafe { let mut ret = ffi::Signature::new(); if ffi::ecdsa_signature_parse_der_lax( ffi::secp256k1_context_no_precomp, &mut ret, data.as_c_ptr(), data.len() as usize, ) == 1 { Ok(Signature(ret)) } else { Err(Error::InvalidSignature) } } } /// Normalizes a signature to a "low S" form. In ECDSA, signatures are /// of the form (r, s) where r and s are numbers lying in some finite /// field. The verification equation will pass for (r, s) iff it passes /// for (r, -s), so it is possible to ``modify'' signatures in transit /// by flipping the sign of s. This does not constitute a forgery since /// the signed message still cannot be changed, but for some applications, /// changing even the signature itself can be a problem. Such applications /// require a "strong signature". It is believed that ECDSA is a strong /// signature except for this ambiguity in the sign of s, so to accommodate /// these applications libsecp256k1 will only accept signatures for which /// s is in the lower half of the field range. This eliminates the /// ambiguity. /// /// However, for some systems, signatures with high s-values are considered /// valid. (For example, parsing the historic Bitcoin blockchain requires /// this.) For these applications we provide this normalization function, /// which ensures that the s value lies in the lower half of its range. pub fn normalize_s(&mut self) { unsafe { // Ignore return value, which indicates whether the sig // was already normalized. We don't care. ffi::secp256k1_ecdsa_signature_normalize( ffi::secp256k1_context_no_precomp, self.as_mut_c_ptr(), self.as_c_ptr(), ); } } /// Obtains a raw pointer suitable for use with FFI functions #[inline] pub fn as_ptr(&self) -> *const ffi::Signature { &self.0 } /// Obtains a raw mutable pointer suitable for use with FFI functions #[inline] pub fn as_mut_ptr(&mut self) -> *mut ffi::Signature { &mut self.0 } #[inline] /// Serializes the signature in DER format pub fn serialize_der(&self) -> SerializedSignature { let mut ret = SerializedSignature::default(); let mut len: usize = ret.capacity(); unsafe { let err = ffi::secp256k1_ecdsa_signature_serialize_der( ffi::secp256k1_context_no_precomp, ret.get_data_mut_ptr(), &mut len, self.as_c_ptr(), ); debug_assert!(err == 1); ret.set_len(len); } ret } #[inline] /// Serializes the signature in compact format pub fn serialize_compact(&self) -> [u8; 64] { let mut ret = [0; 64]; unsafe { let err = ffi::secp256k1_ecdsa_signature_serialize_compact( ffi::secp256k1_context_no_precomp, ret.as_mut_c_ptr(), self.as_c_ptr(), ); debug_assert!(err == 1); } ret } } impl CPtr for Signature { type Target = ffi::Signature; fn as_c_ptr(&self) -> *const Self::Target { self.as_ptr() } fn as_mut_c_ptr(&mut self) -> *mut Self::Target { self.as_mut_ptr() } } /// Creates a new signature from a FFI signature impl From for Signature { #[inline] fn from(sig: ffi::Signature) -> Signature { Signature(sig) } } #[cfg(feature = "serde")] impl ::serde::Serialize for Signature { fn serialize(&self, s: S) -> Result { if s.is_human_readable() { s.collect_str(self) } else { s.serialize_bytes(&self.serialize_der()) } } } #[cfg(feature = "serde")] impl<'de> ::serde::Deserialize<'de> for Signature { fn deserialize>(d: D) -> Result { use ::serde::de::Error; use str::FromStr; if d.is_human_readable() { let sl: &str = ::serde::Deserialize::deserialize(d)?; Signature::from_str(sl).map_err(D::Error::custom) } else { let sl: &[u8] = ::serde::Deserialize::deserialize(d)?; Signature::from_der(sl).map_err(D::Error::custom) } } } /// A (hashed) message input to an ECDSA signature pub struct Message([u8; constants::MESSAGE_SIZE]); impl_array_newtype!(Message, u8, constants::MESSAGE_SIZE); impl_pretty_debug!(Message); impl Message { /// **If you just want to sign an arbitrary message use `Message::from_hashed_data` instead.** /// /// Converts a `MESSAGE_SIZE`-byte slice to a message object. **WARNING:** the slice has to be a /// cryptographically secure hash of the actual message that's going to be signed. Otherwise /// the result of signing isn't a /// [secure signature](https://twitter.com/pwuille/status/1063582706288586752). #[inline] pub fn from_slice(data: &[u8]) -> Result { match data.len() { constants::MESSAGE_SIZE => { let mut ret = [0; constants::MESSAGE_SIZE]; ret[..].copy_from_slice(data); Ok(Message(ret)) } _ => Err(Error::InvalidMessage) } } /// Constructs a `Message` by hashing `data` with hash algorithm `H`. This requires the feature /// `bitcoin_hashes` to be enabled. /// ```rust /// extern crate bitcoin_hashes; /// # extern crate secp256k1; /// use secp256k1::Message; /// use bitcoin_hashes::sha256; /// use bitcoin_hashes::Hash; /// /// let m1 = Message::from_hashed_data::("Hello world!".as_bytes()); /// // is equivalent to /// let m2 = Message::from(sha256::Hash::hash("Hello world!".as_bytes())); /// /// assert_eq!(m1, m2); /// ``` #[cfg(feature = "bitcoin_hashes")] pub fn from_hashed_data(data: &[u8]) -> Self { ::hash(data).into() } } impl From for Message { /// Converts a 32-byte hash directly to a message without error paths fn from(t: T) -> Message { Message(t.into_32()) } } /// An ECDSA error #[derive(Copy, PartialEq, Eq, Clone, Debug)] pub enum Error { /// Signature failed verification IncorrectSignature, /// Badly sized message ("messages" are actually fixed-sized digests; see the `MESSAGE_SIZE` /// constant) InvalidMessage, /// Bad public key InvalidPublicKey, /// Bad signature InvalidSignature, /// Bad secret key InvalidSecretKey, /// Bad recovery id InvalidRecoveryId, /// Invalid tweak for add_*_assign or mul_*_assign InvalidTweak, /// `tweak_add_check` failed on an xonly public key TweakCheckFailed, /// Didn't pass enough memory to context creation with preallocated memory NotEnoughMemory, } impl Error { fn as_str(&self) -> &str { match *self { Error::IncorrectSignature => "secp: signature failed verification", Error::InvalidMessage => "secp: message was not 32 bytes (do you need to hash?)", Error::InvalidPublicKey => "secp: malformed public key", Error::InvalidSignature => "secp: malformed signature", Error::InvalidSecretKey => "secp: malformed or out-of-range secret key", Error::InvalidRecoveryId => "secp: bad recovery id", Error::InvalidTweak => "secp: bad tweak", Error::TweakCheckFailed => "secp: xonly_pubkey_tewak_add_check failed", Error::NotEnoughMemory => "secp: not enough memory allocated", } } } // Passthrough Debug to Display, since errors should be user-visible impl fmt::Display for Error { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { f.write_str(self.as_str()) } } #[cfg(feature = "std")] impl std::error::Error for Error {} /// The secp256k1 engine, used to execute all signature operations pub struct Secp256k1 { ctx: *mut ffi::Context, phantom: PhantomData, size: usize, } // The underlying secp context does not contain any references to memory it does not own unsafe impl Send for Secp256k1 {} // The API does not permit any mutation of `Secp256k1` objects except through `&mut` references unsafe impl Sync for Secp256k1 {} impl PartialEq for Secp256k1 { fn eq(&self, _other: &Secp256k1) -> bool { true } } impl Default for SerializedSignature { fn default() -> SerializedSignature { SerializedSignature { data: [0u8; 72], len: 0, } } } impl PartialEq for SerializedSignature { fn eq(&self, other: &SerializedSignature) -> bool { self.data[..self.len] == other.data[..other.len] } } impl AsRef<[u8]> for SerializedSignature { fn as_ref(&self) -> &[u8] { &self.data[..self.len] } } impl Deref for SerializedSignature { type Target = [u8]; fn deref(&self) -> &[u8] { &self.data[..self.len] } } impl Eq for SerializedSignature {} impl Eq for Secp256k1 { } impl Drop for Secp256k1 { fn drop(&mut self) { unsafe { ffi::secp256k1_context_preallocated_destroy(self.ctx); C::deallocate(self.ctx as _, self.size); } } } impl fmt::Debug for Secp256k1 { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "", self.ctx, C::DESCRIPTION) } } impl Secp256k1 { /// Getter for the raw pointer to the underlying secp256k1 context. This /// shouldn't be needed with normal usage of the library. It enables /// extending the Secp256k1 with more cryptographic algorithms outside of /// this crate. pub fn ctx(&self) -> &*mut ffi::Context { &self.ctx } /// Returns the required memory for a preallocated context buffer in a generic manner(sign/verify/all) pub fn preallocate_size_gen() -> usize { let word_size = mem::size_of::(); let bytes = unsafe { ffi::secp256k1_context_preallocated_size(C::FLAGS) }; (bytes + word_size - 1) / word_size } /// (Re)randomizes the Secp256k1 context for cheap sidechannel resistance; /// see comment in libsecp256k1 commit d2275795f by Gregory Maxwell. Requires /// compilation with "rand" feature. #[cfg(any(test, feature = "rand"))] pub fn randomize(&mut self, rng: &mut R) { let mut seed = [0; 32]; rng.fill_bytes(&mut seed); unsafe { let err = ffi::secp256k1_context_randomize(self.ctx, seed.as_c_ptr()); // This function cannot fail; it has an error return for future-proofing. // We do not expose this error since it is impossible to hit, and we have // precedent for not exposing impossible errors (for example in // `PublicKey::from_secret_key` where it is impossible to create an invalid // secret key through the API.) // However, if this DOES fail, the result is potentially weaker side-channel // resistance, which is deadly and undetectable, so we take out the entire // thread to be on the safe side. assert_eq!(err, 1); } } } fn der_length_check(sig: &ffi::Signature, max_len: usize) -> bool { let mut ser_ret = [0; 72]; let mut len: usize = ser_ret.len(); unsafe { let err = ffi::secp256k1_ecdsa_signature_serialize_der( ffi::secp256k1_context_no_precomp, ser_ret.as_mut_c_ptr(), &mut len, sig, ); debug_assert!(err == 1); } len <= max_len } fn compact_sig_has_zero_first_bit(sig: &ffi::Signature) -> bool { let mut compact = [0; 64]; unsafe { let err = ffi::secp256k1_ecdsa_signature_serialize_compact( ffi::secp256k1_context_no_precomp, compact.as_mut_c_ptr(), sig, ); debug_assert!(err == 1); } compact[0] < 0x80 } impl Secp256k1 { /// Constructs a signature for `msg` using the secret key `sk` and RFC6979 nonce /// Requires a signing-capable context. pub fn sign(&self, msg: &Message, sk: &key::SecretKey) -> Signature { unsafe { let mut ret = ffi::Signature::new(); // We can assume the return value because it's not possible to construct // an invalid signature from a valid `Message` and `SecretKey` assert_eq!(ffi::secp256k1_ecdsa_sign(self.ctx, &mut ret, msg.as_c_ptr(), sk.as_c_ptr(), ffi::secp256k1_nonce_function_rfc6979, ptr::null()), 1); Signature::from(ret) } } fn sign_grind_with_check( &self, msg: &Message, sk: &key::SecretKey, check: impl Fn(&ffi::Signature) -> bool) -> Signature { let mut entropy_p : *const ffi::types::c_void = ptr::null(); let mut counter : u32 = 0; let mut extra_entropy = [0u8; 32]; loop { unsafe { let mut ret = ffi::Signature::new(); // We can assume the return value because it's not possible to construct // an invalid signature from a valid `Message` and `SecretKey` assert_eq!(ffi::secp256k1_ecdsa_sign(self.ctx, &mut ret, msg.as_c_ptr(), sk.as_c_ptr(), ffi::secp256k1_nonce_function_rfc6979, entropy_p), 1); if check(&ret) { return Signature::from(ret); } counter += 1; // From 1.32 can use `to_le_bytes` instead let le_counter = counter.to_le(); let le_counter_bytes : [u8; 4] = mem::transmute(le_counter); for (i, b) in le_counter_bytes.iter().enumerate() { extra_entropy[i] = *b; } entropy_p = extra_entropy.as_ptr() as *const ffi::types::c_void; } } } /// Constructs a signature for `msg` using the secret key `sk`, RFC6979 nonce /// and "grinds" the nonce by passing extra entropy if necessary to produce /// a signature that is less than 71 - bytes_to_grund bytes. The number /// of signing operation performed by this function is exponential in the /// number of bytes grinded. /// Requires a signing capable context. pub fn sign_grind_r(&self, msg: &Message, sk: &key::SecretKey, bytes_to_grind: usize) -> Signature { let len_check = |s : &ffi::Signature| der_length_check(s, 71 - bytes_to_grind); return self.sign_grind_with_check(msg, sk, len_check); } /// Constructs a signature for `msg` using the secret key `sk`, RFC6979 nonce /// and "grinds" the nonce by passing extra entropy if necessary to produce /// a signature that is less than 71 bytes and compatible with the low r /// signature implementation of bitcoin core. In average, this function /// will perform two signing operations. /// Requires a signing capable context. pub fn sign_low_r(&self, msg: &Message, sk: &key::SecretKey) -> Signature { return self.sign_grind_with_check(msg, sk, compact_sig_has_zero_first_bit) } /// Generates a random keypair. Convenience function for `key::SecretKey::new` /// and `key::PublicKey::from_secret_key`; call those functions directly for /// batch key generation. Requires a signing-capable context. Requires compilation /// with the "rand" feature. #[inline] #[cfg(any(test, feature = "rand"))] pub fn generate_keypair(&self, rng: &mut R) -> (key::SecretKey, key::PublicKey) { let sk = key::SecretKey::new(rng); let pk = key::PublicKey::from_secret_key(self, &sk); (sk, pk) } } impl Secp256k1 { /// Checks that `sig` is a valid ECDSA signature for `msg` using the public /// key `pubkey`. Returns `Ok(())` on success. Note that this function cannot /// be used for Bitcoin consensus checking since there may exist signatures /// which OpenSSL would verify but not libsecp256k1, or vice-versa. Requires a /// verify-capable context. /// /// ```rust /// # #[cfg(feature="rand")] { /// # use secp256k1::rand::rngs::OsRng; /// # use secp256k1::{Secp256k1, Message, Error}; /// # /// # let secp = Secp256k1::new(); /// # let mut rng = OsRng::new().expect("OsRng"); /// # let (secret_key, public_key) = secp.generate_keypair(&mut rng); /// # /// let message = Message::from_slice(&[0xab; 32]).expect("32 bytes"); /// let sig = secp.sign(&message, &secret_key); /// assert_eq!(secp.verify(&message, &sig, &public_key), Ok(())); /// /// let message = Message::from_slice(&[0xcd; 32]).expect("32 bytes"); /// assert_eq!(secp.verify(&message, &sig, &public_key), Err(Error::IncorrectSignature)); /// # } /// ``` #[inline] pub fn verify(&self, msg: &Message, sig: &Signature, pk: &key::PublicKey) -> Result<(), Error> { unsafe { if ffi::secp256k1_ecdsa_verify(self.ctx, sig.as_c_ptr(), msg.as_c_ptr(), pk.as_c_ptr()) == 0 { Err(Error::IncorrectSignature) } else { Ok(()) } } } } /// Utility function used to parse hex into a target u8 buffer. Returns /// the number of bytes converted or an error if it encounters an invalid /// character or unexpected end of string. fn from_hex(hex: &str, target: &mut [u8]) -> Result { if hex.len() % 2 == 1 || hex.len() > target.len() * 2 { return Err(()); } let mut b = 0; let mut idx = 0; for c in hex.bytes() { b <<= 4; match c { b'A'..=b'F' => b |= c - b'A' + 10, b'a'..=b'f' => b |= c - b'a' + 10, b'0'..=b'9' => b |= c - b'0', _ => return Err(()), } if (idx & 1) == 1 { target[idx / 2] = b; b = 0; } idx += 1; } Ok(idx / 2) } #[cfg(test)] mod tests { use rand::{RngCore, thread_rng}; use std::str::FromStr; use std::marker::PhantomData; use key::{SecretKey, PublicKey}; use super::from_hex; use super::constants; use super::{Secp256k1, Signature, Message}; use super::Error::{InvalidMessage, IncorrectSignature, InvalidSignature}; use ffi::{self, types::AlignedType}; use context::*; #[cfg(target_arch = "wasm32")] use wasm_bindgen_test::wasm_bindgen_test as test; macro_rules! hex { ($hex:expr) => ({ let mut result = vec![0; $hex.len() / 2]; from_hex($hex, &mut result).expect("valid hex string"); result }); } #[test] fn test_manual_create_destroy() { let ctx_full = unsafe { ffi::secp256k1_context_create(AllPreallocated::FLAGS) }; let ctx_sign = unsafe { ffi::secp256k1_context_create(SignOnlyPreallocated::FLAGS) }; let ctx_vrfy = unsafe { ffi::secp256k1_context_create(VerifyOnlyPreallocated::FLAGS) }; let size = 0; let full: Secp256k1 = Secp256k1{ctx: ctx_full, phantom: PhantomData, size}; let sign: Secp256k1 = Secp256k1{ctx: ctx_sign, phantom: PhantomData, size}; let vrfy: Secp256k1 = Secp256k1{ctx: ctx_vrfy, phantom: PhantomData, size}; let (sk, pk) = full.generate_keypair(&mut thread_rng()); let msg = Message::from_slice(&[2u8; 32]).unwrap(); // Try signing assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk)); let sig = full.sign(&msg, &sk); // Try verifying assert!(vrfy.verify(&msg, &sig, &pk).is_ok()); assert!(full.verify(&msg, &sig, &pk).is_ok()); drop(full);drop(sign);drop(vrfy); unsafe { ffi::secp256k1_context_destroy(ctx_vrfy) }; unsafe { ffi::secp256k1_context_destroy(ctx_sign) }; unsafe { ffi::secp256k1_context_destroy(ctx_full) }; } #[test] fn test_raw_ctx() { use std::mem::ManuallyDrop; let ctx_full = Secp256k1::new(); let ctx_sign = Secp256k1::signing_only(); let ctx_vrfy = Secp256k1::verification_only(); let mut full = unsafe {Secp256k1::from_raw_all(ctx_full.ctx)}; let mut sign = unsafe {Secp256k1::from_raw_signining_only(ctx_sign.ctx)}; let mut vrfy = unsafe {Secp256k1::from_raw_verification_only(ctx_vrfy.ctx)}; let (sk, pk) = full.generate_keypair(&mut thread_rng()); let msg = Message::from_slice(&[2u8; 32]).unwrap(); // Try signing assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk)); let sig = full.sign(&msg, &sk); // Try verifying assert!(vrfy.verify(&msg, &sig, &pk).is_ok()); assert!(full.verify(&msg, &sig, &pk).is_ok()); unsafe { ManuallyDrop::drop(&mut full); ManuallyDrop::drop(&mut sign); ManuallyDrop::drop(&mut vrfy); } drop(ctx_full); drop(ctx_sign); drop(ctx_vrfy); } #[cfg(not(target_arch = "wasm32"))] #[test] #[should_panic] fn test_panic_raw_ctx() { let ctx_vrfy = Secp256k1::verification_only(); let raw_ctx_verify_as_full = unsafe {Secp256k1::from_raw_all(ctx_vrfy.ctx)}; let (sk, _) = raw_ctx_verify_as_full.generate_keypair(&mut thread_rng()); let msg = Message::from_slice(&[2u8; 32]).unwrap(); // Try signing raw_ctx_verify_as_full.sign(&msg, &sk); } #[test] fn test_preallocation() { let mut buf_ful = vec![AlignedType::zeroed(); Secp256k1::preallocate_size()]; let mut buf_sign = vec![AlignedType::zeroed(); Secp256k1::preallocate_signing_size()]; let mut buf_vfy = vec![AlignedType::zeroed(); Secp256k1::preallocate_verification_size()]; let full = Secp256k1::preallocated_new(&mut buf_ful).unwrap(); let sign = Secp256k1::preallocated_signing_only(&mut buf_sign).unwrap(); let vrfy = Secp256k1::preallocated_verification_only(&mut buf_vfy).unwrap(); // drop(buf_vfy); // The buffer can't get dropped before the context. // println!("{:?}", buf_ful[5]); // Can't even read the data thanks to the borrow checker. let (sk, pk) = full.generate_keypair(&mut thread_rng()); let msg = Message::from_slice(&[2u8; 32]).unwrap(); // Try signing assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk)); let sig = full.sign(&msg, &sk); // Try verifying assert!(vrfy.verify(&msg, &sig, &pk).is_ok()); assert!(full.verify(&msg, &sig, &pk).is_ok()); } #[test] fn capabilities() { let sign = Secp256k1::signing_only(); let vrfy = Secp256k1::verification_only(); let full = Secp256k1::new(); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); // Try key generation let (sk, pk) = full.generate_keypair(&mut thread_rng()); // Try signing assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk)); let sig = full.sign(&msg, &sk); // Try verifying assert!(vrfy.verify(&msg, &sig, &pk).is_ok()); assert!(full.verify(&msg, &sig, &pk).is_ok()); // Check that we can produce keys from slices with no precomputation let (pk_slice, sk_slice) = (&pk.serialize(), &sk[..]); let new_pk = PublicKey::from_slice(pk_slice).unwrap(); let new_sk = SecretKey::from_slice(sk_slice).unwrap(); assert_eq!(sk, new_sk); assert_eq!(pk, new_pk); } #[test] fn signature_serialize_roundtrip() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let mut msg = [0; 32]; for _ in 0..100 { thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, _) = s.generate_keypair(&mut thread_rng()); let sig1 = s.sign(&msg, &sk); let der = sig1.serialize_der(); let sig2 = Signature::from_der(&der[..]).unwrap(); assert_eq!(sig1, sig2); let compact = sig1.serialize_compact(); let sig2 = Signature::from_compact(&compact[..]).unwrap(); assert_eq!(sig1, sig2); assert!(Signature::from_compact(&der[..]).is_err()); assert!(Signature::from_compact(&compact[0..4]).is_err()); assert!(Signature::from_der(&compact[..]).is_err()); assert!(Signature::from_der(&der[0..4]).is_err()); } } #[test] fn signature_display() { let hex_str = "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45"; let byte_str = hex!(hex_str); assert_eq!( Signature::from_der(&byte_str).expect("byte str decode"), Signature::from_str(&hex_str).expect("byte str decode") ); let sig = Signature::from_str(&hex_str).expect("byte str decode"); assert_eq!(&sig.to_string(), hex_str); assert_eq!(&format!("{:?}", sig), hex_str); assert!(Signature::from_str( "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab4" ).is_err()); assert!(Signature::from_str( "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab" ).is_err()); assert!(Signature::from_str( "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eabxx" ).is_err()); assert!(Signature::from_str( "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\ 72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45" ).is_err()); // 71 byte signature let hex_str = "30450221009d0bad576719d32ae76bedb34c774866673cbde3f4e12951555c9408e6ce774b02202876e7102f204f6bfee26c967c3926ce702cf97d4b010062e193f763190f6776"; let sig = Signature::from_str(&hex_str).expect("byte str decode"); assert_eq!(&format!("{}", sig), hex_str); } #[test] fn signature_lax_der() { macro_rules! check_lax_sig( ($hex:expr) => ({ let sig = hex!($hex); assert!(Signature::from_der_lax(&sig[..]).is_ok()); }) ); check_lax_sig!("304402204c2dd8a9b6f8d425fcd8ee9a20ac73b619906a6367eac6cb93e70375225ec0160220356878eff111ff3663d7e6bf08947f94443845e0dcc54961664d922f7660b80c"); check_lax_sig!("304402202ea9d51c7173b1d96d331bd41b3d1b4e78e66148e64ed5992abd6ca66290321c0220628c47517e049b3e41509e9d71e480a0cdc766f8cdec265ef0017711c1b5336f"); check_lax_sig!("3045022100bf8e050c85ffa1c313108ad8c482c4849027937916374617af3f2e9a881861c9022023f65814222cab09d5ec41032ce9c72ca96a5676020736614de7b78a4e55325a"); check_lax_sig!("3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45"); check_lax_sig!("3046022100eaa5f90483eb20224616775891397d47efa64c68b969db1dacb1c30acdfc50aa022100cf9903bbefb1c8000cf482b0aeeb5af19287af20bd794de11d82716f9bae3db1"); check_lax_sig!("3045022047d512bc85842ac463ca3b669b62666ab8672ee60725b6c06759e476cebdc6c102210083805e93bd941770109bcc797784a71db9e48913f702c56e60b1c3e2ff379a60"); check_lax_sig!("3044022023ee4e95151b2fbbb08a72f35babe02830d14d54bd7ed1320e4751751d1baa4802206235245254f58fd1be6ff19ca291817da76da65c2f6d81d654b5185dd86b8acf"); } #[test] fn sign_and_verify() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let mut msg = [0; 32]; for _ in 0..100 { thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, pk) = s.generate_keypair(&mut thread_rng()); let sig = s.sign(&msg, &sk); assert_eq!(s.verify(&msg, &sig, &pk), Ok(())); let low_r_sig = s.sign_low_r(&msg, &sk); assert_eq!(s.verify(&msg, &low_r_sig, &pk), Ok(())); let grind_r_sig = s.sign_grind_r(&msg, &sk, 1); assert_eq!(s.verify(&msg, &grind_r_sig, &pk), Ok(())); let compact = sig.serialize_compact(); if compact[0] < 0x80 { assert_eq!(sig, low_r_sig); } else { assert_ne!(sig, low_r_sig); } assert!(super::compact_sig_has_zero_first_bit(&low_r_sig.0)); assert!(super::der_length_check(&grind_r_sig.0, 70)); } } #[test] fn sign_and_verify_extreme() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); // Wild keys: 1, CURVE_ORDER - 1 // Wild msgs: 1, CURVE_ORDER - 1 let mut wild_keys = [[0; 32]; 2]; let mut wild_msgs = [[0; 32]; 2]; wild_keys[0][0] = 1; wild_msgs[0][0] = 1; use constants; wild_keys[1][..].copy_from_slice(&constants::CURVE_ORDER[..]); wild_msgs[1][..].copy_from_slice(&constants::CURVE_ORDER[..]); wild_keys[1][0] -= 1; wild_msgs[1][0] -= 1; for key in wild_keys.iter().map(|k| SecretKey::from_slice(&k[..]).unwrap()) { for msg in wild_msgs.iter().map(|m| Message::from_slice(&m[..]).unwrap()) { let sig = s.sign(&msg, &key); let low_r_sig = s.sign_low_r(&msg, &key); let grind_r_sig = s.sign_grind_r(&msg, &key, 1); let pk = PublicKey::from_secret_key(&s, &key); assert_eq!(s.verify(&msg, &sig, &pk), Ok(())); assert_eq!(s.verify(&msg, &low_r_sig, &pk), Ok(())); assert_eq!(s.verify(&msg, &grind_r_sig, &pk), Ok(())); } } } #[test] fn sign_and_verify_fail() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, pk) = s.generate_keypair(&mut thread_rng()); let sig = s.sign(&msg, &sk); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); assert_eq!(s.verify(&msg, &sig, &pk), Err(IncorrectSignature)); } #[test] fn test_bad_slice() { assert_eq!(Signature::from_der(&[0; constants::MAX_SIGNATURE_SIZE + 1]), Err(InvalidSignature)); assert_eq!(Signature::from_der(&[0; constants::MAX_SIGNATURE_SIZE]), Err(InvalidSignature)); assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE - 1]), Err(InvalidMessage)); assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE + 1]), Err(InvalidMessage)); assert!(Message::from_slice(&[0; constants::MESSAGE_SIZE]).is_ok()); assert!(Message::from_slice(&[1; constants::MESSAGE_SIZE]).is_ok()); } #[test] #[cfg(not(rust_secp_fuzz))] // fixed sig vectors can't work with fuzz-sigs fn test_low_s() { // nb this is a transaction on testnet // txid 8ccc87b72d766ab3128f03176bb1c98293f2d1f85ebfaf07b82cc81ea6891fa9 // input number 3 let sig = hex!("3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45"); let pk = hex!("031ee99d2b786ab3b0991325f2de8489246a6a3fdb700f6d0511b1d80cf5f4cd43"); let msg = hex!("a4965ca63b7d8562736ceec36dfa5a11bf426eb65be8ea3f7a49ae363032da0d"); let secp = Secp256k1::new(); let mut sig = Signature::from_der(&sig[..]).unwrap(); let pk = PublicKey::from_slice(&pk[..]).unwrap(); let msg = Message::from_slice(&msg[..]).unwrap(); // without normalization we expect this will fail assert_eq!(secp.verify(&msg, &sig, &pk), Err(IncorrectSignature)); // after normalization it should pass sig.normalize_s(); assert_eq!(secp.verify(&msg, &sig, &pk), Ok(())); } #[test] fn test_low_r() { let secp = Secp256k1::new(); let msg = hex!("887d04bb1cf1b1554f1b268dfe62d13064ca67ae45348d50d1392ce2d13418ac"); let msg = Message::from_slice(&msg).unwrap(); let sk = SecretKey::from_str("57f0148f94d13095cfda539d0da0d1541304b678d8b36e243980aab4e1b7cead").unwrap(); let expected_sig = hex!("047dd4d049db02b430d24c41c7925b2725bcd5a85393513bdec04b4dc363632b1054d0180094122b380f4cfa391e6296244da773173e78fc745c1b9c79f7b713"); let expected_sig = Signature::from_compact(&expected_sig).unwrap(); let sig = secp.sign_low_r(&msg, &sk); assert_eq!(expected_sig, sig); } #[test] fn test_grind_r() { let secp = Secp256k1::new(); let msg = hex!("ef2d5b9a7c61865a95941d0f04285420560df7e9d76890ac1b8867b12ce43167"); let msg = Message::from_slice(&msg).unwrap(); let sk = SecretKey::from_str("848355d75fe1c354cf05539bb29b2015f1863065bcb6766b44d399ab95c3fa0b").unwrap(); let expected_sig = Signature::from_str("304302202ffc447100d518c8ba643d11f3e6a83a8640488e7d2537b1954b942408be6ea3021f26e1248dd1e52160c3a38af9769d91a1a806cab5f9d508c103464d3c02d6e1").unwrap(); let sig = secp.sign_grind_r(&msg, &sk, 2); assert_eq!(expected_sig, sig); } #[cfg(feature = "serde")] #[test] fn test_signature_serde() { use serde_test::{Configure, Token, assert_tokens}; let s = Secp256k1::new(); let msg = Message::from_slice(&[1; 32]).unwrap(); let sk = SecretKey::from_slice(&[2; 32]).unwrap(); let sig = s.sign(&msg, &sk); static SIG_BYTES: [u8; 71] = [ 48, 69, 2, 33, 0, 157, 11, 173, 87, 103, 25, 211, 42, 231, 107, 237, 179, 76, 119, 72, 102, 103, 60, 189, 227, 244, 225, 41, 81, 85, 92, 148, 8, 230, 206, 119, 75, 2, 32, 40, 118, 231, 16, 47, 32, 79, 107, 254, 226, 108, 150, 124, 57, 38, 206, 112, 44, 249, 125, 75, 1, 0, 98, 225, 147, 247, 99, 25, 15, 103, 118 ]; static SIG_STR: &'static str = "\ 30450221009d0bad576719d32ae76bedb34c774866673cbde3f4e12951555c9408e6ce77\ 4b02202876e7102f204f6bfee26c967c3926ce702cf97d4b010062e193f763190f6776\ "; assert_tokens(&sig.compact(), &[Token::BorrowedBytes(&SIG_BYTES[..])]); assert_tokens(&sig.readable(), &[Token::BorrowedStr(SIG_STR)]); } #[cfg(feature = "global-context")] #[test] fn test_global_context() { use super::SECP256K1; let sk_data = hex!("e6dd32f8761625f105c39a39f19370b3521d845a12456d60ce44debd0a362641"); let sk = SecretKey::from_slice(&sk_data).unwrap(); let msg_data = hex!("a4965ca63b7d8562736ceec36dfa5a11bf426eb65be8ea3f7a49ae363032da0d"); let msg = Message::from_slice(&msg_data).unwrap(); // Check usage as explicit parameter let pk = PublicKey::from_secret_key(&SECP256K1, &sk); // Check usage as self let sig = SECP256K1.sign(&msg, &sk); assert!(SECP256K1.verify(&msg, &sig, &pk).is_ok()); } #[cfg(feature = "bitcoin_hashes")] #[test] fn test_from_hash() { use bitcoin_hashes; use bitcoin_hashes::Hash; let test_bytes = "Hello world!".as_bytes(); let hash = bitcoin_hashes::sha256::Hash::hash(test_bytes); let msg = Message::from(hash); assert_eq!(msg.0, hash.into_inner()); assert_eq!( msg, Message::from_hashed_data::(test_bytes) ); let hash = bitcoin_hashes::sha256d::Hash::hash(test_bytes); let msg = Message::from(hash); assert_eq!(msg.0, hash.into_inner()); assert_eq!( msg, Message::from_hashed_data::(test_bytes) ); } } #[cfg(all(test, feature = "unstable"))] mod benches { use rand::{thread_rng, RngCore}; use test::{Bencher, black_box}; use super::{Secp256k1, Message}; #[bench] pub fn generate(bh: &mut Bencher) { struct CounterRng(u64); impl RngCore for CounterRng { fn next_u32(&mut self) -> u32 { self.next_u64() as u32 } fn next_u64(&mut self) -> u64 { self.0 += 1; self.0 } fn fill_bytes(&mut self, dest: &mut [u8]) { for chunk in dest.chunks_mut(64/8) { let rand: [u8; 64/8] = unsafe {std::mem::transmute(self.next_u64())}; chunk.copy_from_slice(&rand[..chunk.len()]); } } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> { Ok(self.fill_bytes(dest)) } } let s = Secp256k1::new(); let mut r = CounterRng(0); bh.iter( || { let (sk, pk) = s.generate_keypair(&mut r); black_box(sk); black_box(pk); }); } #[bench] pub fn bench_sign(bh: &mut Bencher) { let s = Secp256k1::new(); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, _) = s.generate_keypair(&mut thread_rng()); bh.iter(|| { let sig = s.sign(&msg, &sk); black_box(sig); }); } #[bench] pub fn bench_verify(bh: &mut Bencher) { let s = Secp256k1::new(); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, pk) = s.generate_keypair(&mut thread_rng()); let sig = s.sign(&msg, &sk); bh.iter(|| { let res = s.verify(&msg, &sig, &pk).unwrap(); black_box(res); }); } }