// Bitcoin secp256k1 bindings
// Written in 2014 by
// Dawid Ciężarkiewicz
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see .
//
//! Public/Private keys
use std::intrinsics::copy_nonoverlapping;
use std::{cmp, fmt, ops};
use rand::Rng;
use serialize::{Decoder, Decodable, Encoder, Encodable};
use crypto::digest::Digest;
use crypto::sha2::Sha512;
use crypto::hmac::Hmac;
use crypto::mac::Mac;
use super::init;
use super::Result;
use super::Error::{InvalidNonce, InvalidPublicKey, InvalidSecretKey, Unknown};
use constants;
use ffi;
/// Secret 256-bit nonce used as `k` in an ECDSA signature
pub struct Nonce([u8; constants::NONCE_SIZE]);
impl_array_newtype!(Nonce, u8, constants::NONCE_SIZE);
/// Secret 256-bit key used as `x` in an ECDSA signature
pub struct SecretKey([u8; constants::SECRET_KEY_SIZE]);
impl_array_newtype!(SecretKey, u8, constants::SECRET_KEY_SIZE);
/// The number 1 encoded as a secret key
pub static ONE: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1]);
/// Public key
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct PublicKey(PublicKeyData);
#[derive(Copy, Eq)]
enum PublicKeyData {
Compressed([u8; constants::COMPRESSED_PUBLIC_KEY_SIZE]),
Uncompressed([u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE])
}
fn random_32_bytes(rng: &mut R) -> [u8; 32] {
let mut ret = [0u8; 32];
rng.fill_bytes(&mut ret);
ret
}
/// As described in RFC 6979
fn bits2octets(data: &[u8]) -> [u8; 32] {
let mut ret = [0; 32];
unsafe {
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
cmp::min(data.len(), 32));
}
ret
}
impl Nonce {
/// Creates a new random nonce
#[inline]
pub fn new(rng: &mut R) -> Nonce {
Nonce(random_32_bytes(rng))
}
/// Converts a `NONCE_SIZE`-byte slice to a nonce
#[inline]
pub fn from_slice(data: &[u8]) -> Result {
match data.len() {
constants::NONCE_SIZE => {
let mut ret = [0; constants::NONCE_SIZE];
unsafe {
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
data.len());
}
Ok(Nonce(ret))
}
_ => Err(InvalidNonce)
}
}
/// Generates a deterministic nonce by RFC6979 with HMAC-SHA512
#[inline]
#[allow(non_snake_case)] // so we can match the names in the RFC
pub fn deterministic(msg: &[u8], key: &SecretKey) -> Nonce {
const HMAC_SIZE: usize = 64;
macro_rules! hmac {
($res:expr; key $key:expr, data $($data:expr),+) => ({
let mut hmacker = Hmac::new(Sha512::new(), &$key[..]);
$(hmacker.input(&$data[..]);)+
hmacker.raw_result(&mut $res);
})
}
// Section 3.2a
// Goofy block just to avoid marking `msg_hash` as mutable
let mut hasher = Sha512::new();
hasher.input(msg);
let mut x = [0; HMAC_SIZE];
hasher.result(&mut x);
let msg_hash = bits2octets(&x);
// Section 3.2b
let mut V = [0x01u8; HMAC_SIZE];
// Section 3.2c
let mut K = [0x00u8; HMAC_SIZE];
// Section 3.2d
hmac!(K; key K, data V, [0x00], key, msg_hash);
// Section 3.2e
hmac!(V; key K, data V);
// Section 3.2f
hmac!(K; key K, data V, [0x01], key, msg_hash);
// Section 3.2g
hmac!(V; key K, data V);
// Section 3.2
let mut k = Err(InvalidSecretKey);
while k.is_err() {
// Try to generate the nonce
let mut T = [0x00u8; HMAC_SIZE];
hmac!(T; key K, data V);
k = Nonce::from_slice(&T[..constants::NONCE_SIZE]);
// Replace K, V
if k.is_err() {
hmac!(K; key K, data V, [0x00]);
hmac!(V; key K, data V);
}
}
k.unwrap()
}
}
impl SecretKey {
/// Creates a new random secret key
#[inline]
pub fn new(rng: &mut R) -> SecretKey {
init();
let mut data = random_32_bytes(rng);
unsafe {
while ffi::secp256k1_ec_seckey_verify(data.as_ptr()) == 0 {
data = random_32_bytes(rng);
}
}
SecretKey(data)
}
/// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key
#[inline]
pub fn from_slice(data: &[u8]) -> Result {
init();
match data.len() {
constants::SECRET_KEY_SIZE => {
let mut ret = [0; constants::SECRET_KEY_SIZE];
unsafe {
if ffi::secp256k1_ec_seckey_verify(data.as_ptr()) == 0 {
return Err(InvalidSecretKey);
}
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
data.len());
}
Ok(SecretKey(ret))
}
_ => Err(InvalidSecretKey)
}
}
#[inline]
/// Adds one secret key to another, modulo the curve order
/// Marked `unsafe` since you must
/// call `init()` (or construct a `Secp256k1`, which does this for you) before
/// using this function
pub fn add_assign(&mut self, other: &SecretKey) -> Result<()> {
init();
unsafe {
if ffi::secp256k1_ec_privkey_tweak_add(self.as_mut_ptr(), other.as_ptr()) != 1 {
Err(Unknown)
} else {
Ok(())
}
}
}
#[inline]
/// Returns an iterator for the (sk, pk) pairs starting one after this one,
/// and incrementing by one each time
pub fn sequence(&self, compressed: bool) -> Sequence {
Sequence { last_sk: *self, compressed: compressed }
}
}
/// An iterator of keypairs `(sk + 1, pk*G)`, `(sk + 2, pk*2G)`, ...
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Sequence {
compressed: bool,
last_sk: SecretKey,
}
impl Iterator for Sequence {
type Item = (SecretKey, PublicKey);
#[inline]
fn next(&mut self) -> Option<(SecretKey, PublicKey)> {
self.last_sk.add_assign(&ONE).unwrap();
Some((self.last_sk, PublicKey::from_secret_key(&self.last_sk, self.compressed)))
}
}
impl PublicKey {
/// Creates a new zeroed out public key
#[inline]
pub fn new(compressed: bool) -> PublicKey {
PublicKey(
if compressed {
PublicKeyData::Compressed([0; constants::COMPRESSED_PUBLIC_KEY_SIZE])
} else {
PublicKeyData::Uncompressed([0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE])
}
)
}
/// Creates a new public key from a secret key.
#[inline]
pub fn from_secret_key(sk: &SecretKey, compressed: bool) -> PublicKey {
let mut pk = PublicKey::new(compressed);
let compressed = if compressed {1} else {0};
let mut len = 0;
init();
unsafe {
// We can assume the return value because it's not possible to construct
// an invalid `SecretKey` without transmute trickery or something
assert_eq!(ffi::secp256k1_ec_pubkey_create(
pk.as_mut_ptr(), &mut len,
sk.as_ptr(), compressed), 1);
}
assert_eq!(len as usize, pk.len());
pk
}
/// Creates a public key directly from a slice
#[inline]
pub fn from_slice(data: &[u8]) -> Result {
match data.len() {
constants::COMPRESSED_PUBLIC_KEY_SIZE => {
let mut ret = [0; constants::COMPRESSED_PUBLIC_KEY_SIZE];
unsafe {
if ffi::secp256k1_ec_pubkey_verify(data.as_ptr(),
data.len() as ::libc::c_int) == 0 {
return Err(InvalidPublicKey);
}
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
data.len());
}
Ok(PublicKey(PublicKeyData::Compressed(ret)))
}
constants::UNCOMPRESSED_PUBLIC_KEY_SIZE => {
let mut ret = [0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE];
unsafe {
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
data.len());
}
Ok(PublicKey(PublicKeyData::Uncompressed(ret)))
}
_ => Err(InvalidPublicKey)
}
}
/// Returns whether the public key is compressed or uncompressed
#[inline]
pub fn is_compressed(&self) -> bool {
let &PublicKey(ref data) = self;
match *data {
PublicKeyData::Compressed(_) => true,
PublicKeyData::Uncompressed(_) => false
}
}
/// Returns the length of the public key
#[inline]
pub fn len(&self) -> usize {
let &PublicKey(ref data) = self;
match *data {
PublicKeyData::Compressed(ref x) => x.len(),
PublicKeyData::Uncompressed(ref x) => x.len()
}
}
/// Converts the public key to a raw pointer suitable for use
/// with the FFI functions
#[inline]
pub fn as_ptr(&self) -> *const u8 {
let &PublicKey(ref data) = self;
match *data {
PublicKeyData::Compressed(ref x) => x.as_ptr(),
PublicKeyData::Uncompressed(ref x) => x.as_ptr()
}
}
/// Converts the public key to a mutable raw pointer suitable for use
/// with the FFI functions
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut u8 {
let &mut PublicKey(ref mut data) = self;
match *data {
PublicKeyData::Compressed(ref mut x) => x.as_mut_ptr(),
PublicKeyData::Uncompressed(ref mut x) => x.as_mut_ptr()
}
}
#[inline]
/// Adds the pk corresponding to `other` to the pk `self` in place
pub fn add_exp_assign(&mut self, other: &SecretKey) -> Result<()> {
init();
unsafe {
if ffi::secp256k1_ec_pubkey_tweak_add(self.as_mut_ptr(),
self.len() as ::libc::c_int,
other.as_ptr()) != 1 {
Err(Unknown)
} else {
Ok(())
}
}
}
}
// We have to do all these impls ourselves as Rust can't derive
// them for arrays
impl fmt::Debug for Nonce {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
(&self[..]).fmt(f)
}
}
impl Clone for PublicKeyData {
fn clone(&self) -> PublicKeyData { *self }
}
impl PartialEq for PublicKeyData {
fn eq(&self, other: &PublicKeyData) -> bool {
&self[..] == &other[..]
}
}
impl fmt::Debug for PublicKeyData {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
(&self[..]).fmt(f)
}
}
impl ops::Index for PublicKeyData {
type Output = u8;
#[inline]
fn index(&self, index: usize) -> &u8 {
match *self {
PublicKeyData::Compressed(ref x) => &x[index],
PublicKeyData::Uncompressed(ref x) => &x[index]
}
}
}
impl ops::Index for PublicKey {
type Output = u8;
#[inline]
fn index(&self, index: usize) -> &u8 {
let &PublicKey(ref dat) = self;
&dat[index]
}
}
impl ops::Index> for PublicKeyData {
type Output = [u8];
#[inline]
fn index(&self, index: ops::Range) -> &[u8] {
match *self {
PublicKeyData::Compressed(ref x) => &x[index.start..index.end],
PublicKeyData::Uncompressed(ref x) => &x[index.start..index.end]
}
}
}
impl ops::Index> for PublicKey {
type Output = [u8];
#[inline]
fn index(&self, index: ops::Range) -> &[u8] {
let &PublicKey(ref dat) = self;
&dat[index.start..index.end]
}
}
impl ops::Index> for PublicKeyData {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeTo) -> &[u8] {
match *self {
PublicKeyData::Compressed(ref x) => &x[..index.end],
PublicKeyData::Uncompressed(ref x) => &x[..index.end]
}
}
}
impl ops::Index> for PublicKey {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeTo) -> &[u8] {
let &PublicKey(ref dat) = self;
&dat[..index.end]
}
}
impl ops::Index> for PublicKeyData {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeFrom) -> &[u8] {
match *self {
PublicKeyData::Compressed(ref x) => &x[index.start..],
PublicKeyData::Uncompressed(ref x) => &x[index.start..]
}
}
}
impl ops::Index> for PublicKey {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeFrom) -> &[u8] {
let &PublicKey(ref dat) = self;
&dat[index.start..]
}
}
impl ops::Index for PublicKeyData {
type Output = [u8];
#[inline]
fn index(&self, _: ops::RangeFull) -> &[u8] {
match *self {
PublicKeyData::Compressed(ref x) => &x[..],
PublicKeyData::Uncompressed(ref x) => &x[..]
}
}
}
impl ops::Index for PublicKey {
type Output = [u8];
#[inline]
fn index(&self, _: ops::RangeFull) -> &[u8] {
let &PublicKey(ref dat) = self;
&dat[..]
}
}
impl Decodable for PublicKey {
fn decode(d: &mut D) -> ::std::result::Result {
d.read_seq(|d, len| {
if len == constants::UNCOMPRESSED_PUBLIC_KEY_SIZE {
unsafe {
use std::mem;
let mut ret: [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();
for i in 0..len {
ret[i] = try!(d.read_seq_elt(i, |d| Decodable::decode(d)));
}
Ok(PublicKey(PublicKeyData::Uncompressed(ret)))
}
} else if len == constants::COMPRESSED_PUBLIC_KEY_SIZE {
unsafe {
use std::mem;
let mut ret: [u8; constants::COMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();
for i in 0..len {
ret[i] = try!(d.read_seq_elt(i, |d| Decodable::decode(d)));
}
Ok(PublicKey(PublicKeyData::Compressed(ret)))
}
} else {
Err(d.error("Invalid length"))
}
})
}
}
impl Encodable for PublicKey {
fn encode(&self, s: &mut S) -> ::std::result::Result<(), S::Error> {
(&self[..]).encode(s)
}
}
impl fmt::Debug for SecretKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
(&self[..]).fmt(f)
}
}
#[cfg(test)]
mod test {
use serialize::hex::FromHex;
use rand::thread_rng;
use test::Bencher;
use super::super::Secp256k1;
use super::super::Error::{InvalidNonce, InvalidPublicKey, InvalidSecretKey};
use super::{Nonce, PublicKey, SecretKey};
#[test]
fn nonce_from_slice() {
let n = Nonce::from_slice(&[1; 31]);
assert_eq!(n, Err(InvalidNonce));
let n = SecretKey::from_slice(&[1; 32]);
assert!(n.is_ok());
}
#[test]
fn skey_from_slice() {
let sk = SecretKey::from_slice(&[1; 31]);
assert_eq!(sk, Err(InvalidSecretKey));
let sk = SecretKey::from_slice(&[1; 32]);
assert!(sk.is_ok());
}
#[test]
fn pubkey_from_slice() {
assert_eq!(PublicKey::from_slice(&[]), Err(InvalidPublicKey));
assert_eq!(PublicKey::from_slice(&[1, 2, 3]), Err(InvalidPublicKey));
let uncompressed = PublicKey::from_slice(&[4, 54, 57, 149, 239, 162, 148, 175, 246, 254, 239, 75, 154, 152, 10, 82, 234, 224, 85, 220, 40, 100, 57, 121, 30, 162, 94, 156, 135, 67, 74, 49, 179, 57, 236, 53, 162, 124, 149, 144, 168, 77, 74, 30, 72, 211, 229, 110, 111, 55, 96, 193, 86, 227, 183, 152, 195, 155, 51, 247, 123, 113, 60, 228, 188]);
assert!(uncompressed.is_ok());
assert!(!uncompressed.unwrap().is_compressed());
let compressed = PublicKey::from_slice(&[3, 23, 183, 225, 206, 31, 159, 148, 195, 42, 67, 115, 146, 41, 248, 140, 11, 3, 51, 41, 111, 180, 110, 143, 114, 134, 88, 73, 198, 174, 52, 184, 78]);
assert!(compressed.is_ok());
assert!(compressed.unwrap().is_compressed());
}
#[test]
fn keypair_slice_round_trip() {
let mut s = Secp256k1::new().unwrap();
let (sk1, pk1) = s.generate_keypair(true);
assert_eq!(SecretKey::from_slice(&sk1[..]), Ok(sk1));
assert_eq!(PublicKey::from_slice(&pk1[..]), Ok(pk1));
let (sk2, pk2) = s.generate_keypair(false);
assert_eq!(SecretKey::from_slice(&sk2[..]), Ok(sk2));
assert_eq!(PublicKey::from_slice(&pk2[..]), Ok(pk2));
}
#[test]
fn nonce_slice_round_trip() {
let mut rng = thread_rng();
let nonce = Nonce::new(&mut rng);
assert_eq!(Nonce::from_slice(&nonce[..]), Ok(nonce));
}
#[test]
fn invalid_secret_key() {
// Zero
assert_eq!(SecretKey::from_slice(&[0; 32]), Err(InvalidSecretKey));
// -1
assert_eq!(SecretKey::from_slice(&[0xff; 32]), Err(InvalidSecretKey));
// Top of range
assert!(SecretKey::from_slice(&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]).is_ok());
// One past top of range
assert!(SecretKey::from_slice(&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]).is_err());
}
#[test]
fn test_addition() {
let mut s = Secp256k1::new().unwrap();
let (mut sk1, mut pk1) = s.generate_keypair(true);
let (mut sk2, mut pk2) = s.generate_keypair(true);
assert_eq!(PublicKey::from_secret_key(&sk1, true), pk1);
assert!(sk1.add_assign(&sk2).is_ok());
assert!(pk1.add_exp_assign(&sk2).is_ok());
assert_eq!(PublicKey::from_secret_key(&sk1, true), pk1);
assert_eq!(PublicKey::from_secret_key(&sk2, true), pk2);
assert!(sk2.add_assign(&sk1).is_ok());
assert!(pk2.add_exp_assign(&sk1).is_ok());
assert_eq!(PublicKey::from_secret_key(&sk2, true), pk2);
}
#[test]
fn test_deterministic() {
// nb code in comments is equivalent python
// from ecdsa import rfc6979
// from ecdsa.curves import SECP256k1
// # This key was generated randomly
// sk = 0x09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f81
let sk = SecretKey::from_slice(hex_slice!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f81")).unwrap();
// "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('').digest())
let nonce = Nonce::deterministic(&[], &sk);
assert_eq!(&nonce[..],
hex_slice!("d954eddd184cac2b60edcd0e6be9ec54d93f633b28b366420d38ed9c346ffe27"));
// "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('test').digest())
let nonce = Nonce::deterministic(b"test", &sk);
assert_eq!(&nonce[..],
hex_slice!("609cc24acce2f19e46e38a82afc56c1745dee16e04f2b27e24999e1fefeb08bd"));
// # Decrease the secret key by one
// sk = 0x09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f80
let sk = SecretKey::from_slice(hex_slice!("09e918bbea76205445e9a73eaad2080a135d1e33e9dd1b3ca8a9a1285e7c1f80")).unwrap();
// "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('').digest())
let nonce = Nonce::deterministic(&[], &sk);
assert_eq!(&nonce[..],
hex_slice!("9f45f8d0a28e8956673c8da6db3db86ca4f172f0a2dbd62364fdbf786c7d96df"));
// "%x" % rfc6979.generate_k(SECP256k1.generator, sk, hashlib.sha512, hashlib.sha512('test').digest())
let nonce = Nonce::deterministic(b"test", &sk);
assert_eq!(&nonce[..],
hex_slice!("355c589ff662c838aee454d62b12c50a87b7e95ede2431c7cfa40b6ba2fddccd"));
}
#[bench]
pub fn sequence_iterate(bh: &mut Bencher) {
let mut s = Secp256k1::new().unwrap();
let (sk, _) = s.generate_keypair(true);
let mut iter = sk.sequence(true);
bh.iter(|| iter.next())
}
}