/********************************************************************** * Copyright (c) 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef SECP256K1_SCALAR_IMPL_H #define SECP256K1_SCALAR_IMPL_H #include "scalar.h" #include "util.h" #if defined HAVE_CONFIG_H #include "libsecp256k1-config.h" #endif #if defined(EXHAUSTIVE_TEST_ORDER) #include "scalar_low_impl.h" #elif defined(SECP256K1_WIDEMUL_INT128) #include "scalar_4x64_impl.h" #elif defined(SECP256K1_WIDEMUL_INT64) #include "scalar_8x32_impl.h" #else #error "Please select wide multiplication implementation" #endif static const rustsecp256k1_v0_3_1_scalar rustsecp256k1_v0_3_1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); static const rustsecp256k1_v0_3_1_scalar rustsecp256k1_v0_3_1_scalar_zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); #ifndef USE_NUM_NONE static void rustsecp256k1_v0_3_1_scalar_get_num(rustsecp256k1_v0_3_1_num *r, const rustsecp256k1_v0_3_1_scalar *a) { unsigned char c[32]; rustsecp256k1_v0_3_1_scalar_get_b32(c, a); rustsecp256k1_v0_3_1_num_set_bin(r, c, 32); } /** secp256k1 curve order, see rustsecp256k1_v0_3_1_ecdsa_const_order_as_fe in ecdsa_impl.h */ static void rustsecp256k1_v0_3_1_scalar_order_get_num(rustsecp256k1_v0_3_1_num *r) { #if defined(EXHAUSTIVE_TEST_ORDER) static const unsigned char order[32] = { 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,EXHAUSTIVE_TEST_ORDER }; #else static const unsigned char order[32] = { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 }; #endif rustsecp256k1_v0_3_1_num_set_bin(r, order, 32); } #endif static int rustsecp256k1_v0_3_1_scalar_set_b32_seckey(rustsecp256k1_v0_3_1_scalar *r, const unsigned char *bin) { int overflow; rustsecp256k1_v0_3_1_scalar_set_b32(r, bin, &overflow); return (!overflow) & (!rustsecp256k1_v0_3_1_scalar_is_zero(r)); } static void rustsecp256k1_v0_3_1_scalar_inverse(rustsecp256k1_v0_3_1_scalar *r, const rustsecp256k1_v0_3_1_scalar *x) { #if defined(EXHAUSTIVE_TEST_ORDER) int i; *r = 0; for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++) if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1) *r = i; /* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus * have a composite group order; fix it in exhaustive_tests.c). */ VERIFY_CHECK(*r != 0); } #else rustsecp256k1_v0_3_1_scalar *t; int i; /* First compute xN as x ^ (2^N - 1) for some values of N, * and uM as x ^ M for some values of M. */ rustsecp256k1_v0_3_1_scalar x2, x3, x6, x8, x14, x28, x56, x112, x126; rustsecp256k1_v0_3_1_scalar u2, u5, u9, u11, u13; rustsecp256k1_v0_3_1_scalar_sqr(&u2, x); rustsecp256k1_v0_3_1_scalar_mul(&x2, &u2, x); rustsecp256k1_v0_3_1_scalar_mul(&u5, &u2, &x2); rustsecp256k1_v0_3_1_scalar_mul(&x3, &u5, &u2); rustsecp256k1_v0_3_1_scalar_mul(&u9, &x3, &u2); rustsecp256k1_v0_3_1_scalar_mul(&u11, &u9, &u2); rustsecp256k1_v0_3_1_scalar_mul(&u13, &u11, &u2); rustsecp256k1_v0_3_1_scalar_sqr(&x6, &u13); rustsecp256k1_v0_3_1_scalar_sqr(&x6, &x6); rustsecp256k1_v0_3_1_scalar_mul(&x6, &x6, &u11); rustsecp256k1_v0_3_1_scalar_sqr(&x8, &x6); rustsecp256k1_v0_3_1_scalar_sqr(&x8, &x8); rustsecp256k1_v0_3_1_scalar_mul(&x8, &x8, &x2); rustsecp256k1_v0_3_1_scalar_sqr(&x14, &x8); for (i = 0; i < 5; i++) { rustsecp256k1_v0_3_1_scalar_sqr(&x14, &x14); } rustsecp256k1_v0_3_1_scalar_mul(&x14, &x14, &x6); rustsecp256k1_v0_3_1_scalar_sqr(&x28, &x14); for (i = 0; i < 13; i++) { rustsecp256k1_v0_3_1_scalar_sqr(&x28, &x28); } rustsecp256k1_v0_3_1_scalar_mul(&x28, &x28, &x14); rustsecp256k1_v0_3_1_scalar_sqr(&x56, &x28); for (i = 0; i < 27; i++) { rustsecp256k1_v0_3_1_scalar_sqr(&x56, &x56); } rustsecp256k1_v0_3_1_scalar_mul(&x56, &x56, &x28); rustsecp256k1_v0_3_1_scalar_sqr(&x112, &x56); for (i = 0; i < 55; i++) { rustsecp256k1_v0_3_1_scalar_sqr(&x112, &x112); } rustsecp256k1_v0_3_1_scalar_mul(&x112, &x112, &x56); rustsecp256k1_v0_3_1_scalar_sqr(&x126, &x112); for (i = 0; i < 13; i++) { rustsecp256k1_v0_3_1_scalar_sqr(&x126, &x126); } rustsecp256k1_v0_3_1_scalar_mul(&x126, &x126, &x14); /* Then accumulate the final result (t starts at x126). */ t = &x126; for (i = 0; i < 3; i++) { rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u5); /* 101 */ for (i = 0; i < 4; i++) { /* 0 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &x3); /* 111 */ for (i = 0; i < 4; i++) { /* 0 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u5); /* 101 */ for (i = 0; i < 5; i++) { /* 0 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u11); /* 1011 */ for (i = 0; i < 4; i++) { rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u11); /* 1011 */ for (i = 0; i < 4; i++) { /* 0 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &x3); /* 111 */ for (i = 0; i < 5; i++) { /* 00 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &x3); /* 111 */ for (i = 0; i < 6; i++) { /* 00 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u13); /* 1101 */ for (i = 0; i < 4; i++) { /* 0 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u5); /* 101 */ for (i = 0; i < 3; i++) { rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &x3); /* 111 */ for (i = 0; i < 5; i++) { /* 0 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u9); /* 1001 */ for (i = 0; i < 6; i++) { /* 000 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u5); /* 101 */ for (i = 0; i < 10; i++) { /* 0000000 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &x3); /* 111 */ for (i = 0; i < 4; i++) { /* 0 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &x3); /* 111 */ for (i = 0; i < 9; i++) { /* 0 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &x8); /* 11111111 */ for (i = 0; i < 5; i++) { /* 0 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u9); /* 1001 */ for (i = 0; i < 6; i++) { /* 00 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u11); /* 1011 */ for (i = 0; i < 4; i++) { rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u13); /* 1101 */ for (i = 0; i < 5; i++) { rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &x2); /* 11 */ for (i = 0; i < 6; i++) { /* 00 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u13); /* 1101 */ for (i = 0; i < 10; i++) { /* 000000 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u13); /* 1101 */ for (i = 0; i < 4; i++) { rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, &u9); /* 1001 */ for (i = 0; i < 6; i++) { /* 00000 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(t, t, x); /* 1 */ for (i = 0; i < 8; i++) { /* 00 */ rustsecp256k1_v0_3_1_scalar_sqr(t, t); } rustsecp256k1_v0_3_1_scalar_mul(r, t, &x6); /* 111111 */ } SECP256K1_INLINE static int rustsecp256k1_v0_3_1_scalar_is_even(const rustsecp256k1_v0_3_1_scalar *a) { return !(a->d[0] & 1); } #endif static void rustsecp256k1_v0_3_1_scalar_inverse_var(rustsecp256k1_v0_3_1_scalar *r, const rustsecp256k1_v0_3_1_scalar *x) { #if defined(USE_SCALAR_INV_BUILTIN) rustsecp256k1_v0_3_1_scalar_inverse(r, x); #elif defined(USE_SCALAR_INV_NUM) unsigned char b[32]; rustsecp256k1_v0_3_1_num n, m; rustsecp256k1_v0_3_1_scalar t = *x; rustsecp256k1_v0_3_1_scalar_get_b32(b, &t); rustsecp256k1_v0_3_1_num_set_bin(&n, b, 32); rustsecp256k1_v0_3_1_scalar_order_get_num(&m); rustsecp256k1_v0_3_1_num_mod_inverse(&n, &n, &m); rustsecp256k1_v0_3_1_num_get_bin(b, 32, &n); rustsecp256k1_v0_3_1_scalar_set_b32(r, b, NULL); /* Verify that the inverse was computed correctly, without GMP code. */ rustsecp256k1_v0_3_1_scalar_mul(&t, &t, r); CHECK(rustsecp256k1_v0_3_1_scalar_is_one(&t)); #else #error "Please select scalar inverse implementation" #endif } #ifdef USE_ENDOMORPHISM /* These parameters are generated using sage/gen_exhaustive_groups.sage. */ #if defined(EXHAUSTIVE_TEST_ORDER) # if EXHAUSTIVE_TEST_ORDER == 13 # define EXHAUSTIVE_TEST_LAMBDA 9 # elif EXHAUSTIVE_TEST_ORDER == 199 # define EXHAUSTIVE_TEST_LAMBDA 92 # else # error No known lambda for the specified exhaustive test group order. # endif /** * Find k1 and k2 given k, such that k1 + k2 * lambda == k mod n; unlike in the * full case we don't bother making k1 and k2 be small, we just want them to be * nontrivial to get full test coverage for the exhaustive tests. We therefore * (arbitrarily) set k2 = k + 5 and k1 = k - k2 * lambda. */ static void rustsecp256k1_v0_3_1_scalar_split_lambda(rustsecp256k1_v0_3_1_scalar *r1, rustsecp256k1_v0_3_1_scalar *r2, const rustsecp256k1_v0_3_1_scalar *a) { *r2 = (*a + 5) % EXHAUSTIVE_TEST_ORDER; *r1 = (*a + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER; } #else /** * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72} * * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 * and k2 have a small size. * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are: * * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3} * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8} * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} * * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2. * * g1, g2 are precomputed constants used to replace division with a rounded multiplication * when decomposing the scalar for an endomorphism-based point multiplication. * * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5. * * The derivation is described in the paper "Efficient Software Implementation of Public-Key * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez), * Section 4.3 (here we use a somewhat higher-precision estimate): * d = a1*b2 - b1*a2 * g1 = round((2^272)*b2/d) * g2 = round((2^272)*b1/d) * * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda'). * * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order). */ static void rustsecp256k1_v0_3_1_scalar_split_lambda(rustsecp256k1_v0_3_1_scalar *r1, rustsecp256k1_v0_3_1_scalar *r2, const rustsecp256k1_v0_3_1_scalar *a) { rustsecp256k1_v0_3_1_scalar c1, c2; static const rustsecp256k1_v0_3_1_scalar minus_lambda = SECP256K1_SCALAR_CONST( 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL, 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL ); static const rustsecp256k1_v0_3_1_scalar minus_b1 = SECP256K1_SCALAR_CONST( 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL, 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL ); static const rustsecp256k1_v0_3_1_scalar minus_b2 = SECP256K1_SCALAR_CONST( 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL ); static const rustsecp256k1_v0_3_1_scalar g1 = SECP256K1_SCALAR_CONST( 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL, 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL ); static const rustsecp256k1_v0_3_1_scalar g2 = SECP256K1_SCALAR_CONST( 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL, 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL ); VERIFY_CHECK(r1 != a); VERIFY_CHECK(r2 != a); /* these _var calls are constant time since the shift amount is constant */ rustsecp256k1_v0_3_1_scalar_mul_shift_var(&c1, a, &g1, 272); rustsecp256k1_v0_3_1_scalar_mul_shift_var(&c2, a, &g2, 272); rustsecp256k1_v0_3_1_scalar_mul(&c1, &c1, &minus_b1); rustsecp256k1_v0_3_1_scalar_mul(&c2, &c2, &minus_b2); rustsecp256k1_v0_3_1_scalar_add(r2, &c1, &c2); rustsecp256k1_v0_3_1_scalar_mul(r1, r2, &minus_lambda); rustsecp256k1_v0_3_1_scalar_add(r1, r1, a); } #endif #endif #endif /* SECP256K1_SCALAR_IMPL_H */