// Bitcoin secp256k1 bindings
// Written in 2014 by
// Dawid Ciężarkiewicz
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see .
//
//! # secp256k1-sys FFI bindings
//! Direct bindings to the underlying C library functions. These should
//! not be needed for most users.
// Coding conventions
#![deny(non_upper_case_globals)]
#![deny(non_camel_case_types)]
#![deny(non_snake_case)]
#![deny(unused_mut)]
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
#[cfg(any(test, feature = "std"))]
extern crate core;
#[cfg(rust_secp_fuzz)]
const THIS_UNUSED_CONSTANT_IS_YOUR_WARNING_THAT_ALL_THE_CRYPTO_IN_THIS_LIB_IS_DISABLED_FOR_FUZZING: usize = 0;
#[macro_use]
mod macros;
pub mod types;
#[cfg(feature = "recovery")]
pub mod recovery;
use core::{hash, slice, ptr};
use types::*;
/// Flag for context to enable no precomputation
pub const SECP256K1_START_NONE: c_uint = 1;
/// Flag for context to enable verification precomputation
pub const SECP256K1_START_VERIFY: c_uint = 1 | (1 << 8);
/// Flag for context to enable signing precomputation
pub const SECP256K1_START_SIGN: c_uint = 1 | (1 << 9);
/// Flag for keys to indicate uncompressed serialization format
#[allow(unused_parens)]
pub const SECP256K1_SER_UNCOMPRESSED: c_uint = (1 << 1);
/// Flag for keys to indicate compressed serialization format
pub const SECP256K1_SER_COMPRESSED: c_uint = (1 << 1) | (1 << 8);
/// A nonce generation function. Ordinary users of the library
/// never need to see this type; only if you need to control
/// nonce generation do you need to use it. I have deliberately
/// made this hard to do: you have to write your own wrapper
/// around the FFI functions to use it. And it's an unsafe type.
/// Nonces are generated deterministically by RFC6979 by
/// default; there should be no need to ever change this.
pub type NonceFn = Option c_int>;
/// Hash function to use to post-process an ECDH point to get
/// a shared secret.
pub type EcdhHashFn = Option c_int>;
/// Same as secp256k1_nonce function with the exception of accepting an
/// additional pubkey argument and not requiring an attempt argument. The pubkey
/// argument can protect signature schemes with key-prefixed challenge hash
/// inputs against reusing the nonce when signing with the wrong precomputed
/// pubkey.
pub type SchnorrNonceFn = Option c_int>;
/// A Secp256k1 context, containing various precomputed values and such
/// needed to do elliptic curve computations. If you create one of these
/// with `secp256k1_context_create` you MUST destroy it with
/// `secp256k1_context_destroy`, or else you will have a memory leak.
#[derive(Clone, Debug)]
#[repr(C)] pub struct Context(c_int);
/// Library-internal representation of a Secp256k1 public key
#[repr(C)]
pub struct PublicKey([c_uchar; 64]);
impl_array_newtype!(PublicKey, c_uchar, 64);
impl_raw_debug!(PublicKey);
impl PublicKey {
/// Creates an "uninitialized" FFI public key which is zeroed out
///
/// If you pass this to any FFI functions, except as an out-pointer,
/// the result is likely to be an assertation failure and process
/// termination.
pub unsafe fn new() -> Self {
Self::from_array_unchecked([0; 64])
}
/// Create a new public key usable for the FFI interface from raw bytes
///
/// Does not check the validity of the underlying representation. If it is
/// invalid the result may be assertation failures (and process aborts) from
/// the underlying library. You should not use this method except with data
/// that you obtained from the FFI interface of the same version of this
/// library.
pub unsafe fn from_array_unchecked(data: [c_uchar; 64]) -> Self {
PublicKey(data)
}
/// Returns the underlying FFI opaque representation of the public key
///
/// You should not use this unless you really know what you are doing. It is
/// essentially only useful for extending the FFI interface itself.
pub fn underlying_bytes(self) -> [c_uchar; 64] {
self.0
}
}
impl hash::Hash for PublicKey {
fn hash(&self, state: &mut H) {
state.write(&self.0)
}
}
/// Library-internal representation of a Secp256k1 signature
#[repr(C)]
pub struct Signature([c_uchar; 64]);
impl_array_newtype!(Signature, c_uchar, 64);
impl_raw_debug!(Signature);
impl Signature {
/// Creates an "uninitialized" FFI signature which is zeroed out
///
/// If you pass this to any FFI functions, except as an out-pointer,
/// the result is likely to be an assertation failure and process
/// termination.
pub unsafe fn new() -> Self {
Self::from_array_unchecked([0; 64])
}
/// Create a new signature usable for the FFI interface from raw bytes
///
/// Does not check the validity of the underlying representation. If it is
/// invalid the result may be assertation failures (and process aborts) from
/// the underlying library. You should not use this method except with data
/// that you obtained from the FFI interface of the same version of this
/// library.
pub unsafe fn from_array_unchecked(data: [c_uchar; 64]) -> Self {
Signature(data)
}
/// Returns the underlying FFI opaque representation of the signature
///
/// You should not use this unless you really know what you are doing. It is
/// essentially only useful for extending the FFI interface itself.
pub fn underlying_bytes(self) -> [c_uchar; 64] {
self.0
}
}
#[repr(C)]
pub struct XOnlyPublicKey([c_uchar; 64]);
impl_array_newtype!(XOnlyPublicKey, c_uchar, 64);
impl_raw_debug!(XOnlyPublicKey);
impl XOnlyPublicKey {
/// Creates an "uninitialized" FFI x-only public key which is zeroed out
///
/// If you pass this to any FFI functions, except as an out-pointer,
/// the result is likely to be an assertation failure and process
/// termination.
pub unsafe fn new() -> Self {
Self::from_array_unchecked([0; 64])
}
/// Create a new x-only public key usable for the FFI interface from raw bytes
///
/// Does not check the validity of the underlying representation. If it is
/// invalid the result may be assertation failures (and process aborts) from
/// the underlying library. You should not use this method except with data
/// that you obtained from the FFI interface of the same version of this
/// library.
pub unsafe fn from_array_unchecked(data: [c_uchar; 64]) -> Self {
XOnlyPublicKey(data)
}
/// Returns the underlying FFI opaque representation of the x-only public key
///
/// You should not use this unless you really know what you are doing. It is
/// essentially only useful for extending the FFI interface itself.
pub fn underlying_bytes(self) -> [c_uchar; 64] {
self.0
}
}
impl hash::Hash for XOnlyPublicKey {
fn hash(&self, state: &mut H) {
state.write(&self.0)
}
}
#[repr(C)]
pub struct KeyPair([c_uchar; 96]);
impl_array_newtype!(KeyPair, c_uchar, 96);
impl_raw_debug!(KeyPair);
impl KeyPair {
/// Creates an "uninitialized" FFI keypair which is zeroed out
///
/// If you pass this to any FFI functions, except as an out-pointer,
/// the result is likely to be an assertation failure and process
/// termination.
pub unsafe fn new() -> Self {
Self::from_array_unchecked([0; 96])
}
/// Create a new keypair usable for the FFI interface from raw bytes
///
/// Does not check the validity of the underlying representation. If it is
/// invalid the result may be assertation failures (and process aborts) from
/// the underlying library. You should not use this method except with data
/// that you obtained from the FFI interface of the same version of this
/// library.
pub unsafe fn from_array_unchecked(data: [c_uchar; 96]) -> Self {
KeyPair(data)
}
/// Returns the underlying FFI opaque representation of the x-only public key
///
/// You should not use this unless you really know what you are doing. It is
/// essentially only useful for extending the FFI interface itself.
pub fn underlying_bytes(self) -> [c_uchar; 96] {
self.0
}
}
impl hash::Hash for KeyPair {
fn hash(&self, state: &mut H) {
state.write(&self.0)
}
}
extern "C" {
/// Default ECDH hash function
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ecdh_hash_function_default")]
pub static secp256k1_ecdh_hash_function_default: EcdhHashFn;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_nonce_function_rfc6979")]
pub static secp256k1_nonce_function_rfc6979: NonceFn;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_nonce_function_default")]
pub static secp256k1_nonce_function_default: NonceFn;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_nonce_function_bip340")]
pub static secp256k1_nonce_function_bip340: SchnorrNonceFn;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_context_no_precomp")]
pub static secp256k1_context_no_precomp: *const Context;
// Contexts
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_context_preallocated_size")]
pub fn secp256k1_context_preallocated_size(flags: c_uint) -> size_t;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_context_preallocated_create")]
pub fn secp256k1_context_preallocated_create(prealloc: *mut c_void, flags: c_uint) -> *mut Context;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_context_preallocated_destroy")]
pub fn secp256k1_context_preallocated_destroy(cx: *mut Context);
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_context_preallocated_clone_size")]
pub fn secp256k1_context_preallocated_clone_size(cx: *const Context) -> size_t;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_context_preallocated_clone")]
pub fn secp256k1_context_preallocated_clone(cx: *const Context, prealloc: *mut c_void) -> *mut Context;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_context_randomize")]
pub fn secp256k1_context_randomize(cx: *mut Context,
seed32: *const c_uchar)
-> c_int;
// Pubkeys
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_pubkey_parse")]
pub fn secp256k1_ec_pubkey_parse(cx: *const Context, pk: *mut PublicKey,
input: *const c_uchar, in_len: size_t)
-> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_pubkey_serialize")]
pub fn secp256k1_ec_pubkey_serialize(cx: *const Context, output: *mut c_uchar,
out_len: *mut size_t, pk: *const PublicKey,
compressed: c_uint)
-> c_int;
// Signatures
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ecdsa_signature_parse_der")]
pub fn secp256k1_ecdsa_signature_parse_der(cx: *const Context, sig: *mut Signature,
input: *const c_uchar, in_len: size_t)
-> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ecdsa_signature_parse_compact")]
pub fn secp256k1_ecdsa_signature_parse_compact(cx: *const Context, sig: *mut Signature,
input64: *const c_uchar)
-> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ecdsa_signature_parse_der_lax")]
pub fn ecdsa_signature_parse_der_lax(cx: *const Context, sig: *mut Signature,
input: *const c_uchar, in_len: size_t)
-> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ecdsa_signature_serialize_der")]
pub fn secp256k1_ecdsa_signature_serialize_der(cx: *const Context, output: *mut c_uchar,
out_len: *mut size_t, sig: *const Signature)
-> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ecdsa_signature_serialize_compact")]
pub fn secp256k1_ecdsa_signature_serialize_compact(cx: *const Context, output64: *mut c_uchar,
sig: *const Signature)
-> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ecdsa_signature_normalize")]
pub fn secp256k1_ecdsa_signature_normalize(cx: *const Context, out_sig: *mut Signature,
in_sig: *const Signature)
-> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_seckey_verify")]
pub fn secp256k1_ec_seckey_verify(cx: *const Context,
sk: *const c_uchar) -> c_int;
#[deprecated(since = "0.2.0",note = "Please use the secp256k1_ec_seckey_tweak_add function instead")]
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_privkey_negate")]
pub fn secp256k1_ec_privkey_negate(cx: *const Context,
sk: *mut c_uchar) -> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_seckey_negate")]
pub fn secp256k1_ec_seckey_negate(cx: *const Context,
sk: *mut c_uchar) -> c_int;
#[deprecated(since = "0.2.0",note = "Please use the secp256k1_ec_seckey_tweak_add function instead")]
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_privkey_tweak_add")]
pub fn secp256k1_ec_privkey_tweak_add(cx: *const Context,
sk: *mut c_uchar,
tweak: *const c_uchar)
-> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_seckey_tweak_add")]
pub fn secp256k1_ec_seckey_tweak_add(cx: *const Context,
sk: *mut c_uchar,
tweak: *const c_uchar)
-> c_int;
#[deprecated(since = "0.2.0",note = "Please use the secp256k1_ec_seckey_tweak_mul function instead")]
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_privkey_tweak_mul")]
pub fn secp256k1_ec_privkey_tweak_mul(cx: *const Context,
sk: *mut c_uchar,
tweak: *const c_uchar)
-> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_seckey_tweak_mul")]
pub fn secp256k1_ec_seckey_tweak_mul(cx: *const Context,
sk: *mut c_uchar,
tweak: *const c_uchar)
-> c_int;
// EC
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_pubkey_create")]
pub fn secp256k1_ec_pubkey_create(cx: *const Context, pk: *mut PublicKey,
sk: *const c_uchar) -> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_pubkey_negate")]
pub fn secp256k1_ec_pubkey_negate(cx: *const Context,
pk: *mut PublicKey) -> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_pubkey_tweak_add")]
pub fn secp256k1_ec_pubkey_tweak_add(cx: *const Context,
pk: *mut PublicKey,
tweak: *const c_uchar)
-> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_pubkey_tweak_mul")]
pub fn secp256k1_ec_pubkey_tweak_mul(cx: *const Context,
pk: *mut PublicKey,
tweak: *const c_uchar)
-> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ec_pubkey_combine")]
pub fn secp256k1_ec_pubkey_combine(cx: *const Context,
out: *mut PublicKey,
ins: *const *const PublicKey,
n: c_int)
-> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ecdh")]
pub fn secp256k1_ecdh(
cx: *const Context,
output: *mut c_uchar,
pubkey: *const PublicKey,
seckey: *const c_uchar,
hashfp: EcdhHashFn,
data: *mut c_void,
) -> c_int;
// Extra keys
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_keypair_create")]
pub fn secp256k1_keypair_create(
cx: *const Context,
keypair: *mut KeyPair,
seckey: *const c_uchar,
) -> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_xonly_pubkey_parse")]
pub fn secp256k1_xonly_pubkey_parse(
cx: *const Context,
pubkey: *mut XOnlyPublicKey,
input32: *const c_uchar,
) -> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_xonly_pubkey_serialize")]
pub fn secp256k1_xonly_pubkey_serialize(
cx: *const Context,
output32: *mut c_uchar,
pubkey: *const XOnlyPublicKey,
) -> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_xonly_pubkey_from_pubkey")]
pub fn secp256k1_xonly_pubkey_from_pubkey(
cx: *const Context,
xonly_pubkey: *mut XOnlyPublicKey,
pk_parity: *mut c_int,
pubkey: *const PublicKey,
) -> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_xonly_pubkey_tweak_add")]
pub fn secp256k1_xonly_pubkey_tweak_add(
cx: *const Context,
output_pubkey: *mut PublicKey,
internal_pubkey: *const XOnlyPublicKey,
tweak32: *const c_uchar,
) -> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_keypair_xonly_pub")]
pub fn secp256k1_keypair_xonly_pub(
cx: *const Context,
pubkey: *mut XOnlyPublicKey,
pk_parity: *mut c_int,
keypair: *const KeyPair
) -> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_keypair_xonly_tweak_add")]
pub fn secp256k1_keypair_xonly_tweak_add(
cx: *const Context,
keypair: *mut KeyPair,
tweak32: *const c_uchar,
) -> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_xonly_pubkey_tweak_add_check")]
pub fn secp256k1_xonly_pubkey_tweak_add_check(
cx: *const Context,
tweaked_pubkey32: *const c_uchar,
tweaked_pubkey_parity: c_int,
internal_pubkey: *const XOnlyPublicKey,
tweak32: *const c_uchar,
) -> c_int;
}
#[cfg(not(rust_secp_fuzz))]
extern "C" {
// ECDSA
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ecdsa_verify")]
pub fn secp256k1_ecdsa_verify(cx: *const Context,
sig: *const Signature,
msg32: *const c_uchar,
pk: *const PublicKey)
-> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_ecdsa_sign")]
pub fn secp256k1_ecdsa_sign(cx: *const Context,
sig: *mut Signature,
msg32: *const c_uchar,
sk: *const c_uchar,
noncefn: NonceFn,
noncedata: *const c_void)
-> c_int;
// Schnorr Signatures
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_schnorrsig_sign")]
pub fn secp256k1_schnorrsig_sign(
cx: *const Context,
sig: *mut c_uchar,
msg32: *const c_uchar,
keypair: *const KeyPair,
noncefp: SchnorrNonceFn,
noncedata: *const c_void
) -> c_int;
#[cfg_attr(not(rust_secp_no_symbol_renaming), link_name = "rustsecp256k1_v0_3_1_schnorrsig_verify")]
pub fn secp256k1_schnorrsig_verify(
cx: *const Context,
sig64: *const c_uchar,
msg32: *const c_uchar,
pubkey: *const XOnlyPublicKey,
) -> c_int;
}
/// A reimplementation of the C function `secp256k1_context_create` in rust.
///
/// This function allocates memory, the pointer should be deallocated using `secp256k1_context_destroy`
/// A failure to do so will result in a memory leak.
///
/// This will create a secp256k1 raw context.
// Returns: a newly created context object.
// In: flags: which parts of the context to initialize.
#[no_mangle]
#[cfg(all(feature = "std", not(rust_secp_no_symbol_renaming)))]
pub unsafe extern "C" fn rustsecp256k1_v0_3_1_context_create(flags: c_uint) -> *mut Context {
use core::mem;
use std::alloc;
assert!(ALIGN_TO >= mem::align_of::());
assert!(ALIGN_TO >= mem::align_of::<&usize>());
assert!(ALIGN_TO >= mem::size_of::());
// We need to allocate `ALIGN_TO` more bytes in order to write the amount of bytes back.
let bytes = secp256k1_context_preallocated_size(flags) + ALIGN_TO;
let layout = alloc::Layout::from_size_align(bytes, ALIGN_TO).unwrap();
let ptr = alloc::alloc(layout);
(ptr as *mut usize).write(bytes);
// We must offset a whole ALIGN_TO in order to preserve the same alignment
// this means we "lose" ALIGN_TO-size_of(usize) for padding.
let ptr = ptr.add(ALIGN_TO) as *mut c_void;
secp256k1_context_preallocated_create(ptr, flags)
}
#[cfg(all(feature = "std", not(rust_secp_no_symbol_renaming)))]
pub unsafe fn secp256k1_context_create(flags: c_uint) -> *mut Context {
rustsecp256k1_v0_3_1_context_create(flags)
}
/// A reimplementation of the C function `secp256k1_context_destroy` in rust.
///
/// This function destroys and deallcates the context created by `secp256k1_context_create`.
///
/// The pointer shouldn't be used after passing to this function, consider it as passing it to `free()`.
///
#[no_mangle]
#[cfg(all(feature = "std", not(rust_secp_no_symbol_renaming)))]
pub unsafe extern "C" fn rustsecp256k1_v0_3_1_context_destroy(ctx: *mut Context) {
use std::alloc;
secp256k1_context_preallocated_destroy(ctx);
let ptr = (ctx as *mut u8).sub(ALIGN_TO);
let bytes = (ptr as *mut usize).read();
let layout = alloc::Layout::from_size_align(bytes, ALIGN_TO).unwrap();
alloc::dealloc(ptr, layout);
}
#[cfg(all(feature = "std", not(rust_secp_no_symbol_renaming)))]
pub unsafe fn secp256k1_context_destroy(ctx: *mut Context) {
rustsecp256k1_v0_3_1_context_destroy(ctx)
}
/// **This function is an override for the C function, this is the an edited version of the original description:**
///
/// A callback function to be called when an illegal argument is passed to
/// an API call. It will only trigger for violations that are mentioned
/// explicitly in the header. **This will cause a panic**.
///
/// The philosophy is that these shouldn't be dealt with through a
/// specific return value, as calling code should not have branches to deal with
/// the case that this code itself is broken.
///
/// On the other hand, during debug stage, one would want to be informed about
/// such mistakes, and the default (crashing) may be inadvisable.
/// When this callback is triggered, the API function called is guaranteed not
/// to cause a crash, though its return value and output arguments are
/// undefined.
///
/// See also secp256k1_default_error_callback_fn.
///
#[no_mangle]
#[cfg(not(rust_secp_no_symbol_renaming))]
pub unsafe extern "C" fn rustsecp256k1_v0_3_1_default_illegal_callback_fn(message: *const c_char, _data: *mut c_void) {
use core::str;
let msg_slice = slice::from_raw_parts(message as *const u8, strlen(message));
let msg = str::from_utf8_unchecked(msg_slice);
panic!("[libsecp256k1] illegal argument. {}", msg);
}
/// **This function is an override for the C function, this is the an edited version of the original description:**
///
/// A callback function to be called when an internal consistency check
/// fails. **This will cause a panic**.
///
/// This can only trigger in case of a hardware failure, miscompilation,
/// memory corruption, serious bug in the library, or other error would can
/// otherwise result in undefined behaviour. It will not trigger due to mere
/// incorrect usage of the API (see secp256k1_default_illegal_callback_fn
/// for that). After this callback returns, anything may happen, including
/// crashing.
///
/// See also secp256k1_default_illegal_callback_fn.
///
#[no_mangle]
#[cfg(not(rust_secp_no_symbol_renaming))]
pub unsafe extern "C" fn rustsecp256k1_v0_3_1_default_error_callback_fn(message: *const c_char, _data: *mut c_void) {
use core::str;
let msg_slice = slice::from_raw_parts(message as *const u8, strlen(message));
let msg = str::from_utf8_unchecked(msg_slice);
panic!("[libsecp256k1] internal consistency check failed {}", msg);
}
#[no_mangle]
#[cfg(not(rust_secp_no_symbol_renaming))]
unsafe fn strlen(mut str_ptr: *const c_char) -> usize {
let mut ctr = 0;
while *str_ptr != '\0' as c_char {
ctr += 1;
str_ptr = str_ptr.offset(1);
}
ctr
}
/// A trait for producing pointers that will always be valid in C. (assuming NULL pointer is a valid no-op)
/// Rust doesn't promise what pointers does it give to ZST (https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts)
/// In case the type is empty this trait will give a NULL pointer, which should be handled in C.
///
pub trait CPtr {
type Target;
fn as_c_ptr(&self) -> *const Self::Target;
fn as_mut_c_ptr(&mut self) -> *mut Self::Target;
}
impl CPtr for [T] {
type Target = T;
fn as_c_ptr(&self) -> *const Self::Target {
if self.is_empty() {
ptr::null()
} else {
self.as_ptr()
}
}
fn as_mut_c_ptr(&mut self) -> *mut Self::Target {
if self.is_empty() {
ptr::null_mut::()
} else {
self.as_mut_ptr()
}
}
}
#[cfg(rust_secp_fuzz)]
mod fuzz_dummy {
use super::*;
// ECDSA
/// Verifies that sig is msg32||pk[..32]
pub unsafe fn secp256k1_ecdsa_verify(cx: *const Context,
sig: *const Signature,
msg32: *const c_uchar,
pk: *const PublicKey)
-> c_int {
// Check context is built for verification
let mut new_pk = (*pk).clone();
let _ = secp256k1_ec_pubkey_tweak_add(cx, &mut new_pk, msg32);
// Actually verify
let sig_sl = slice::from_raw_parts(sig as *const u8, 64);
let msg_sl = slice::from_raw_parts(msg32 as *const u8, 32);
if &sig_sl[..32] == msg_sl && sig_sl[32..] == (*pk).0[0..32] {
1
} else {
0
}
}
/// Sets sig to msg32||pk[..32]
pub unsafe fn secp256k1_ecdsa_sign(cx: *const Context,
sig: *mut Signature,
msg32: *const c_uchar,
sk: *const c_uchar,
_noncefn: NonceFn,
_noncedata: *const c_void)
-> c_int {
// Check context is built for signing (and compute pk)
let mut new_pk = PublicKey::new();
if secp256k1_ec_pubkey_create(cx, &mut new_pk, sk) != 1 {
return 0;
}
// Sign
let sig_sl = slice::from_raw_parts_mut(sig as *mut u8, 64);
let msg_sl = slice::from_raw_parts(msg32 as *const u8, 32);
sig_sl[..32].copy_from_slice(msg_sl);
sig_sl[32..].copy_from_slice(&new_pk.0[..32]);
1
}
/// Verifies that sig is msg32||pk[32..]
pub unsafe fn secp256k1_schnorrsig_verify(
cx: *const Context,
sig64: *const c_uchar,
msg32: *const c_uchar,
pubkey: *const XOnlyPublicKey,
) -> c_int {
// Check context is built for verification
let mut new_pk = PublicKey::new();
let _ = secp256k1_xonly_pubkey_tweak_add(cx, &mut new_pk, pubkey, msg32);
// Actually verify
let sig_sl = slice::from_raw_parts(sig64 as *const u8, 64);
let msg_sl = slice::from_raw_parts(msg32 as *const u8, 32);
if &sig_sl[..32] == msg_sl && sig_sl[32..] == (*pubkey).0[..32] {
1
} else {
0
}
}
/// Sets sig to msg32||pk[..32]
pub unsafe fn secp256k1_schnorrsig_sign(
cx: *const Context,
sig64: *mut c_uchar,
msg32: *const c_uchar,
keypair: *const KeyPair,
noncefp: SchnorrNonceFn,
noncedata: *const c_void
) -> c_int {
// Check context is built for signing
let mut new_kp = KeyPair::new();
if secp256k1_keypair_create(cx, &mut new_kp, (*keypair).0.as_ptr()) != 1 {
return 0;
}
assert_eq!(new_kp, *keypair);
// Sign
let sig_sl = slice::from_raw_parts_mut(sig64 as *mut u8, 64);
let msg_sl = slice::from_raw_parts(msg32 as *const u8, 32);
sig_sl[..32].copy_from_slice(msg_sl);
sig_sl[32..].copy_from_slice(&new_kp.0[32..64]);
1
}
}
#[cfg(rust_secp_fuzz)]
pub use self::fuzz_dummy::*;
#[cfg(test)]
mod tests {
#[no_mangle]
#[cfg(not(rust_secp_no_symbol_renaming))]
#[test]
fn test_strlen() {
use std::ffi::CString;
use super::strlen;
let orig = "test strlen \t \n";
let test = CString::new(orig).unwrap();
assert_eq!(orig.len(), unsafe {strlen(test.as_ptr())});
}
}