/*********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_GROUP_H #define SECP256K1_GROUP_H #include "field.h" /** A group element of the secp256k1 curve, in affine coordinates. */ typedef struct { rustsecp256k1_v0_5_0_fe x; rustsecp256k1_v0_5_0_fe y; int infinity; /* whether this represents the point at infinity */ } rustsecp256k1_v0_5_0_ge; #define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0} #define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1} /** A group element of the secp256k1 curve, in jacobian coordinates. */ typedef struct { rustsecp256k1_v0_5_0_fe x; /* actual X: x/z^2 */ rustsecp256k1_v0_5_0_fe y; /* actual Y: y/z^3 */ rustsecp256k1_v0_5_0_fe z; int infinity; /* whether this represents the point at infinity */ } rustsecp256k1_v0_5_0_gej; #define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0} #define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1} typedef struct { rustsecp256k1_v0_5_0_fe_storage x; rustsecp256k1_v0_5_0_fe_storage y; } rustsecp256k1_v0_5_0_ge_storage; #define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))} #define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y) /** Set a group element equal to the point with given X and Y coordinates */ static void rustsecp256k1_v0_5_0_ge_set_xy(rustsecp256k1_v0_5_0_ge *r, const rustsecp256k1_v0_5_0_fe *x, const rustsecp256k1_v0_5_0_fe *y); /** Set a group element (affine) equal to the point with the given X coordinate, and given oddness * for Y. Return value indicates whether the result is valid. */ static int rustsecp256k1_v0_5_0_ge_set_xo_var(rustsecp256k1_v0_5_0_ge *r, const rustsecp256k1_v0_5_0_fe *x, int odd); /** Check whether a group element is the point at infinity. */ static int rustsecp256k1_v0_5_0_ge_is_infinity(const rustsecp256k1_v0_5_0_ge *a); /** Check whether a group element is valid (i.e., on the curve). */ static int rustsecp256k1_v0_5_0_ge_is_valid_var(const rustsecp256k1_v0_5_0_ge *a); /** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ static void rustsecp256k1_v0_5_0_ge_neg(rustsecp256k1_v0_5_0_ge *r, const rustsecp256k1_v0_5_0_ge *a); /** Set a group element equal to another which is given in jacobian coordinates. Constant time. */ static void rustsecp256k1_v0_5_0_ge_set_gej(rustsecp256k1_v0_5_0_ge *r, rustsecp256k1_v0_5_0_gej *a); /** Set a group element equal to another which is given in jacobian coordinates. */ static void rustsecp256k1_v0_5_0_ge_set_gej_var(rustsecp256k1_v0_5_0_ge *r, rustsecp256k1_v0_5_0_gej *a); /** Set a batch of group elements equal to the inputs given in jacobian coordinates */ static void rustsecp256k1_v0_5_0_ge_set_all_gej_var(rustsecp256k1_v0_5_0_ge *r, const rustsecp256k1_v0_5_0_gej *a, size_t len); /** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to * the same global z "denominator". zr must contain the known z-ratios such * that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. The x and y * coordinates of the result are stored in r, the common z coordinate is * stored in globalz. */ static void rustsecp256k1_v0_5_0_ge_globalz_set_table_gej(size_t len, rustsecp256k1_v0_5_0_ge *r, rustsecp256k1_v0_5_0_fe *globalz, const rustsecp256k1_v0_5_0_gej *a, const rustsecp256k1_v0_5_0_fe *zr); /** Set a group element (affine) equal to the point at infinity. */ static void rustsecp256k1_v0_5_0_ge_set_infinity(rustsecp256k1_v0_5_0_ge *r); /** Set a group element (jacobian) equal to the point at infinity. */ static void rustsecp256k1_v0_5_0_gej_set_infinity(rustsecp256k1_v0_5_0_gej *r); /** Set a group element (jacobian) equal to another which is given in affine coordinates. */ static void rustsecp256k1_v0_5_0_gej_set_ge(rustsecp256k1_v0_5_0_gej *r, const rustsecp256k1_v0_5_0_ge *a); /** Compare the X coordinate of a group element (jacobian). */ static int rustsecp256k1_v0_5_0_gej_eq_x_var(const rustsecp256k1_v0_5_0_fe *x, const rustsecp256k1_v0_5_0_gej *a); /** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ static void rustsecp256k1_v0_5_0_gej_neg(rustsecp256k1_v0_5_0_gej *r, const rustsecp256k1_v0_5_0_gej *a); /** Check whether a group element is the point at infinity. */ static int rustsecp256k1_v0_5_0_gej_is_infinity(const rustsecp256k1_v0_5_0_gej *a); /** Set r equal to the double of a. Constant time. */ static void rustsecp256k1_v0_5_0_gej_double(rustsecp256k1_v0_5_0_gej *r, const rustsecp256k1_v0_5_0_gej *a); /** Set r equal to the double of a. If rzr is not-NULL this sets *rzr such that r->z == a->z * *rzr (where infinity means an implicit z = 0). */ static void rustsecp256k1_v0_5_0_gej_double_var(rustsecp256k1_v0_5_0_gej *r, const rustsecp256k1_v0_5_0_gej *a, rustsecp256k1_v0_5_0_fe *rzr); /** Set r equal to the sum of a and b. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */ static void rustsecp256k1_v0_5_0_gej_add_var(rustsecp256k1_v0_5_0_gej *r, const rustsecp256k1_v0_5_0_gej *a, const rustsecp256k1_v0_5_0_gej *b, rustsecp256k1_v0_5_0_fe *rzr); /** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */ static void rustsecp256k1_v0_5_0_gej_add_ge(rustsecp256k1_v0_5_0_gej *r, const rustsecp256k1_v0_5_0_gej *a, const rustsecp256k1_v0_5_0_ge *b); /** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient than rustsecp256k1_v0_5_0_gej_add_var. It is identical to rustsecp256k1_v0_5_0_gej_add_ge but without constant-time guarantee, and b is allowed to be infinity. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */ static void rustsecp256k1_v0_5_0_gej_add_ge_var(rustsecp256k1_v0_5_0_gej *r, const rustsecp256k1_v0_5_0_gej *a, const rustsecp256k1_v0_5_0_ge *b, rustsecp256k1_v0_5_0_fe *rzr); /** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */ static void rustsecp256k1_v0_5_0_gej_add_zinv_var(rustsecp256k1_v0_5_0_gej *r, const rustsecp256k1_v0_5_0_gej *a, const rustsecp256k1_v0_5_0_ge *b, const rustsecp256k1_v0_5_0_fe *bzinv); /** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */ static void rustsecp256k1_v0_5_0_ge_mul_lambda(rustsecp256k1_v0_5_0_ge *r, const rustsecp256k1_v0_5_0_ge *a); /** Clear a rustsecp256k1_v0_5_0_gej to prevent leaking sensitive information. */ static void rustsecp256k1_v0_5_0_gej_clear(rustsecp256k1_v0_5_0_gej *r); /** Clear a rustsecp256k1_v0_5_0_ge to prevent leaking sensitive information. */ static void rustsecp256k1_v0_5_0_ge_clear(rustsecp256k1_v0_5_0_ge *r); /** Convert a group element to the storage type. */ static void rustsecp256k1_v0_5_0_ge_to_storage(rustsecp256k1_v0_5_0_ge_storage *r, const rustsecp256k1_v0_5_0_ge *a); /** Convert a group element back from the storage type. */ static void rustsecp256k1_v0_5_0_ge_from_storage(rustsecp256k1_v0_5_0_ge *r, const rustsecp256k1_v0_5_0_ge_storage *a); /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/ static void rustsecp256k1_v0_5_0_gej_cmov(rustsecp256k1_v0_5_0_gej *r, const rustsecp256k1_v0_5_0_gej *a, int flag); /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/ static void rustsecp256k1_v0_5_0_ge_storage_cmov(rustsecp256k1_v0_5_0_ge_storage *r, const rustsecp256k1_v0_5_0_ge_storage *a, int flag); /** Rescale a jacobian point by b which must be non-zero. Constant-time. */ static void rustsecp256k1_v0_5_0_gej_rescale(rustsecp256k1_v0_5_0_gej *r, const rustsecp256k1_v0_5_0_fe *b); /** Determine if a point (which is assumed to be on the curve) is in the correct (sub)group of the curve. * * In normal mode, the used group is secp256k1, which has cofactor=1 meaning that every point on the curve is in the * group, and this function returns always true. * * When compiling in exhaustive test mode, a slightly different curve equation is used, leading to a group with a * (very) small subgroup, and that subgroup is what is used for all cryptographic operations. In that mode, this * function checks whether a point that is on the curve is in fact also in that subgroup. */ static int rustsecp256k1_v0_5_0_ge_is_in_correct_subgroup(const rustsecp256k1_v0_5_0_ge* ge); #endif /* SECP256K1_GROUP_H */