/*********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_FIELD_REPR_IMPL_H #define SECP256K1_FIELD_REPR_IMPL_H #if defined HAVE_CONFIG_H #include "libsecp256k1-config.h" #endif #include "util.h" #include "field.h" #include "modinv64_impl.h" #if defined(USE_ASM_X86_64) #include "field_5x52_asm_impl.h" #else #include "field_5x52_int128_impl.h" #endif /** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F, * represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular, * each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element * is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations * accept any input with magnitude at most M, and have different rules for propagating magnitude to their * output. */ #ifdef VERIFY static void rustsecp256k1_v0_4_1_fe_verify(const rustsecp256k1_v0_4_1_fe *a) { const uint64_t *d = a->n; int m = a->normalized ? 1 : 2 * a->magnitude, r = 1; /* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */ r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m); r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m); r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m); r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m); r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m); r &= (a->magnitude >= 0); r &= (a->magnitude <= 2048); if (a->normalized) { r &= (a->magnitude <= 1); if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) { r &= (d[0] < 0xFFFFEFFFFFC2FULL); } } VERIFY_CHECK(r == 1); } #endif static void rustsecp256k1_v0_4_1_fe_normalize(rustsecp256k1_v0_4_1_fe *r) { uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; /* Reduce t4 at the start so there will be at most a single carry from the first pass */ uint64_t m; uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL; /* The first pass ensures the magnitude is 1, ... */ t0 += x * 0x1000003D1ULL; t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3; /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ VERIFY_CHECK(t4 >> 49 == 0); /* At most a single final reduction is needed; check if the value is >= the field characteristic */ x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL) & (t0 >= 0xFFFFEFFFFFC2FULL)); /* Apply the final reduction (for constant-time behaviour, we do it always) */ t0 += x * 0x1000003D1ULL; t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */ VERIFY_CHECK(t4 >> 48 == x); /* Mask off the possible multiple of 2^256 from the final reduction */ t4 &= 0x0FFFFFFFFFFFFULL; r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; #ifdef VERIFY r->magnitude = 1; r->normalized = 1; rustsecp256k1_v0_4_1_fe_verify(r); #endif } static void rustsecp256k1_v0_4_1_fe_normalize_weak(rustsecp256k1_v0_4_1_fe *r) { uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; /* Reduce t4 at the start so there will be at most a single carry from the first pass */ uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL; /* The first pass ensures the magnitude is 1, ... */ t0 += x * 0x1000003D1ULL; t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ VERIFY_CHECK(t4 >> 49 == 0); r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; #ifdef VERIFY r->magnitude = 1; rustsecp256k1_v0_4_1_fe_verify(r); #endif } static void rustsecp256k1_v0_4_1_fe_normalize_var(rustsecp256k1_v0_4_1_fe *r) { uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; /* Reduce t4 at the start so there will be at most a single carry from the first pass */ uint64_t m; uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL; /* The first pass ensures the magnitude is 1, ... */ t0 += x * 0x1000003D1ULL; t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3; /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ VERIFY_CHECK(t4 >> 49 == 0); /* At most a single final reduction is needed; check if the value is >= the field characteristic */ x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL) & (t0 >= 0xFFFFEFFFFFC2FULL)); if (x) { t0 += 0x1000003D1ULL; t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; /* If t4 didn't carry to bit 48 already, then it should have after any final reduction */ VERIFY_CHECK(t4 >> 48 == x); /* Mask off the possible multiple of 2^256 from the final reduction */ t4 &= 0x0FFFFFFFFFFFFULL; } r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4; #ifdef VERIFY r->magnitude = 1; r->normalized = 1; rustsecp256k1_v0_4_1_fe_verify(r); #endif } static int rustsecp256k1_v0_4_1_fe_normalizes_to_zero(const rustsecp256k1_v0_4_1_fe *r) { uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4]; /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */ uint64_t z0, z1; /* Reduce t4 at the start so there will be at most a single carry from the first pass */ uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL; /* The first pass ensures the magnitude is 1, ... */ t0 += x * 0x1000003D1ULL; t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL; t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3; z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL; /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ VERIFY_CHECK(t4 >> 49 == 0); return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL); } static int rustsecp256k1_v0_4_1_fe_normalizes_to_zero_var(const rustsecp256k1_v0_4_1_fe *r) { uint64_t t0, t1, t2, t3, t4; uint64_t z0, z1; uint64_t x; t0 = r->n[0]; t4 = r->n[4]; /* Reduce t4 at the start so there will be at most a single carry from the first pass */ x = t4 >> 48; /* The first pass ensures the magnitude is 1, ... */ t0 += x * 0x1000003D1ULL; /* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */ z0 = t0 & 0xFFFFFFFFFFFFFULL; z1 = z0 ^ 0x1000003D0ULL; /* Fast return path should catch the majority of cases */ if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) { return 0; } t1 = r->n[1]; t2 = r->n[2]; t3 = r->n[3]; t4 &= 0x0FFFFFFFFFFFFULL; t1 += (t0 >> 52); t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1; t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2; t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3; z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL; /* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */ VERIFY_CHECK(t4 >> 49 == 0); return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL); } SECP256K1_INLINE static void rustsecp256k1_v0_4_1_fe_set_int(rustsecp256k1_v0_4_1_fe *r, int a) { r->n[0] = a; r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0; #ifdef VERIFY r->magnitude = 1; r->normalized = 1; rustsecp256k1_v0_4_1_fe_verify(r); #endif } SECP256K1_INLINE static int rustsecp256k1_v0_4_1_fe_is_zero(const rustsecp256k1_v0_4_1_fe *a) { const uint64_t *t = a->n; #ifdef VERIFY VERIFY_CHECK(a->normalized); rustsecp256k1_v0_4_1_fe_verify(a); #endif return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0; } SECP256K1_INLINE static int rustsecp256k1_v0_4_1_fe_is_odd(const rustsecp256k1_v0_4_1_fe *a) { #ifdef VERIFY VERIFY_CHECK(a->normalized); rustsecp256k1_v0_4_1_fe_verify(a); #endif return a->n[0] & 1; } SECP256K1_INLINE static void rustsecp256k1_v0_4_1_fe_clear(rustsecp256k1_v0_4_1_fe *a) { int i; #ifdef VERIFY a->magnitude = 0; a->normalized = 1; #endif for (i=0; i<5; i++) { a->n[i] = 0; } } static int rustsecp256k1_v0_4_1_fe_cmp_var(const rustsecp256k1_v0_4_1_fe *a, const rustsecp256k1_v0_4_1_fe *b) { int i; #ifdef VERIFY VERIFY_CHECK(a->normalized); VERIFY_CHECK(b->normalized); rustsecp256k1_v0_4_1_fe_verify(a); rustsecp256k1_v0_4_1_fe_verify(b); #endif for (i = 4; i >= 0; i--) { if (a->n[i] > b->n[i]) { return 1; } if (a->n[i] < b->n[i]) { return -1; } } return 0; } static int rustsecp256k1_v0_4_1_fe_set_b32(rustsecp256k1_v0_4_1_fe *r, const unsigned char *a) { int ret; r->n[0] = (uint64_t)a[31] | ((uint64_t)a[30] << 8) | ((uint64_t)a[29] << 16) | ((uint64_t)a[28] << 24) | ((uint64_t)a[27] << 32) | ((uint64_t)a[26] << 40) | ((uint64_t)(a[25] & 0xF) << 48); r->n[1] = (uint64_t)((a[25] >> 4) & 0xF) | ((uint64_t)a[24] << 4) | ((uint64_t)a[23] << 12) | ((uint64_t)a[22] << 20) | ((uint64_t)a[21] << 28) | ((uint64_t)a[20] << 36) | ((uint64_t)a[19] << 44); r->n[2] = (uint64_t)a[18] | ((uint64_t)a[17] << 8) | ((uint64_t)a[16] << 16) | ((uint64_t)a[15] << 24) | ((uint64_t)a[14] << 32) | ((uint64_t)a[13] << 40) | ((uint64_t)(a[12] & 0xF) << 48); r->n[3] = (uint64_t)((a[12] >> 4) & 0xF) | ((uint64_t)a[11] << 4) | ((uint64_t)a[10] << 12) | ((uint64_t)a[9] << 20) | ((uint64_t)a[8] << 28) | ((uint64_t)a[7] << 36) | ((uint64_t)a[6] << 44); r->n[4] = (uint64_t)a[5] | ((uint64_t)a[4] << 8) | ((uint64_t)a[3] << 16) | ((uint64_t)a[2] << 24) | ((uint64_t)a[1] << 32) | ((uint64_t)a[0] << 40); ret = !((r->n[4] == 0x0FFFFFFFFFFFFULL) & ((r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL) & (r->n[0] >= 0xFFFFEFFFFFC2FULL)); #ifdef VERIFY r->magnitude = 1; if (ret) { r->normalized = 1; rustsecp256k1_v0_4_1_fe_verify(r); } else { r->normalized = 0; } #endif return ret; } /** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */ static void rustsecp256k1_v0_4_1_fe_get_b32(unsigned char *r, const rustsecp256k1_v0_4_1_fe *a) { #ifdef VERIFY VERIFY_CHECK(a->normalized); rustsecp256k1_v0_4_1_fe_verify(a); #endif r[0] = (a->n[4] >> 40) & 0xFF; r[1] = (a->n[4] >> 32) & 0xFF; r[2] = (a->n[4] >> 24) & 0xFF; r[3] = (a->n[4] >> 16) & 0xFF; r[4] = (a->n[4] >> 8) & 0xFF; r[5] = a->n[4] & 0xFF; r[6] = (a->n[3] >> 44) & 0xFF; r[7] = (a->n[3] >> 36) & 0xFF; r[8] = (a->n[3] >> 28) & 0xFF; r[9] = (a->n[3] >> 20) & 0xFF; r[10] = (a->n[3] >> 12) & 0xFF; r[11] = (a->n[3] >> 4) & 0xFF; r[12] = ((a->n[2] >> 48) & 0xF) | ((a->n[3] & 0xF) << 4); r[13] = (a->n[2] >> 40) & 0xFF; r[14] = (a->n[2] >> 32) & 0xFF; r[15] = (a->n[2] >> 24) & 0xFF; r[16] = (a->n[2] >> 16) & 0xFF; r[17] = (a->n[2] >> 8) & 0xFF; r[18] = a->n[2] & 0xFF; r[19] = (a->n[1] >> 44) & 0xFF; r[20] = (a->n[1] >> 36) & 0xFF; r[21] = (a->n[1] >> 28) & 0xFF; r[22] = (a->n[1] >> 20) & 0xFF; r[23] = (a->n[1] >> 12) & 0xFF; r[24] = (a->n[1] >> 4) & 0xFF; r[25] = ((a->n[0] >> 48) & 0xF) | ((a->n[1] & 0xF) << 4); r[26] = (a->n[0] >> 40) & 0xFF; r[27] = (a->n[0] >> 32) & 0xFF; r[28] = (a->n[0] >> 24) & 0xFF; r[29] = (a->n[0] >> 16) & 0xFF; r[30] = (a->n[0] >> 8) & 0xFF; r[31] = a->n[0] & 0xFF; } SECP256K1_INLINE static void rustsecp256k1_v0_4_1_fe_negate(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a, int m) { #ifdef VERIFY VERIFY_CHECK(a->magnitude <= m); rustsecp256k1_v0_4_1_fe_verify(a); #endif r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0]; r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1]; r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2]; r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3]; r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4]; #ifdef VERIFY r->magnitude = m + 1; r->normalized = 0; rustsecp256k1_v0_4_1_fe_verify(r); #endif } SECP256K1_INLINE static void rustsecp256k1_v0_4_1_fe_mul_int(rustsecp256k1_v0_4_1_fe *r, int a) { r->n[0] *= a; r->n[1] *= a; r->n[2] *= a; r->n[3] *= a; r->n[4] *= a; #ifdef VERIFY r->magnitude *= a; r->normalized = 0; rustsecp256k1_v0_4_1_fe_verify(r); #endif } SECP256K1_INLINE static void rustsecp256k1_v0_4_1_fe_add(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a) { #ifdef VERIFY rustsecp256k1_v0_4_1_fe_verify(a); #endif r->n[0] += a->n[0]; r->n[1] += a->n[1]; r->n[2] += a->n[2]; r->n[3] += a->n[3]; r->n[4] += a->n[4]; #ifdef VERIFY r->magnitude += a->magnitude; r->normalized = 0; rustsecp256k1_v0_4_1_fe_verify(r); #endif } static void rustsecp256k1_v0_4_1_fe_mul(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a, const rustsecp256k1_v0_4_1_fe * SECP256K1_RESTRICT b) { #ifdef VERIFY VERIFY_CHECK(a->magnitude <= 8); VERIFY_CHECK(b->magnitude <= 8); rustsecp256k1_v0_4_1_fe_verify(a); rustsecp256k1_v0_4_1_fe_verify(b); VERIFY_CHECK(r != b); VERIFY_CHECK(a != b); #endif rustsecp256k1_v0_4_1_fe_mul_inner(r->n, a->n, b->n); #ifdef VERIFY r->magnitude = 1; r->normalized = 0; rustsecp256k1_v0_4_1_fe_verify(r); #endif } static void rustsecp256k1_v0_4_1_fe_sqr(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a) { #ifdef VERIFY VERIFY_CHECK(a->magnitude <= 8); rustsecp256k1_v0_4_1_fe_verify(a); #endif rustsecp256k1_v0_4_1_fe_sqr_inner(r->n, a->n); #ifdef VERIFY r->magnitude = 1; r->normalized = 0; rustsecp256k1_v0_4_1_fe_verify(r); #endif } static SECP256K1_INLINE void rustsecp256k1_v0_4_1_fe_cmov(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a, int flag) { uint64_t mask0, mask1; VG_CHECK_VERIFY(r->n, sizeof(r->n)); mask0 = flag + ~((uint64_t)0); mask1 = ~mask0; r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1); r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1); r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1); r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1); #ifdef VERIFY if (flag) { r->magnitude = a->magnitude; r->normalized = a->normalized; } #endif } static SECP256K1_INLINE void rustsecp256k1_v0_4_1_fe_storage_cmov(rustsecp256k1_v0_4_1_fe_storage *r, const rustsecp256k1_v0_4_1_fe_storage *a, int flag) { uint64_t mask0, mask1; VG_CHECK_VERIFY(r->n, sizeof(r->n)); mask0 = flag + ~((uint64_t)0); mask1 = ~mask0; r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1); r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1); r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1); r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1); } static void rustsecp256k1_v0_4_1_fe_to_storage(rustsecp256k1_v0_4_1_fe_storage *r, const rustsecp256k1_v0_4_1_fe *a) { #ifdef VERIFY VERIFY_CHECK(a->normalized); #endif r->n[0] = a->n[0] | a->n[1] << 52; r->n[1] = a->n[1] >> 12 | a->n[2] << 40; r->n[2] = a->n[2] >> 24 | a->n[3] << 28; r->n[3] = a->n[3] >> 36 | a->n[4] << 16; } static SECP256K1_INLINE void rustsecp256k1_v0_4_1_fe_from_storage(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe_storage *a) { r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL; r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL); r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL); r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL); r->n[4] = a->n[3] >> 16; #ifdef VERIFY r->magnitude = 1; r->normalized = 1; #endif } static void rustsecp256k1_v0_4_1_fe_from_signed62(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_modinv64_signed62 *a) { const uint64_t M52 = UINT64_MAX >> 12; const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4]; /* The output from rustsecp256k1_v0_4_1_modinv64{_var} should be normalized to range [0,modulus), and * have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4). */ VERIFY_CHECK(a0 >> 62 == 0); VERIFY_CHECK(a1 >> 62 == 0); VERIFY_CHECK(a2 >> 62 == 0); VERIFY_CHECK(a3 >> 62 == 0); VERIFY_CHECK(a4 >> 8 == 0); r->n[0] = a0 & M52; r->n[1] = (a0 >> 52 | a1 << 10) & M52; r->n[2] = (a1 >> 42 | a2 << 20) & M52; r->n[3] = (a2 >> 32 | a3 << 30) & M52; r->n[4] = (a3 >> 22 | a4 << 40); #ifdef VERIFY r->magnitude = 1; r->normalized = 1; rustsecp256k1_v0_4_1_fe_verify(r); #endif } static void rustsecp256k1_v0_4_1_fe_to_signed62(rustsecp256k1_v0_4_1_modinv64_signed62 *r, const rustsecp256k1_v0_4_1_fe *a) { const uint64_t M62 = UINT64_MAX >> 2; const uint64_t a0 = a->n[0], a1 = a->n[1], a2 = a->n[2], a3 = a->n[3], a4 = a->n[4]; #ifdef VERIFY VERIFY_CHECK(a->normalized); #endif r->v[0] = (a0 | a1 << 52) & M62; r->v[1] = (a1 >> 10 | a2 << 42) & M62; r->v[2] = (a2 >> 20 | a3 << 32) & M62; r->v[3] = (a3 >> 30 | a4 << 22) & M62; r->v[4] = a4 >> 40; } static const rustsecp256k1_v0_4_1_modinv64_modinfo rustsecp256k1_v0_4_1_const_modinfo_fe = { {{-0x1000003D1LL, 0, 0, 0, 256}}, 0x27C7F6E22DDACACFLL }; static void rustsecp256k1_v0_4_1_fe_inv(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *x) { rustsecp256k1_v0_4_1_fe tmp; rustsecp256k1_v0_4_1_modinv64_signed62 s; tmp = *x; rustsecp256k1_v0_4_1_fe_normalize(&tmp); rustsecp256k1_v0_4_1_fe_to_signed62(&s, &tmp); rustsecp256k1_v0_4_1_modinv64(&s, &rustsecp256k1_v0_4_1_const_modinfo_fe); rustsecp256k1_v0_4_1_fe_from_signed62(r, &s); #ifdef VERIFY VERIFY_CHECK(rustsecp256k1_v0_4_1_fe_normalizes_to_zero(r) == rustsecp256k1_v0_4_1_fe_normalizes_to_zero(&tmp)); #endif } static void rustsecp256k1_v0_4_1_fe_inv_var(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *x) { rustsecp256k1_v0_4_1_fe tmp; rustsecp256k1_v0_4_1_modinv64_signed62 s; tmp = *x; rustsecp256k1_v0_4_1_fe_normalize_var(&tmp); rustsecp256k1_v0_4_1_fe_to_signed62(&s, &tmp); rustsecp256k1_v0_4_1_modinv64_var(&s, &rustsecp256k1_v0_4_1_const_modinfo_fe); rustsecp256k1_v0_4_1_fe_from_signed62(r, &s); #ifdef VERIFY VERIFY_CHECK(rustsecp256k1_v0_4_1_fe_normalizes_to_zero(r) == rustsecp256k1_v0_4_1_fe_normalizes_to_zero(&tmp)); #endif } #endif /* SECP256K1_FIELD_REPR_IMPL_H */