// Bitcoin secp256k1 bindings // Written in 2014 by // Dawid Ciężarkiewicz // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! # Secp256k1 //! Rust bindings for Pieter Wuille's secp256k1 library, which is used for //! fast and accurate manipulation of ECDSA signatures on the secp256k1 //! curve. Such signatures are used extensively by the Bitcoin network //! and its derivatives. //! #![crate_type = "lib"] #![crate_type = "rlib"] #![crate_type = "dylib"] #![crate_name = "secp256k1"] // Coding conventions #![deny(non_upper_case_globals)] #![deny(non_camel_case_types)] #![deny(non_snake_case)] #![deny(unused_mut)] #![warn(missing_docs)] #![cfg_attr(all(test, feature = "unstable"), feature(test))] #[cfg(all(test, feature = "unstable"))] extern crate test; extern crate arrayvec; extern crate rustc_serialize as serialize; extern crate serde; extern crate serde_json as json; extern crate libc; extern crate rand; use std::intrinsics::copy_nonoverlapping; use std::{fmt, ops, ptr}; use rand::Rng; #[macro_use] mod macros; pub mod constants; pub mod ecdh; pub mod ffi; pub mod key; /// A tag used for recovering the public key from a compact signature #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct RecoveryId(i32); /// An ECDSA signature #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct Signature(ffi::Signature); /// An ECDSA signature with a recovery ID for pubkey recovery #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct RecoverableSignature(ffi::RecoverableSignature); impl Signature { #[inline] /// Converts a DER-encoded byte slice to a signature pub fn from_der(secp: &Secp256k1, data: &[u8]) -> Result { let mut ret = unsafe { ffi::Signature::blank() }; unsafe { if ffi::secp256k1_ecdsa_signature_parse_der(secp.ctx, &mut ret, data.as_ptr(), data.len() as libc::size_t) == 1 { Ok(Signature(ret)) } else { Err(Error::InvalidSignature) } } } /// Creates a new public key from a FFI public key #[inline] pub fn from_ffi(sig: ffi::Signature) -> Signature { Signature(sig) } /// Obtains a raw pointer suitable for use with FFI functions #[inline] pub fn as_ptr(&self) -> *const ffi::Signature { &self.0 as *const _ } } impl RecoverableSignature { #[inline] /// Converts a compact-encoded byte slice to a signature. This /// representation is nonstandard and defined by the libsecp256k1 /// library. pub fn from_compact(secp: &Secp256k1, data: &[u8], recid: RecoveryId) -> Result { let mut ret = unsafe { ffi::RecoverableSignature::blank() }; unsafe { if data.len() != 64 { Err(Error::InvalidSignature) } else if ffi::secp256k1_ecdsa_recoverable_signature_parse_compact(secp.ctx, &mut ret, data.as_ptr(), recid.0) == 1 { Ok(RecoverableSignature(ret)) } else { Err(Error::InvalidSignature) } } } /// Creates a new public key from a FFI public key #[inline] pub fn from_ffi(sig: ffi::RecoverableSignature) -> RecoverableSignature { RecoverableSignature(sig) } /// Obtains a raw pointer suitable for use with FFI functions #[inline] pub fn as_ptr(&self) -> *const ffi::RecoverableSignature { &self.0 as *const _ } /// Converts a recoverable signature to a non-recoverable one (this is needed /// for verification #[inline] pub fn to_standard(&self, secp: &Secp256k1) -> Signature { let mut ret = unsafe { ffi::Signature::blank() }; unsafe { let err = ffi::secp256k1_ecdsa_recoverable_signature_convert(secp.ctx, &mut ret, self.as_ptr()); assert!(err == 1); } Signature(ret) } } impl ops::Index for Signature { type Output = u8; #[inline] fn index(&self, index: usize) -> &u8 { &self.0[index] } } impl ops::Index> for Signature { type Output = [u8]; #[inline] fn index(&self, index: ops::Range) -> &[u8] { &self.0[index] } } impl ops::Index> for Signature { type Output = [u8]; #[inline] fn index(&self, index: ops::RangeFrom) -> &[u8] { &self.0[index.start..] } } impl ops::Index for Signature { type Output = [u8]; #[inline] fn index(&self, _: ops::RangeFull) -> &[u8] { &self.0[..] } } /// A (hashed) message input to an ECDSA signature pub struct Message([u8; constants::MESSAGE_SIZE]); impl_array_newtype!(Message, u8, constants::MESSAGE_SIZE); impl_pretty_debug!(Message); impl Message { /// Converts a `MESSAGE_SIZE`-byte slice to a message object #[inline] pub fn from_slice(data: &[u8]) -> Result { match data.len() { constants::MESSAGE_SIZE => { let mut ret = [0; constants::MESSAGE_SIZE]; unsafe { copy_nonoverlapping(data.as_ptr(), ret.as_mut_ptr(), data.len()); } Ok(Message(ret)) } _ => Err(Error::InvalidMessage) } } } /// An ECDSA error #[derive(Copy, PartialEq, Eq, Clone, Debug)] pub enum Error { /// A `Secp256k1` was used for an operation, but it was not created to /// support this (so necessary precomputations have not been done) IncapableContext, /// Signature failed verification IncorrectSignature, /// Badly sized message InvalidMessage, /// Bad public key InvalidPublicKey, /// Bad signature InvalidSignature, /// Bad secret key InvalidSecretKey, /// Boolean-returning function returned the wrong boolean Unknown } // Passthrough Debug to Display, since errors should be user-visible impl fmt::Display for Error { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { fmt::Debug::fmt(self, f) } } /// The secp256k1 engine, used to execute all signature operations pub struct Secp256k1 { ctx: ffi::Context, caps: ContextFlag } /// Flags used to determine the capabilities of a `Secp256k1` object; /// the more capabilities, the more expensive it is to create. #[derive(PartialEq, Eq, Copy, Clone, Debug)] pub enum ContextFlag { /// Can neither sign nor verify signatures (cheapest to create, useful /// for cases not involving signatures, such as creating keys from slices) None, /// Can sign but not verify signatures SignOnly, /// Can verify but not create signatures VerifyOnly, /// Can verify and create signatures Full } // Passthrough Debug to Display, since caps should be user-visible impl fmt::Display for ContextFlag { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { fmt::Debug::fmt(self, f) } } impl Clone for Secp256k1 { fn clone(&self) -> Secp256k1 { Secp256k1 { ctx: unsafe { ffi::secp256k1_context_clone(self.ctx) }, caps: self.caps } } } impl PartialEq for Secp256k1 { fn eq(&self, other: &Secp256k1) -> bool { self.caps == other.caps } } impl Eq for Secp256k1 { } impl fmt::Debug for Secp256k1 { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write!(f, "Secp256k1 {{ [private], caps: {:?} }}", self.caps) } } impl Drop for Secp256k1 { fn drop(&mut self) { unsafe { ffi::secp256k1_context_destroy(self.ctx); } } } impl Secp256k1 { /// Creates a new Secp256k1 context #[inline] pub fn new() -> Secp256k1 { Secp256k1::with_caps(ContextFlag::Full) } /// Creates a new Secp256k1 context with the specified capabilities pub fn with_caps(caps: ContextFlag) -> Secp256k1 { let flag = match caps { ContextFlag::None => 0, ContextFlag::SignOnly => ffi::SECP256K1_START_SIGN, ContextFlag::VerifyOnly => ffi::SECP256K1_START_VERIFY, ContextFlag::Full => ffi::SECP256K1_START_SIGN | ffi::SECP256K1_START_VERIFY }; Secp256k1 { ctx: unsafe { ffi::secp256k1_context_create(flag) }, caps: caps } } /// (Re)randomizes the Secp256k1 context for cheap sidechannel resistence; /// see comment in libsecp256k1 commit d2275795f by Gregory Maxwell pub fn randomize(&mut self, rng: &mut R) { let mut seed = [0; 32]; rng.fill_bytes(&mut seed); unsafe { let err = ffi::secp256k1_context_randomize(self.ctx, seed.as_ptr()); // This function cannot fail; it has an error return for future-proofing. // We do not expose this error since it is impossible to hit, and we have // precedent for not exposing impossible errors (for example in // `PublicKey::from_secret_key` where it is impossble to create an invalid // secret key through the API.) // However, if this DOES fail, the result is potentially weaker side-channel // resistance, which is deadly and undetectable, so we take out the entire // thread to be on the safe side. assert!(err == 1); } } /// Generates a random keypair. Convenience function for `key::SecretKey::new` /// and `key::PublicKey::from_secret_key`; call those functions directly for /// batch key generation. Requires a signing-capable context. #[inline] pub fn generate_keypair(&self, rng: &mut R) -> Result<(key::SecretKey, key::PublicKey), Error> { if self.caps == ContextFlag::VerifyOnly || self.caps == ContextFlag::None { return Err(Error::IncapableContext); } let sk = key::SecretKey::new(self, rng); let pk = key::PublicKey::from_secret_key(self, &sk); Ok((sk, pk)) } /// Constructs a signature for `msg` using the secret key `sk` and nonce `nonce`. /// Requires a signing-capable context. pub fn sign(&self, msg: &Message, sk: &key::SecretKey) -> Result { if self.caps == ContextFlag::VerifyOnly || self.caps == ContextFlag::None { return Err(Error::IncapableContext); } let mut ret = unsafe { ffi::Signature::blank() }; unsafe { // We can assume the return value because it's not possible to construct // an invalid signature from a valid `Message` and `SecretKey` assert_eq!(ffi::secp256k1_ecdsa_sign(self.ctx, &mut ret, msg.as_ptr(), sk.as_ptr(), ffi::secp256k1_nonce_function_rfc6979, ptr::null()), 1); } Ok(Signature::from_ffi(ret)) } /// Constructs a signature for `msg` using the secret key `sk` and nonce `nonce`. /// Requires a signing-capable context. pub fn sign_recoverable(&self, msg: &Message, sk: &key::SecretKey) -> Result { if self.caps == ContextFlag::VerifyOnly || self.caps == ContextFlag::None { return Err(Error::IncapableContext); } let mut ret = unsafe { ffi::RecoverableSignature::blank() }; unsafe { // We can assume the return value because it's not possible to construct // an invalid signature from a valid `Message` and `SecretKey` assert_eq!(ffi::secp256k1_ecdsa_sign_recoverable(self.ctx, &mut ret, msg.as_ptr(), sk.as_ptr(), ffi::secp256k1_nonce_function_rfc6979, ptr::null()), 1); } Ok(RecoverableSignature::from_ffi(ret)) } /// Determines the public key for which `sig` is a valid signature for /// `msg`. Returns through the out-pointer `pubkey`. Requires a verify-capable /// context. pub fn recover(&self, msg: &Message, sig: &RecoverableSignature) -> Result { if self.caps == ContextFlag::SignOnly || self.caps == ContextFlag::None { return Err(Error::IncapableContext); } let mut pk = unsafe { ffi::PublicKey::blank() }; unsafe { if ffi::secp256k1_ecdsa_recover(self.ctx, &mut pk, sig.as_ptr(), msg.as_ptr()) != 1 { return Err(Error::InvalidSignature); } }; Ok(key::PublicKey::from_ffi(pk)) } /// Checks that `sig` is a valid ECDSA signature for `msg` using the public /// key `pubkey`. Returns `Ok(true)` on success. Note that this function cannot /// be used for Bitcoin consensus checking since there may exist signatures /// which OpenSSL would verify but not libsecp256k1, or vice-versa. Requires a /// verify-capable context. #[inline] pub fn verify(&self, msg: &Message, sig: &Signature, pk: &key::PublicKey) -> Result<(), Error> { if self.caps == ContextFlag::SignOnly || self.caps == ContextFlag::None { return Err(Error::IncapableContext); } if !pk.is_valid() { Err(Error::InvalidPublicKey) } else if unsafe { ffi::secp256k1_ecdsa_verify(self.ctx, sig.as_ptr(), msg.as_ptr(), pk.as_ptr()) } == 0 { Err(Error::IncorrectSignature) } else { Ok(()) } } } #[cfg(test)] mod tests { use rand::{Rng, thread_rng}; use key::{SecretKey, PublicKey}; use super::constants; use super::{Secp256k1, Signature, RecoverableSignature, Message, RecoveryId, ContextFlag}; use super::Error::{InvalidMessage, InvalidPublicKey, IncorrectSignature, InvalidSignature, IncapableContext}; #[test] fn capabilities() { let none = Secp256k1::with_caps(ContextFlag::None); let sign = Secp256k1::with_caps(ContextFlag::SignOnly); let vrfy = Secp256k1::with_caps(ContextFlag::VerifyOnly); let full = Secp256k1::with_caps(ContextFlag::Full); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); // Try key generation assert_eq!(none.generate_keypair(&mut thread_rng()), Err(IncapableContext)); assert_eq!(vrfy.generate_keypair(&mut thread_rng()), Err(IncapableContext)); assert!(sign.generate_keypair(&mut thread_rng()).is_ok()); assert!(full.generate_keypair(&mut thread_rng()).is_ok()); let (sk, pk) = full.generate_keypair(&mut thread_rng()).unwrap(); // Try signing assert_eq!(none.sign(&msg, &sk), Err(IncapableContext)); assert_eq!(vrfy.sign(&msg, &sk), Err(IncapableContext)); assert!(sign.sign(&msg, &sk).is_ok()); assert!(full.sign(&msg, &sk).is_ok()); assert_eq!(none.sign_recoverable(&msg, &sk), Err(IncapableContext)); assert_eq!(vrfy.sign_recoverable(&msg, &sk), Err(IncapableContext)); assert!(sign.sign_recoverable(&msg, &sk).is_ok()); assert!(full.sign_recoverable(&msg, &sk).is_ok()); assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk)); assert_eq!(sign.sign_recoverable(&msg, &sk), full.sign_recoverable(&msg, &sk)); let sig = full.sign(&msg, &sk).unwrap(); let sigr = full.sign_recoverable(&msg, &sk).unwrap(); // Try verifying assert_eq!(none.verify(&msg, &sig, &pk), Err(IncapableContext)); assert_eq!(sign.verify(&msg, &sig, &pk), Err(IncapableContext)); assert!(vrfy.verify(&msg, &sig, &pk).is_ok()); assert!(full.verify(&msg, &sig, &pk).is_ok()); // Try pk recovery assert_eq!(none.recover(&msg, &sigr), Err(IncapableContext)); assert_eq!(none.recover(&msg, &sigr), Err(IncapableContext)); assert_eq!(sign.recover(&msg, &sigr), Err(IncapableContext)); assert_eq!(sign.recover(&msg, &sigr), Err(IncapableContext)); assert!(vrfy.recover(&msg, &sigr).is_ok()); assert!(vrfy.recover(&msg, &sigr).is_ok()); assert!(full.recover(&msg, &sigr).is_ok()); assert!(full.recover(&msg, &sigr).is_ok()); assert_eq!(vrfy.recover(&msg, &sigr), full.recover(&msg, &sigr)); assert_eq!(full.recover(&msg, &sigr), Ok(pk)); // Check that we can produce keys from slices with no precomputation let (pk_slice, sk_slice) = (&pk.serialize_vec(&none, true), &sk[..]); let new_pk = PublicKey::from_slice(&none, pk_slice).unwrap(); let new_sk = SecretKey::from_slice(&none, sk_slice).unwrap(); assert_eq!(sk, new_sk); assert_eq!(pk, new_pk); } #[test] fn recid_sanity_check() { let one = RecoveryId(1); assert_eq!(one, one.clone()); } #[test] fn invalid_pubkey() { let s = Secp256k1::new(); let sig = RecoverableSignature::from_compact(&s, &[1; 64], RecoveryId(0)).unwrap(); let pk = PublicKey::new(); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); assert_eq!(s.verify(&msg, &sig.to_standard(&s), &pk), Err(InvalidPublicKey)); } #[test] fn sign() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let one = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]; let sk = SecretKey::from_slice(&s, &one).unwrap(); let msg = Message::from_slice(&one).unwrap(); let sig = s.sign_recoverable(&msg, &sk).unwrap(); assert_eq!(Ok(sig), RecoverableSignature::from_compact(&s, &[ 0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f, 0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6, 0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65, 0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98, 0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8, 0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f, 0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06, 0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89], RecoveryId(1))) } #[test] fn sign_and_verify() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let mut msg = [0; 32]; for _ in 0..100 { thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, pk) = s.generate_keypair(&mut thread_rng()).unwrap(); let sig = s.sign(&msg, &sk).unwrap(); assert_eq!(s.verify(&msg, &sig, &pk), Ok(())); } } #[test] fn sign_and_verify_extreme() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); // Wild keys: 1, CURVE_ORDER - 1 // Wild msgs: 0, 1, CURVE_ORDER - 1, CURVE_ORDER let mut wild_keys = [[0; 32]; 2]; let mut wild_msgs = [[0; 32]; 4]; wild_keys[0][0] = 1; wild_msgs[1][0] = 1; unsafe { use constants; use std::intrinsics::copy_nonoverlapping; copy_nonoverlapping(constants::CURVE_ORDER.as_ptr(), wild_keys[1].as_mut_ptr(), 32); copy_nonoverlapping(constants::CURVE_ORDER.as_ptr(), wild_msgs[1].as_mut_ptr(), 32); copy_nonoverlapping(constants::CURVE_ORDER.as_ptr(), wild_msgs[2].as_mut_ptr(), 32); wild_keys[1][0] -= 1; wild_msgs[1][0] -= 1; } for key in wild_keys.iter().map(|k| SecretKey::from_slice(&s, &k[..]).unwrap()) { for msg in wild_msgs.iter().map(|m| Message::from_slice(&m[..]).unwrap()) { let sig = s.sign(&msg, &key).unwrap(); let pk = PublicKey::from_secret_key(&s, &key); assert_eq!(s.verify(&msg, &sig, &pk), Ok(())); } } } #[test] fn sign_and_verify_fail() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, pk) = s.generate_keypair(&mut thread_rng()).unwrap(); let sigr = s.sign_recoverable(&msg, &sk).unwrap(); let sig = sigr.to_standard(&s); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); assert_eq!(s.verify(&msg, &sig, &pk), Err(IncorrectSignature)); let recovered_key = s.recover(&msg, &sigr).unwrap(); assert!(recovered_key != pk); } #[test] fn sign_with_recovery() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, pk) = s.generate_keypair(&mut thread_rng()).unwrap(); let sig = s.sign_recoverable(&msg, &sk).unwrap(); assert_eq!(s.recover(&msg, &sig), Ok(pk)); } #[test] fn bad_recovery() { let mut s = Secp256k1::new(); s.randomize(&mut thread_rng()); let msg = Message::from_slice(&[0x55; 32]).unwrap(); // Zero is not a valid sig let sig = RecoverableSignature::from_compact(&s, &[0; 64], RecoveryId(0)).unwrap(); assert_eq!(s.recover(&msg, &sig), Err(InvalidSignature)); // ...but 111..111 is let sig = RecoverableSignature::from_compact(&s, &[1; 64], RecoveryId(0)).unwrap(); assert!(s.recover(&msg, &sig).is_ok()); } #[test] fn test_bad_slice() { let s = Secp256k1::new(); assert_eq!(Signature::from_der(&s, &[0; constants::MAX_SIGNATURE_SIZE + 1]), Err(InvalidSignature)); assert_eq!(Signature::from_der(&s, &[0; constants::MAX_SIGNATURE_SIZE]), Err(InvalidSignature)); assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE - 1]), Err(InvalidMessage)); assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE + 1]), Err(InvalidMessage)); assert!(Message::from_slice(&[0; constants::MESSAGE_SIZE]).is_ok()); } #[test] fn test_debug_output() { let s = Secp256k1::new(); let sig = RecoverableSignature::from_compact(&s, &[ 0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f, 0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6, 0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65, 0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98, 0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8, 0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f, 0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06, 0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89], RecoveryId(1)).unwrap(); assert_eq!(&format!("{:?}", sig), "RecoverableSignature(98882e09f4ed6dc3659e43fc771e0cafa60b1f926f2b77041f744721adff7366898cb609d0ee128d06ae9aa3c48020ff9f705e02f80e1280a8ade05216971a4c01)"); let msg = Message([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 255]); assert_eq!(&format!("{:?}", msg), "Message(0102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1fff)"); } } #[cfg(all(test, feature = "unstable"))] mod benches { use rand::{Rng, thread_rng}; use test::{Bencher, black_box}; use super::{Secp256k1, Message}; #[bench] pub fn generate(bh: &mut Bencher) { struct CounterRng(u32); impl Rng for CounterRng { fn next_u32(&mut self) -> u32 { self.0 += 1; self.0 } } let s = Secp256k1::new(); let mut r = CounterRng(0); bh.iter( || { let (sk, pk) = s.generate_keypair(&mut r).unwrap(); black_box(sk); black_box(pk); }); } #[bench] pub fn bench_sign(bh: &mut Bencher) { let s = Secp256k1::new(); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, _) = s.generate_keypair(&mut thread_rng()).unwrap(); bh.iter(|| { let sig = s.sign(&msg, &sk).unwrap(); black_box(sig); }); } #[bench] pub fn bench_verify(bh: &mut Bencher) { let s = Secp256k1::new(); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, pk) = s.generate_keypair(&mut thread_rng()).unwrap(); let sig = s.sign(&msg, &sk).unwrap(); bh.iter(|| { let res = s.verify(&msg, &sig, &pk).unwrap(); black_box(res); }); } #[bench] pub fn bench_recover(bh: &mut Bencher) { let s = Secp256k1::new(); let mut msg = [0u8; 32]; thread_rng().fill_bytes(&mut msg); let msg = Message::from_slice(&msg).unwrap(); let (sk, _) = s.generate_keypair(&mut thread_rng()).unwrap(); let sig = s.sign_recoverable(&msg, &sk).unwrap(); bh.iter(|| { let res = s.recover(&msg, &sig).unwrap(); black_box(res); }); } }