// Bitcoin secp256k1 bindings // Written in 2014 by // Dawid Ciężarkiewicz // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! # Public and secret keys #[cfg(any(test, feature = "rand"))] use rand::Rng; use std::mem; use super::{Secp256k1, ContextFlag}; use super::Error::{self, IncapableContext, InvalidPublicKey, InvalidSecretKey}; use Signing; use Verification; use constants; use ffi; /// Secret 256-bit key used as `x` in an ECDSA signature pub struct SecretKey([u8; constants::SECRET_KEY_SIZE]); impl_array_newtype!(SecretKey, u8, constants::SECRET_KEY_SIZE); impl_pretty_debug!(SecretKey); /// The number 1 encoded as a secret key /// Deprecated; `static` is not what I want; use `ONE_KEY` instead pub static ONE: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]); /// The number 0 encoded as a secret key pub const ZERO_KEY: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]); /// The number 1 encoded as a secret key pub const ONE_KEY: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]); /// A Secp256k1 public key, used for verification of signatures #[derive(Copy, Clone, PartialEq, Eq, Debug, PartialOrd, Ord, Hash)] pub struct PublicKey(ffi::PublicKey); #[cfg(any(test, feature = "rand"))] fn random_32_bytes(rng: &mut R) -> [u8; 32] { let mut ret = [0u8; 32]; rng.fill_bytes(&mut ret); ret } impl SecretKey { /// Creates a new random secret key #[inline] #[cfg(any(test, feature = "rand"))] pub fn new(secp: &Secp256k1, rng: &mut R) -> SecretKey { let mut data = random_32_bytes(rng); unsafe { while ffi::secp256k1_ec_seckey_verify(secp.ctx, data.as_ptr()) == 0 { data = random_32_bytes(rng); } } SecretKey(data) } /// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key #[inline] pub fn from_slice(secp: &Secp256k1, data: &[u8]) -> Result { match data.len() { constants::SECRET_KEY_SIZE => { let mut ret = [0; constants::SECRET_KEY_SIZE]; unsafe { if ffi::secp256k1_ec_seckey_verify(secp.ctx, data.as_ptr()) == 0 { return Err(InvalidSecretKey); } } ret[..].copy_from_slice(data); Ok(SecretKey(ret)) } _ => Err(InvalidSecretKey) } } #[inline] /// Adds one secret key to another, modulo the curve order pub fn add_assign(&mut self, secp: &Secp256k1, other: &SecretKey) -> Result<(), Error> { unsafe { if ffi::secp256k1_ec_privkey_tweak_add(secp.ctx, self.as_mut_ptr(), other.as_ptr()) != 1 { Err(InvalidSecretKey) } else { Ok(()) } } } #[inline] /// Multiplies one secret key by another, modulo the curve order pub fn mul_assign(&mut self, secp: &Secp256k1, other: &SecretKey) -> Result<(), Error> { unsafe { if ffi::secp256k1_ec_privkey_tweak_mul(secp.ctx, self.as_mut_ptr(), other.as_ptr()) != 1 { Err(InvalidSecretKey) } else { Ok(()) } } } } impl PublicKey { /// Creates a new zeroed out public key #[inline] pub fn new() -> PublicKey { PublicKey(ffi::PublicKey::new()) } /// Determines whether a pubkey is valid #[inline] pub fn is_valid(&self) -> bool { // The only invalid pubkey the API should be able to create is // the zero one. self.0[..].iter().any(|&x| x != 0) } /// Obtains a raw pointer suitable for use with FFI functions #[inline] pub fn as_ptr(&self) -> *const ffi::PublicKey { &self.0 as *const _ } /// Creates a new public key from a secret key. #[inline] pub fn from_secret_key(secp: &Secp256k1, sk: &SecretKey) -> Result { let mut pk = unsafe { ffi::PublicKey::blank() }; unsafe { // We can assume the return value because it's not possible to construct // an invalid `SecretKey` without transmute trickery or something let res = ffi::secp256k1_ec_pubkey_create(secp.ctx, &mut pk, sk.as_ptr()); debug_assert_eq!(res, 1); } Ok(PublicKey(pk)) } /// Creates a public key directly from a slice #[inline] pub fn from_slice(secp: &Secp256k1, data: &[u8]) -> Result { let mut pk = unsafe { ffi::PublicKey::blank() }; unsafe { if ffi::secp256k1_ec_pubkey_parse(secp.ctx, &mut pk, data.as_ptr(), data.len() as ::libc::size_t) == 1 { Ok(PublicKey(pk)) } else { Err(InvalidPublicKey) } } } #[inline] /// Serialize the key as a byte-encoded pair of values. In compressed form /// the y-coordinate is represented by only a single bit, as x determines /// it up to one bit. pub fn serialize(&self) -> [u8; constants::PUBLIC_KEY_SIZE] { let secp = Secp256k1::without_caps(); let mut ret = [0; constants::PUBLIC_KEY_SIZE]; unsafe { let mut ret_len = constants::PUBLIC_KEY_SIZE as ::libc::size_t; let err = ffi::secp256k1_ec_pubkey_serialize( secp.ctx, ret.as_mut_ptr(), &mut ret_len, self.as_ptr(), ffi::SECP256K1_SER_COMPRESSED, ); debug_assert_eq!(err, 1); debug_assert_eq!(ret_len, ret.len()); } ret } /// Serialize the key as a byte-encoded pair of values, in uncompressed form pub fn serialize_uncompressed(&self) -> [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] { let secp = Secp256k1::without_caps(); let mut ret = [0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]; unsafe { let mut ret_len = constants::UNCOMPRESSED_PUBLIC_KEY_SIZE as ::libc::size_t; let err = ffi::secp256k1_ec_pubkey_serialize( secp.ctx, ret.as_mut_ptr(), &mut ret_len, self.as_ptr(), ffi::SECP256K1_SER_UNCOMPRESSED, ); debug_assert_eq!(err, 1); debug_assert_eq!(ret_len, ret.len()); } ret } #[inline] /// Adds the pk corresponding to `other` to the pk `self` in place pub fn add_exp_assign(&mut self, secp: &Secp256k1, other: &SecretKey) -> Result<(), Error> { unsafe { if ffi::secp256k1_ec_pubkey_tweak_add(secp.ctx, &mut self.0 as *mut _, other.as_ptr()) == 1 { Ok(()) } else { Err(InvalidSecretKey) } } } #[inline] /// Muliplies the pk `self` in place by the scalar `other` pub fn mul_assign(&mut self, secp: &Secp256k1, other: &SecretKey) -> Result<(), Error> { unsafe { if ffi::secp256k1_ec_pubkey_tweak_mul(secp.ctx, &mut self.0 as *mut _, other.as_ptr()) == 1 { Ok(()) } else { Err(InvalidSecretKey) } } } /// Adds a second key to this one, returning the sum. Returns an error if /// the result would be the point at infinity, i.e. we are adding this point /// to its own negation pub fn combine(&self, secp: &Secp256k1, other: &PublicKey) -> Result { unsafe { let mut ret = mem::uninitialized(); let ptrs = [self.as_ptr(), other.as_ptr()]; if ffi::secp256k1_ec_pubkey_combine(secp.ctx, &mut ret, ptrs.as_ptr(), 2) == 1 { Ok(PublicKey(ret)) } else { Err(InvalidPublicKey) } } } } /// Creates a new public key from a FFI public key impl From for PublicKey { #[inline] fn from(pk: ffi::PublicKey) -> PublicKey { PublicKey(pk) } } #[cfg(test)] mod test { use super::super::{Secp256k1, ContextFlag}; use super::super::Error::{InvalidPublicKey, InvalidSecretKey, IncapableContext}; use super::{PublicKey, SecretKey}; use super::super::constants; use rand::{Rng, thread_rng}; macro_rules! hex { ($hex:expr) => { { let mut vec = Vec::new(); let mut b = 0; for (idx, c) in $hex.as_bytes().iter().enumerate() { b <<= 4; match *c { b'A'...b'F' => b |= c - b'A' + 10, b'a'...b'f' => b |= c - b'a' + 10, b'0'...b'9' => b |= c - b'0', _ => panic!("Bad hex"), } if (idx & 1) == 1 { vec.push(b); b = 0; } } vec } } } #[test] fn skey_from_slice() { let s = Secp256k1::new(); let sk = SecretKey::from_slice(&s, &[1; 31]); assert_eq!(sk, Err(InvalidSecretKey)); let sk = SecretKey::from_slice(&s, &[1; 32]); assert!(sk.is_ok()); } #[test] fn pubkey_from_slice() { let s = Secp256k1::new(); assert_eq!(PublicKey::from_slice(&s, &[]), Err(InvalidPublicKey)); assert_eq!(PublicKey::from_slice(&s, &[1, 2, 3]), Err(InvalidPublicKey)); let uncompressed = PublicKey::from_slice(&s, &[4, 54, 57, 149, 239, 162, 148, 175, 246, 254, 239, 75, 154, 152, 10, 82, 234, 224, 85, 220, 40, 100, 57, 121, 30, 162, 94, 156, 135, 67, 74, 49, 179, 57, 236, 53, 162, 124, 149, 144, 168, 77, 74, 30, 72, 211, 229, 110, 111, 55, 96, 193, 86, 227, 183, 152, 195, 155, 51, 247, 123, 113, 60, 228, 188]); assert!(uncompressed.is_ok()); let compressed = PublicKey::from_slice(&s, &[3, 23, 183, 225, 206, 31, 159, 148, 195, 42, 67, 115, 146, 41, 248, 140, 11, 3, 51, 41, 111, 180, 110, 143, 114, 134, 88, 73, 198, 174, 52, 184, 78]); assert!(compressed.is_ok()); } #[test] fn keypair_slice_round_trip() { let s = Secp256k1::new(); let (sk1, pk1) = s.generate_keypair(&mut thread_rng()).unwrap(); assert_eq!(SecretKey::from_slice(&s, &sk1[..]), Ok(sk1)); assert_eq!(PublicKey::from_slice(&s, &pk1.serialize()[..]), Ok(pk1)); assert_eq!(PublicKey::from_slice(&s, &pk1.serialize_uncompressed()[..]), Ok(pk1)); } #[test] fn invalid_secret_key() { let s = Secp256k1::new(); // Zero assert_eq!(SecretKey::from_slice(&s, &[0; 32]), Err(InvalidSecretKey)); // -1 assert_eq!(SecretKey::from_slice(&s, &[0xff; 32]), Err(InvalidSecretKey)); // Top of range assert!(SecretKey::from_slice(&s, &[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]).is_ok()); // One past top of range assert!(SecretKey::from_slice(&s, &[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]).is_err()); } #[test] fn test_pubkey_from_slice_bad_context() { let s = Secp256k1::without_caps(); let sk = SecretKey::new(&s, &mut thread_rng()); assert_eq!(PublicKey::from_secret_key(&s, &sk), Err(IncapableContext)); let s = Secp256k1::with_caps(ContextFlag::VerifyOnly); assert_eq!(PublicKey::from_secret_key(&s, &sk), Err(IncapableContext)); let s = Secp256k1::with_caps(ContextFlag::SignOnly); assert!(PublicKey::from_secret_key(&s, &sk).is_ok()); let s = Secp256k1::with_caps(ContextFlag::Full); assert!(PublicKey::from_secret_key(&s, &sk).is_ok()); } #[test] fn test_add_exp_bad_context() { let s = Secp256k1::with_caps(ContextFlag::Full); let (sk, mut pk) = s.generate_keypair(&mut thread_rng()).unwrap(); assert!(pk.add_exp_assign(&s, &sk).is_ok()); let s = Secp256k1::with_caps(ContextFlag::VerifyOnly); assert!(pk.add_exp_assign(&s, &sk).is_ok()); let s = Secp256k1::with_caps(ContextFlag::SignOnly); assert_eq!(pk.add_exp_assign(&s, &sk), Err(IncapableContext)); let s = Secp256k1::with_caps(ContextFlag::None); assert_eq!(pk.add_exp_assign(&s, &sk), Err(IncapableContext)); } #[test] fn test_out_of_range() { struct BadRng(u8); impl Rng for BadRng { fn next_u32(&mut self) -> u32 { unimplemented!() } // This will set a secret key to a little over the // group order, then decrement with repeated calls // until it returns a valid key fn fill_bytes(&mut self, data: &mut [u8]) { let group_order: [u8; 32] = [ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe, 0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b, 0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41]; assert_eq!(data.len(), 32); data.copy_from_slice(&group_order[..]); data[31] = self.0; self.0 -= 1; } } let s = Secp256k1::new(); s.generate_keypair(&mut BadRng(0xff)).unwrap(); } #[test] fn test_pubkey_from_bad_slice() { let s = Secp256k1::new(); // Bad sizes assert_eq!(PublicKey::from_slice(&s, &[0; constants::PUBLIC_KEY_SIZE - 1]), Err(InvalidPublicKey)); assert_eq!(PublicKey::from_slice(&s, &[0; constants::PUBLIC_KEY_SIZE + 1]), Err(InvalidPublicKey)); assert_eq!(PublicKey::from_slice(&s, &[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE - 1]), Err(InvalidPublicKey)); assert_eq!(PublicKey::from_slice(&s, &[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE + 1]), Err(InvalidPublicKey)); // Bad parse assert_eq!(PublicKey::from_slice(&s, &[0xff; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]), Err(InvalidPublicKey)); assert_eq!(PublicKey::from_slice(&s, &[0x55; constants::PUBLIC_KEY_SIZE]), Err(InvalidPublicKey)); } #[test] fn test_debug_output() { struct DumbRng(u32); impl Rng for DumbRng { fn next_u32(&mut self) -> u32 { self.0 = self.0.wrapping_add(1); self.0 } } let s = Secp256k1::new(); let (sk, _) = s.generate_keypair(&mut DumbRng(0)).unwrap(); assert_eq!(&format!("{:?}", sk), "SecretKey(0200000001000000040000000300000006000000050000000800000007000000)"); } #[test] fn test_pubkey_serialize() { struct DumbRng(u32); impl Rng for DumbRng { fn next_u32(&mut self) -> u32 { self.0 = self.0.wrapping_add(1); self.0 } } let s = Secp256k1::new(); let (_, pk1) = s.generate_keypair(&mut DumbRng(0)).unwrap(); assert_eq!(&pk1.serialize_uncompressed()[..], &[4, 149, 16, 196, 140, 38, 92, 239, 179, 65, 59, 224, 230, 183, 91, 238, 240, 46, 186, 252, 175, 102, 52, 249, 98, 178, 123, 72, 50, 171, 196, 254, 236, 1, 189, 143, 242, 227, 16, 87, 247, 183, 162, 68, 237, 140, 92, 205, 151, 129, 166, 58, 111, 96, 123, 64, 180, 147, 51, 12, 209, 89, 236, 213, 206][..]); assert_eq!(&pk1.serialize()[..], &[2, 149, 16, 196, 140, 38, 92, 239, 179, 65, 59, 224, 230, 183, 91, 238, 240, 46, 186, 252, 175, 102, 52, 249, 98, 178, 123, 72, 50, 171, 196, 254, 236][..]); } #[test] fn test_addition() { let s = Secp256k1::new(); let (mut sk1, mut pk1) = s.generate_keypair(&mut thread_rng()).unwrap(); let (mut sk2, mut pk2) = s.generate_keypair(&mut thread_rng()).unwrap(); assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1); assert!(sk1.add_assign(&s, &sk2).is_ok()); assert!(pk1.add_exp_assign(&s, &sk2).is_ok()); assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1); assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2); assert!(sk2.add_assign(&s, &sk1).is_ok()); assert!(pk2.add_exp_assign(&s, &sk1).is_ok()); assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2); } #[test] fn test_multiplication() { let s = Secp256k1::new(); let (mut sk1, mut pk1) = s.generate_keypair(&mut thread_rng()).unwrap(); let (mut sk2, mut pk2) = s.generate_keypair(&mut thread_rng()).unwrap(); assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1); assert!(sk1.mul_assign(&s, &sk2).is_ok()); assert!(pk1.mul_assign(&s, &sk2).is_ok()); assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1); assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2); assert!(sk2.mul_assign(&s, &sk1).is_ok()); assert!(pk2.mul_assign(&s, &sk1).is_ok()); assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2); } #[test] fn pubkey_hash() { use std::collections::hash_map::DefaultHasher; use std::hash::{Hash, Hasher}; use std::collections::HashSet; fn hash(t: &T) -> u64 { let mut s = DefaultHasher::new(); t.hash(&mut s); s.finish() } let s = Secp256k1::new(); let mut set = HashSet::new(); const COUNT : usize = 1024; let count = (0..COUNT).map(|_| { let (_, pk) = s.generate_keypair(&mut thread_rng()).unwrap(); let hash = hash(&pk); assert!(!set.contains(&hash)); set.insert(hash); }).count(); assert_eq!(count, COUNT); } #[test] fn pubkey_combine() { let s = Secp256k1::with_caps(ContextFlag::None); let compressed1 = PublicKey::from_slice( &s, &hex!("0241cc121c419921942add6db6482fb36243faf83317c866d2a28d8c6d7089f7ba"), ).unwrap(); let compressed2 = PublicKey::from_slice( &s, &hex!("02e6642fd69bd211f93f7f1f36ca51a26a5290eb2dd1b0d8279a87bb0d480c8443"), ).unwrap(); let exp_sum = PublicKey::from_slice( &s, &hex!("0384526253c27c7aef56c7b71a5cd25bebb66dddda437826defc5b2568bde81f07"), ).unwrap(); let sum1 = compressed1.combine(&s, &compressed2); assert!(sum1.is_ok()); let sum2 = compressed2.combine(&s, &compressed1); assert!(sum2.is_ok()); assert_eq!(sum1, sum2); assert_eq!(sum1.unwrap(), exp_sum); } #[test] fn pubkey_equal() { let s = Secp256k1::new(); let pk1 = PublicKey::from_slice( &s, &hex!("0241cc121c419921942add6db6482fb36243faf83317c866d2a28d8c6d7089f7ba"), ).unwrap(); let pk2 = pk1.clone(); let pk3 = PublicKey::from_slice( &s, &hex!("02e6642fd69bd211f93f7f1f36ca51a26a5290eb2dd1b0d8279a87bb0d480c8443"), ).unwrap(); assert!(pk1 == pk2); assert!(pk1 <= pk2); assert!(pk2 <= pk1); assert!(!(pk2 < pk1)); assert!(!(pk1 < pk2)); assert!(pk3 < pk1); assert!(pk1 > pk3); assert!(pk3 <= pk1); assert!(pk1 >= pk3); } }