rust-secp256k1-unsafe-fast/secp256k1-sys/depend/secp256k1/src/ecmult_impl.h

1217 lines
50 KiB
C

/*****************************************************************************
* Copyright (c) 2013, 2014, 2017 Pieter Wuille, Andrew Poelstra, Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php. *
*****************************************************************************/
#ifndef SECP256K1_ECMULT_IMPL_H
#define SECP256K1_ECMULT_IMPL_H
#include <string.h>
#include <stdint.h>
#include "util.h"
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#if defined(EXHAUSTIVE_TEST_ORDER)
/* We need to lower these values for exhaustive tests because
* the tables cannot have infinities in them (this breaks the
* affine-isomorphism stuff which tracks z-ratios) */
# if EXHAUSTIVE_TEST_ORDER > 128
# define WINDOW_A 5
# define WINDOW_G 8
# elif EXHAUSTIVE_TEST_ORDER > 8
# define WINDOW_A 4
# define WINDOW_G 4
# else
# define WINDOW_A 2
# define WINDOW_G 2
# endif
#else
/* optimal for 128-bit and 256-bit exponents. */
# define WINDOW_A 5
/** Larger values for ECMULT_WINDOW_SIZE result in possibly better
* performance at the cost of an exponentially larger precomputed
* table. The exact table size is
* (1 << (WINDOW_G - 2)) * sizeof(rustsecp256k1_v0_3_1_ge_storage) bytes,
* where sizeof(rustsecp256k1_v0_3_1_ge_storage) is typically 64 bytes but can
* be larger due to platform-specific padding and alignment.
* If the endomorphism optimization is enabled (USE_ENDOMORMPHSIM)
* two tables of this size are used instead of only one.
*/
# define WINDOW_G ECMULT_WINDOW_SIZE
#endif
/* Noone will ever need more than a window size of 24. The code might
* be correct for larger values of ECMULT_WINDOW_SIZE but this is not
* not tested.
*
* The following limitations are known, and there are probably more:
* If WINDOW_G > 27 and size_t has 32 bits, then the code is incorrect
* because the size of the memory object that we allocate (in bytes)
* will not fit in a size_t.
* If WINDOW_G > 31 and int has 32 bits, then the code is incorrect
* because certain expressions will overflow.
*/
#if ECMULT_WINDOW_SIZE < 2 || ECMULT_WINDOW_SIZE > 24
# error Set ECMULT_WINDOW_SIZE to an integer in range [2..24].
#endif
#ifdef USE_ENDOMORPHISM
#define WNAF_BITS 128
#else
#define WNAF_BITS 256
#endif
#define WNAF_SIZE_BITS(bits, w) (((bits) + (w) - 1) / (w))
#define WNAF_SIZE(w) WNAF_SIZE_BITS(WNAF_BITS, w)
/** The number of entries a table with precomputed multiples needs to have. */
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
/* The number of objects allocated on the scratch space for ecmult_multi algorithms */
#define PIPPENGER_SCRATCH_OBJECTS 6
#define STRAUSS_SCRATCH_OBJECTS 6
#define PIPPENGER_MAX_BUCKET_WINDOW 12
/* Minimum number of points for which pippenger_wnaf is faster than strauss wnaf */
#ifdef USE_ENDOMORPHISM
#define ECMULT_PIPPENGER_THRESHOLD 88
#else
#define ECMULT_PIPPENGER_THRESHOLD 160
#endif
#ifdef USE_ENDOMORPHISM
#define ECMULT_MAX_POINTS_PER_BATCH 5000000
#else
#define ECMULT_MAX_POINTS_PER_BATCH 10000000
#endif
/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain
* the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will
* contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z.
* Prej's Z values are undefined, except for the last value.
*/
static void rustsecp256k1_v0_3_1_ecmult_odd_multiples_table(int n, rustsecp256k1_v0_3_1_gej *prej, rustsecp256k1_v0_3_1_fe *zr, const rustsecp256k1_v0_3_1_gej *a) {
rustsecp256k1_v0_3_1_gej d;
rustsecp256k1_v0_3_1_ge a_ge, d_ge;
int i;
VERIFY_CHECK(!a->infinity);
rustsecp256k1_v0_3_1_gej_double_var(&d, a, NULL);
/*
* Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate
* of 'd', and scale the 1P starting value's x/y coordinates without changing its z.
*/
d_ge.x = d.x;
d_ge.y = d.y;
d_ge.infinity = 0;
rustsecp256k1_v0_3_1_ge_set_gej_zinv(&a_ge, a, &d.z);
prej[0].x = a_ge.x;
prej[0].y = a_ge.y;
prej[0].z = a->z;
prej[0].infinity = 0;
zr[0] = d.z;
for (i = 1; i < n; i++) {
rustsecp256k1_v0_3_1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]);
}
/*
* Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only
* the final point's z coordinate is actually used though, so just update that.
*/
rustsecp256k1_v0_3_1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z);
}
/** Fill a table 'pre' with precomputed odd multiples of a.
*
* There are two versions of this function:
* - rustsecp256k1_v0_3_1_ecmult_odd_multiples_table_globalz_windowa which brings its
* resulting point set to a single constant Z denominator, stores the X and Y
* coordinates as ge_storage points in pre, and stores the global Z in rz.
* It only operates on tables sized for WINDOW_A wnaf multiples.
* - rustsecp256k1_v0_3_1_ecmult_odd_multiples_table_storage_var, which converts its
* resulting point set to actually affine points, and stores those in pre.
* It operates on tables of any size.
*
* To compute a*P + b*G, we compute a table for P using the first function,
* and for G using the second (which requires an inverse, but it only needs to
* happen once).
*/
static void rustsecp256k1_v0_3_1_ecmult_odd_multiples_table_globalz_windowa(rustsecp256k1_v0_3_1_ge *pre, rustsecp256k1_v0_3_1_fe *globalz, const rustsecp256k1_v0_3_1_gej *a) {
rustsecp256k1_v0_3_1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
rustsecp256k1_v0_3_1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
/* Compute the odd multiples in Jacobian form. */
rustsecp256k1_v0_3_1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a);
/* Bring them to the same Z denominator. */
rustsecp256k1_v0_3_1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
}
static void rustsecp256k1_v0_3_1_ecmult_odd_multiples_table_storage_var(const int n, rustsecp256k1_v0_3_1_ge_storage *pre, const rustsecp256k1_v0_3_1_gej *a) {
rustsecp256k1_v0_3_1_gej d;
rustsecp256k1_v0_3_1_ge d_ge, p_ge;
rustsecp256k1_v0_3_1_gej pj;
rustsecp256k1_v0_3_1_fe zi;
rustsecp256k1_v0_3_1_fe zr;
rustsecp256k1_v0_3_1_fe dx_over_dz_squared;
int i;
VERIFY_CHECK(!a->infinity);
rustsecp256k1_v0_3_1_gej_double_var(&d, a, NULL);
/* First, we perform all the additions in an isomorphic curve obtained by multiplying
* all `z` coordinates by 1/`d.z`. In these coordinates `d` is affine so we can use
* `rustsecp256k1_v0_3_1_gej_add_ge_var` to perform the additions. For each addition, we store
* the resulting y-coordinate and the z-ratio, since we only have enough memory to
* store two field elements. These are sufficient to efficiently undo the isomorphism
* and recompute all the `x`s.
*/
d_ge.x = d.x;
d_ge.y = d.y;
d_ge.infinity = 0;
rustsecp256k1_v0_3_1_ge_set_gej_zinv(&p_ge, a, &d.z);
pj.x = p_ge.x;
pj.y = p_ge.y;
pj.z = a->z;
pj.infinity = 0;
for (i = 0; i < (n - 1); i++) {
rustsecp256k1_v0_3_1_fe_normalize_var(&pj.y);
rustsecp256k1_v0_3_1_fe_to_storage(&pre[i].y, &pj.y);
rustsecp256k1_v0_3_1_gej_add_ge_var(&pj, &pj, &d_ge, &zr);
rustsecp256k1_v0_3_1_fe_normalize_var(&zr);
rustsecp256k1_v0_3_1_fe_to_storage(&pre[i].x, &zr);
}
/* Invert d.z in the same batch, preserving pj.z so we can extract 1/d.z */
rustsecp256k1_v0_3_1_fe_mul(&zi, &pj.z, &d.z);
rustsecp256k1_v0_3_1_fe_inv_var(&zi, &zi);
/* Directly set `pre[n - 1]` to `pj`, saving the inverted z-coordinate so
* that we can combine it with the saved z-ratios to compute the other zs
* without any more inversions. */
rustsecp256k1_v0_3_1_ge_set_gej_zinv(&p_ge, &pj, &zi);
rustsecp256k1_v0_3_1_ge_to_storage(&pre[n - 1], &p_ge);
/* Compute the actual x-coordinate of D, which will be needed below. */
rustsecp256k1_v0_3_1_fe_mul(&d.z, &zi, &pj.z); /* d.z = 1/d.z */
rustsecp256k1_v0_3_1_fe_sqr(&dx_over_dz_squared, &d.z);
rustsecp256k1_v0_3_1_fe_mul(&dx_over_dz_squared, &dx_over_dz_squared, &d.x);
/* Going into the second loop, we have set `pre[n-1]` to its final affine
* form, but still need to set `pre[i]` for `i` in 0 through `n-2`. We
* have `zi = (p.z * d.z)^-1`, where
*
* `p.z` is the z-coordinate of the point on the isomorphic curve
* which was ultimately assigned to `pre[n-1]`.
* `d.z` is the multiplier that must be applied to all z-coordinates
* to move from our isomorphic curve back to secp256k1; so the
* product `p.z * d.z` is the z-coordinate of the secp256k1
* point assigned to `pre[n-1]`.
*
* All subsequent inverse-z-coordinates can be obtained by multiplying this
* factor by successive z-ratios, which is much more efficient than directly
* computing each one.
*
* Importantly, these inverse-zs will be coordinates of points on secp256k1,
* while our other stored values come from computations on the isomorphic
* curve. So in the below loop, we will take care not to actually use `zi`
* or any derived values until we're back on secp256k1.
*/
i = n - 1;
while (i > 0) {
rustsecp256k1_v0_3_1_fe zi2, zi3;
const rustsecp256k1_v0_3_1_fe *rzr;
i--;
rustsecp256k1_v0_3_1_ge_from_storage(&p_ge, &pre[i]);
/* For each remaining point, we extract the z-ratio from the stored
* x-coordinate, compute its z^-1 from that, and compute the full
* point from that. */
rzr = &p_ge.x;
rustsecp256k1_v0_3_1_fe_mul(&zi, &zi, rzr);
rustsecp256k1_v0_3_1_fe_sqr(&zi2, &zi);
rustsecp256k1_v0_3_1_fe_mul(&zi3, &zi2, &zi);
/* To compute the actual x-coordinate, we use the stored z ratio and
* y-coordinate, which we obtained from `rustsecp256k1_v0_3_1_gej_add_ge_var`
* in the loop above, as well as the inverse of the square of its
* z-coordinate. We store the latter in the `zi2` variable, which is
* computed iteratively starting from the overall Z inverse then
* multiplying by each z-ratio in turn.
*
* Denoting the z-ratio as `rzr`, we observe that it is equal to `h`
* from the inside of the above `gej_add_ge_var` call. This satisfies
*
* rzr = d_x * z^2 - x * d_z^2
*
* where (`d_x`, `d_z`) are Jacobian coordinates of `D` and `(x, z)`
* are Jacobian coordinates of our desired point -- except both are on
* the isomorphic curve that we were using when we called `gej_add_ge_var`.
* To get back to secp256k1, we must multiply both `z`s by `d_z`, or
* equivalently divide both `x`s by `d_z^2`. Our equation then becomes
*
* rzr = d_x * z^2 / d_z^2 - x
*
* (The left-hand-side, being a ratio of z-coordinates, is unaffected
* by the isomorphism.)
*
* Rearranging to solve for `x`, we have
*
* x = d_x * z^2 / d_z^2 - rzr
*
* But what we actually want is the affine coordinate `X = x/z^2`,
* which will satisfy
*
* X = d_x / d_z^2 - rzr / z^2
* = dx_over_dz_squared - rzr * zi2
*/
rustsecp256k1_v0_3_1_fe_mul(&p_ge.x, rzr, &zi2);
rustsecp256k1_v0_3_1_fe_negate(&p_ge.x, &p_ge.x, 1);
rustsecp256k1_v0_3_1_fe_add(&p_ge.x, &dx_over_dz_squared);
/* y is stored_y/z^3, as we expect */
rustsecp256k1_v0_3_1_fe_mul(&p_ge.y, &p_ge.y, &zi3);
/* Store */
rustsecp256k1_v0_3_1_ge_to_storage(&pre[i], &p_ge);
}
}
/** The following two macro retrieves a particular odd multiple from a table
* of precomputed multiples. */
#define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
if ((n) > 0) { \
*(r) = (pre)[((n)-1)/2]; \
} else { \
*(r) = (pre)[(-(n)-1)/2]; \
rustsecp256k1_v0_3_1_fe_negate(&((r)->y), &((r)->y), 1); \
} \
} while(0)
#define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
if ((n) > 0) { \
rustsecp256k1_v0_3_1_ge_from_storage((r), &(pre)[((n)-1)/2]); \
} else { \
rustsecp256k1_v0_3_1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \
rustsecp256k1_v0_3_1_fe_negate(&((r)->y), &((r)->y), 1); \
} \
} while(0)
static const size_t SECP256K1_ECMULT_CONTEXT_PREALLOCATED_SIZE =
ROUND_TO_ALIGN(sizeof((*((rustsecp256k1_v0_3_1_ecmult_context*) NULL)->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G))
#ifdef USE_ENDOMORPHISM
+ ROUND_TO_ALIGN(sizeof((*((rustsecp256k1_v0_3_1_ecmult_context*) NULL)->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G))
#endif
;
static void rustsecp256k1_v0_3_1_ecmult_context_init(rustsecp256k1_v0_3_1_ecmult_context *ctx) {
ctx->pre_g = NULL;
#ifdef USE_ENDOMORPHISM
ctx->pre_g_128 = NULL;
#endif
}
static void rustsecp256k1_v0_3_1_ecmult_context_build(rustsecp256k1_v0_3_1_ecmult_context *ctx, void **prealloc) {
rustsecp256k1_v0_3_1_gej gj;
void* const base = *prealloc;
size_t const prealloc_size = SECP256K1_ECMULT_CONTEXT_PREALLOCATED_SIZE;
if (ctx->pre_g != NULL) {
return;
}
/* get the generator */
rustsecp256k1_v0_3_1_gej_set_ge(&gj, &rustsecp256k1_v0_3_1_ge_const_g);
{
size_t size = sizeof((*ctx->pre_g)[0]) * ((size_t)ECMULT_TABLE_SIZE(WINDOW_G));
/* check for overflow */
VERIFY_CHECK(size / sizeof((*ctx->pre_g)[0]) == ((size_t)ECMULT_TABLE_SIZE(WINDOW_G)));
ctx->pre_g = (rustsecp256k1_v0_3_1_ge_storage (*)[])manual_alloc(prealloc, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G), base, prealloc_size);
}
/* precompute the tables with odd multiples */
rustsecp256k1_v0_3_1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj);
#ifdef USE_ENDOMORPHISM
{
rustsecp256k1_v0_3_1_gej g_128j;
int i;
size_t size = sizeof((*ctx->pre_g_128)[0]) * ((size_t) ECMULT_TABLE_SIZE(WINDOW_G));
/* check for overflow */
VERIFY_CHECK(size / sizeof((*ctx->pre_g_128)[0]) == ((size_t)ECMULT_TABLE_SIZE(WINDOW_G)));
ctx->pre_g_128 = (rustsecp256k1_v0_3_1_ge_storage (*)[])manual_alloc(prealloc, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G), base, prealloc_size);
/* calculate 2^128*generator */
g_128j = gj;
for (i = 0; i < 128; i++) {
rustsecp256k1_v0_3_1_gej_double_var(&g_128j, &g_128j, NULL);
}
rustsecp256k1_v0_3_1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j);
}
#endif
}
static void rustsecp256k1_v0_3_1_ecmult_context_finalize_memcpy(rustsecp256k1_v0_3_1_ecmult_context *dst, const rustsecp256k1_v0_3_1_ecmult_context *src) {
if (src->pre_g != NULL) {
/* We cast to void* first to suppress a -Wcast-align warning. */
dst->pre_g = (rustsecp256k1_v0_3_1_ge_storage (*)[])(void*)((unsigned char*)dst + ((unsigned char*)(src->pre_g) - (unsigned char*)src));
}
#ifdef USE_ENDOMORPHISM
if (src->pre_g_128 != NULL) {
dst->pre_g_128 = (rustsecp256k1_v0_3_1_ge_storage (*)[])(void*)((unsigned char*)dst + ((unsigned char*)(src->pre_g_128) - (unsigned char*)src));
}
#endif
}
static int rustsecp256k1_v0_3_1_ecmult_context_is_built(const rustsecp256k1_v0_3_1_ecmult_context *ctx) {
return ctx->pre_g != NULL;
}
static void rustsecp256k1_v0_3_1_ecmult_context_clear(rustsecp256k1_v0_3_1_ecmult_context *ctx) {
rustsecp256k1_v0_3_1_ecmult_context_init(ctx);
}
/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
* with the following guarantees:
* - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
* - two non-zero entries in wnaf are separated by at least w-1 zeroes.
* - the number of set values in wnaf is returned. This number is at most 256, and at most one more
* than the number of bits in the (absolute value) of the input.
*/
static int rustsecp256k1_v0_3_1_ecmult_wnaf(int *wnaf, int len, const rustsecp256k1_v0_3_1_scalar *a, int w) {
rustsecp256k1_v0_3_1_scalar s;
int last_set_bit = -1;
int bit = 0;
int sign = 1;
int carry = 0;
VERIFY_CHECK(wnaf != NULL);
VERIFY_CHECK(0 <= len && len <= 256);
VERIFY_CHECK(a != NULL);
VERIFY_CHECK(2 <= w && w <= 31);
memset(wnaf, 0, len * sizeof(wnaf[0]));
s = *a;
if (rustsecp256k1_v0_3_1_scalar_get_bits(&s, 255, 1)) {
rustsecp256k1_v0_3_1_scalar_negate(&s, &s);
sign = -1;
}
while (bit < len) {
int now;
int word;
if (rustsecp256k1_v0_3_1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) {
bit++;
continue;
}
now = w;
if (now > len - bit) {
now = len - bit;
}
word = rustsecp256k1_v0_3_1_scalar_get_bits_var(&s, bit, now) + carry;
carry = (word >> (w-1)) & 1;
word -= carry << w;
wnaf[bit] = sign * word;
last_set_bit = bit;
bit += now;
}
#ifdef VERIFY
CHECK(carry == 0);
while (bit < 256) {
CHECK(rustsecp256k1_v0_3_1_scalar_get_bits(&s, bit++, 1) == 0);
}
#endif
return last_set_bit + 1;
}
struct rustsecp256k1_v0_3_1_strauss_point_state {
#ifdef USE_ENDOMORPHISM
rustsecp256k1_v0_3_1_scalar na_1, na_lam;
int wnaf_na_1[130];
int wnaf_na_lam[130];
int bits_na_1;
int bits_na_lam;
#else
int wnaf_na[256];
int bits_na;
#endif
size_t input_pos;
};
struct rustsecp256k1_v0_3_1_strauss_state {
rustsecp256k1_v0_3_1_gej* prej;
rustsecp256k1_v0_3_1_fe* zr;
rustsecp256k1_v0_3_1_ge* pre_a;
#ifdef USE_ENDOMORPHISM
rustsecp256k1_v0_3_1_ge* pre_a_lam;
#endif
struct rustsecp256k1_v0_3_1_strauss_point_state* ps;
};
static void rustsecp256k1_v0_3_1_ecmult_strauss_wnaf(const rustsecp256k1_v0_3_1_ecmult_context *ctx, const struct rustsecp256k1_v0_3_1_strauss_state *state, rustsecp256k1_v0_3_1_gej *r, int num, const rustsecp256k1_v0_3_1_gej *a, const rustsecp256k1_v0_3_1_scalar *na, const rustsecp256k1_v0_3_1_scalar *ng) {
rustsecp256k1_v0_3_1_ge tmpa;
rustsecp256k1_v0_3_1_fe Z;
#ifdef USE_ENDOMORPHISM
/* Splitted G factors. */
rustsecp256k1_v0_3_1_scalar ng_1, ng_128;
int wnaf_ng_1[129];
int bits_ng_1 = 0;
int wnaf_ng_128[129];
int bits_ng_128 = 0;
#else
int wnaf_ng[256];
int bits_ng = 0;
#endif
int i;
int bits = 0;
int np;
int no = 0;
for (np = 0; np < num; ++np) {
if (rustsecp256k1_v0_3_1_scalar_is_zero(&na[np]) || rustsecp256k1_v0_3_1_gej_is_infinity(&a[np])) {
continue;
}
state->ps[no].input_pos = np;
#ifdef USE_ENDOMORPHISM
/* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
rustsecp256k1_v0_3_1_scalar_split_lambda(&state->ps[no].na_1, &state->ps[no].na_lam, &na[np]);
/* build wnaf representation for na_1 and na_lam. */
state->ps[no].bits_na_1 = rustsecp256k1_v0_3_1_ecmult_wnaf(state->ps[no].wnaf_na_1, 130, &state->ps[no].na_1, WINDOW_A);
state->ps[no].bits_na_lam = rustsecp256k1_v0_3_1_ecmult_wnaf(state->ps[no].wnaf_na_lam, 130, &state->ps[no].na_lam, WINDOW_A);
VERIFY_CHECK(state->ps[no].bits_na_1 <= 130);
VERIFY_CHECK(state->ps[no].bits_na_lam <= 130);
if (state->ps[no].bits_na_1 > bits) {
bits = state->ps[no].bits_na_1;
}
if (state->ps[no].bits_na_lam > bits) {
bits = state->ps[no].bits_na_lam;
}
#else
/* build wnaf representation for na. */
state->ps[no].bits_na = rustsecp256k1_v0_3_1_ecmult_wnaf(state->ps[no].wnaf_na, 256, &na[np], WINDOW_A);
if (state->ps[no].bits_na > bits) {
bits = state->ps[no].bits_na;
}
#endif
++no;
}
/* Calculate odd multiples of a.
* All multiples are brought to the same Z 'denominator', which is stored
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
* that the Z coordinate was 1, use affine addition formulae, and correct
* the Z coordinate of the result once at the end.
* The exception is the precomputed G table points, which are actually
* affine. Compared to the base used for other points, they have a Z ratio
* of 1/Z, so we can use rustsecp256k1_v0_3_1_gej_add_zinv_var, which uses the same
* isomorphism to efficiently add with a known Z inverse.
*/
if (no > 0) {
/* Compute the odd multiples in Jacobian form. */
rustsecp256k1_v0_3_1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej, state->zr, &a[state->ps[0].input_pos]);
for (np = 1; np < no; ++np) {
rustsecp256k1_v0_3_1_gej tmp = a[state->ps[np].input_pos];
#ifdef VERIFY
rustsecp256k1_v0_3_1_fe_normalize_var(&(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z));
#endif
rustsecp256k1_v0_3_1_gej_rescale(&tmp, &(state->prej[(np - 1) * ECMULT_TABLE_SIZE(WINDOW_A) + ECMULT_TABLE_SIZE(WINDOW_A) - 1].z));
rustsecp256k1_v0_3_1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), state->prej + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &tmp);
rustsecp256k1_v0_3_1_fe_mul(state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), state->zr + np * ECMULT_TABLE_SIZE(WINDOW_A), &(a[state->ps[np].input_pos].z));
}
/* Bring them to the same Z denominator. */
rustsecp256k1_v0_3_1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A) * no, state->pre_a, &Z, state->prej, state->zr);
} else {
rustsecp256k1_v0_3_1_fe_set_int(&Z, 1);
}
#ifdef USE_ENDOMORPHISM
for (np = 0; np < no; ++np) {
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
rustsecp256k1_v0_3_1_ge_mul_lambda(&state->pre_a_lam[np * ECMULT_TABLE_SIZE(WINDOW_A) + i], &state->pre_a[np * ECMULT_TABLE_SIZE(WINDOW_A) + i]);
}
}
if (ng) {
/* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
rustsecp256k1_v0_3_1_scalar_split_128(&ng_1, &ng_128, ng);
/* Build wnaf representation for ng_1 and ng_128 */
bits_ng_1 = rustsecp256k1_v0_3_1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
bits_ng_128 = rustsecp256k1_v0_3_1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
if (bits_ng_1 > bits) {
bits = bits_ng_1;
}
if (bits_ng_128 > bits) {
bits = bits_ng_128;
}
}
#else
if (ng) {
bits_ng = rustsecp256k1_v0_3_1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G);
if (bits_ng > bits) {
bits = bits_ng;
}
}
#endif
rustsecp256k1_v0_3_1_gej_set_infinity(r);
for (i = bits - 1; i >= 0; i--) {
int n;
rustsecp256k1_v0_3_1_gej_double_var(r, r, NULL);
#ifdef USE_ENDOMORPHISM
for (np = 0; np < no; ++np) {
if (i < state->ps[np].bits_na_1 && (n = state->ps[np].wnaf_na_1[i])) {
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
rustsecp256k1_v0_3_1_gej_add_ge_var(r, r, &tmpa, NULL);
}
if (i < state->ps[np].bits_na_lam && (n = state->ps[np].wnaf_na_lam[i])) {
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a_lam + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
rustsecp256k1_v0_3_1_gej_add_ge_var(r, r, &tmpa, NULL);
}
}
if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
rustsecp256k1_v0_3_1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G);
rustsecp256k1_v0_3_1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
#else
for (np = 0; np < no; ++np) {
if (i < state->ps[np].bits_na && (n = state->ps[np].wnaf_na[i])) {
ECMULT_TABLE_GET_GE(&tmpa, state->pre_a + np * ECMULT_TABLE_SIZE(WINDOW_A), n, WINDOW_A);
rustsecp256k1_v0_3_1_gej_add_ge_var(r, r, &tmpa, NULL);
}
}
if (i < bits_ng && (n = wnaf_ng[i])) {
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
rustsecp256k1_v0_3_1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
#endif
}
if (!r->infinity) {
rustsecp256k1_v0_3_1_fe_mul(&r->z, &r->z, &Z);
}
}
static void rustsecp256k1_v0_3_1_ecmult(const rustsecp256k1_v0_3_1_ecmult_context *ctx, rustsecp256k1_v0_3_1_gej *r, const rustsecp256k1_v0_3_1_gej *a, const rustsecp256k1_v0_3_1_scalar *na, const rustsecp256k1_v0_3_1_scalar *ng) {
rustsecp256k1_v0_3_1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
rustsecp256k1_v0_3_1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
rustsecp256k1_v0_3_1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
struct rustsecp256k1_v0_3_1_strauss_point_state ps[1];
#ifdef USE_ENDOMORPHISM
rustsecp256k1_v0_3_1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
#endif
struct rustsecp256k1_v0_3_1_strauss_state state;
state.prej = prej;
state.zr = zr;
state.pre_a = pre_a;
#ifdef USE_ENDOMORPHISM
state.pre_a_lam = pre_a_lam;
#endif
state.ps = ps;
rustsecp256k1_v0_3_1_ecmult_strauss_wnaf(ctx, &state, r, 1, a, na, ng);
}
static size_t rustsecp256k1_v0_3_1_strauss_scratch_size(size_t n_points) {
#ifdef USE_ENDOMORPHISM
static const size_t point_size = (2 * sizeof(rustsecp256k1_v0_3_1_ge) + sizeof(rustsecp256k1_v0_3_1_gej) + sizeof(rustsecp256k1_v0_3_1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct rustsecp256k1_v0_3_1_strauss_point_state) + sizeof(rustsecp256k1_v0_3_1_gej) + sizeof(rustsecp256k1_v0_3_1_scalar);
#else
static const size_t point_size = (sizeof(rustsecp256k1_v0_3_1_ge) + sizeof(rustsecp256k1_v0_3_1_gej) + sizeof(rustsecp256k1_v0_3_1_fe)) * ECMULT_TABLE_SIZE(WINDOW_A) + sizeof(struct rustsecp256k1_v0_3_1_strauss_point_state) + sizeof(rustsecp256k1_v0_3_1_gej) + sizeof(rustsecp256k1_v0_3_1_scalar);
#endif
return n_points*point_size;
}
static int rustsecp256k1_v0_3_1_ecmult_strauss_batch(const rustsecp256k1_v0_3_1_callback* error_callback, const rustsecp256k1_v0_3_1_ecmult_context *ctx, rustsecp256k1_v0_3_1_scratch *scratch, rustsecp256k1_v0_3_1_gej *r, const rustsecp256k1_v0_3_1_scalar *inp_g_sc, rustsecp256k1_v0_3_1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
rustsecp256k1_v0_3_1_gej* points;
rustsecp256k1_v0_3_1_scalar* scalars;
struct rustsecp256k1_v0_3_1_strauss_state state;
size_t i;
const size_t scratch_checkpoint = rustsecp256k1_v0_3_1_scratch_checkpoint(error_callback, scratch);
rustsecp256k1_v0_3_1_gej_set_infinity(r);
if (inp_g_sc == NULL && n_points == 0) {
return 1;
}
points = (rustsecp256k1_v0_3_1_gej*)rustsecp256k1_v0_3_1_scratch_alloc(error_callback, scratch, n_points * sizeof(rustsecp256k1_v0_3_1_gej));
scalars = (rustsecp256k1_v0_3_1_scalar*)rustsecp256k1_v0_3_1_scratch_alloc(error_callback, scratch, n_points * sizeof(rustsecp256k1_v0_3_1_scalar));
state.prej = (rustsecp256k1_v0_3_1_gej*)rustsecp256k1_v0_3_1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(rustsecp256k1_v0_3_1_gej));
state.zr = (rustsecp256k1_v0_3_1_fe*)rustsecp256k1_v0_3_1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(rustsecp256k1_v0_3_1_fe));
#ifdef USE_ENDOMORPHISM
state.pre_a = (rustsecp256k1_v0_3_1_ge*)rustsecp256k1_v0_3_1_scratch_alloc(error_callback, scratch, n_points * 2 * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(rustsecp256k1_v0_3_1_ge));
state.pre_a_lam = state.pre_a + n_points * ECMULT_TABLE_SIZE(WINDOW_A);
#else
state.pre_a = (rustsecp256k1_v0_3_1_ge*)rustsecp256k1_v0_3_1_scratch_alloc(error_callback, scratch, n_points * ECMULT_TABLE_SIZE(WINDOW_A) * sizeof(rustsecp256k1_v0_3_1_ge));
#endif
state.ps = (struct rustsecp256k1_v0_3_1_strauss_point_state*)rustsecp256k1_v0_3_1_scratch_alloc(error_callback, scratch, n_points * sizeof(struct rustsecp256k1_v0_3_1_strauss_point_state));
if (points == NULL || scalars == NULL || state.prej == NULL || state.zr == NULL || state.pre_a == NULL) {
rustsecp256k1_v0_3_1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
for (i = 0; i < n_points; i++) {
rustsecp256k1_v0_3_1_ge point;
if (!cb(&scalars[i], &point, i+cb_offset, cbdata)) {
rustsecp256k1_v0_3_1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
rustsecp256k1_v0_3_1_gej_set_ge(&points[i], &point);
}
rustsecp256k1_v0_3_1_ecmult_strauss_wnaf(ctx, &state, r, n_points, points, scalars, inp_g_sc);
rustsecp256k1_v0_3_1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 1;
}
/* Wrapper for rustsecp256k1_v0_3_1_ecmult_multi_func interface */
static int rustsecp256k1_v0_3_1_ecmult_strauss_batch_single(const rustsecp256k1_v0_3_1_callback* error_callback, const rustsecp256k1_v0_3_1_ecmult_context *actx, rustsecp256k1_v0_3_1_scratch *scratch, rustsecp256k1_v0_3_1_gej *r, const rustsecp256k1_v0_3_1_scalar *inp_g_sc, rustsecp256k1_v0_3_1_ecmult_multi_callback cb, void *cbdata, size_t n) {
return rustsecp256k1_v0_3_1_ecmult_strauss_batch(error_callback, actx, scratch, r, inp_g_sc, cb, cbdata, n, 0);
}
static size_t rustsecp256k1_v0_3_1_strauss_max_points(const rustsecp256k1_v0_3_1_callback* error_callback, rustsecp256k1_v0_3_1_scratch *scratch) {
return rustsecp256k1_v0_3_1_scratch_max_allocation(error_callback, scratch, STRAUSS_SCRATCH_OBJECTS) / rustsecp256k1_v0_3_1_strauss_scratch_size(1);
}
/** Convert a number to WNAF notation.
* The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
* It has the following guarantees:
* - each wnaf[i] is either 0 or an odd integer between -(1 << w) and (1 << w)
* - the number of words set is always WNAF_SIZE(w)
* - the returned skew is 0 or 1
*/
static int rustsecp256k1_v0_3_1_wnaf_fixed(int *wnaf, const rustsecp256k1_v0_3_1_scalar *s, int w) {
int skew = 0;
int pos;
int max_pos;
int last_w;
const rustsecp256k1_v0_3_1_scalar *work = s;
if (rustsecp256k1_v0_3_1_scalar_is_zero(s)) {
for (pos = 0; pos < WNAF_SIZE(w); pos++) {
wnaf[pos] = 0;
}
return 0;
}
if (rustsecp256k1_v0_3_1_scalar_is_even(s)) {
skew = 1;
}
wnaf[0] = rustsecp256k1_v0_3_1_scalar_get_bits_var(work, 0, w) + skew;
/* Compute last window size. Relevant when window size doesn't divide the
* number of bits in the scalar */
last_w = WNAF_BITS - (WNAF_SIZE(w) - 1) * w;
/* Store the position of the first nonzero word in max_pos to allow
* skipping leading zeros when calculating the wnaf. */
for (pos = WNAF_SIZE(w) - 1; pos > 0; pos--) {
int val = rustsecp256k1_v0_3_1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
if(val != 0) {
break;
}
wnaf[pos] = 0;
}
max_pos = pos;
pos = 1;
while (pos <= max_pos) {
int val = rustsecp256k1_v0_3_1_scalar_get_bits_var(work, pos * w, pos == WNAF_SIZE(w)-1 ? last_w : w);
if ((val & 1) == 0) {
wnaf[pos - 1] -= (1 << w);
wnaf[pos] = (val + 1);
} else {
wnaf[pos] = val;
}
/* Set a coefficient to zero if it is 1 or -1 and the proceeding digit
* is strictly negative or strictly positive respectively. Only change
* coefficients at previous positions because above code assumes that
* wnaf[pos - 1] is odd.
*/
if (pos >= 2 && ((wnaf[pos - 1] == 1 && wnaf[pos - 2] < 0) || (wnaf[pos - 1] == -1 && wnaf[pos - 2] > 0))) {
if (wnaf[pos - 1] == 1) {
wnaf[pos - 2] += 1 << w;
} else {
wnaf[pos - 2] -= 1 << w;
}
wnaf[pos - 1] = 0;
}
++pos;
}
return skew;
}
struct rustsecp256k1_v0_3_1_pippenger_point_state {
int skew_na;
size_t input_pos;
};
struct rustsecp256k1_v0_3_1_pippenger_state {
int *wnaf_na;
struct rustsecp256k1_v0_3_1_pippenger_point_state* ps;
};
/*
* pippenger_wnaf computes the result of a multi-point multiplication as
* follows: The scalars are brought into wnaf with n_wnaf elements each. Then
* for every i < n_wnaf, first each point is added to a "bucket" corresponding
* to the point's wnaf[i]. Second, the buckets are added together such that
* r += 1*bucket[0] + 3*bucket[1] + 5*bucket[2] + ...
*/
static int rustsecp256k1_v0_3_1_ecmult_pippenger_wnaf(rustsecp256k1_v0_3_1_gej *buckets, int bucket_window, struct rustsecp256k1_v0_3_1_pippenger_state *state, rustsecp256k1_v0_3_1_gej *r, const rustsecp256k1_v0_3_1_scalar *sc, const rustsecp256k1_v0_3_1_ge *pt, size_t num) {
size_t n_wnaf = WNAF_SIZE(bucket_window+1);
size_t np;
size_t no = 0;
int i;
int j;
for (np = 0; np < num; ++np) {
if (rustsecp256k1_v0_3_1_scalar_is_zero(&sc[np]) || rustsecp256k1_v0_3_1_ge_is_infinity(&pt[np])) {
continue;
}
state->ps[no].input_pos = np;
state->ps[no].skew_na = rustsecp256k1_v0_3_1_wnaf_fixed(&state->wnaf_na[no*n_wnaf], &sc[np], bucket_window+1);
no++;
}
rustsecp256k1_v0_3_1_gej_set_infinity(r);
if (no == 0) {
return 1;
}
for (i = n_wnaf - 1; i >= 0; i--) {
rustsecp256k1_v0_3_1_gej running_sum;
for(j = 0; j < ECMULT_TABLE_SIZE(bucket_window+2); j++) {
rustsecp256k1_v0_3_1_gej_set_infinity(&buckets[j]);
}
for (np = 0; np < no; ++np) {
int n = state->wnaf_na[np*n_wnaf + i];
struct rustsecp256k1_v0_3_1_pippenger_point_state point_state = state->ps[np];
rustsecp256k1_v0_3_1_ge tmp;
int idx;
if (i == 0) {
/* correct for wnaf skew */
int skew = point_state.skew_na;
if (skew) {
rustsecp256k1_v0_3_1_ge_neg(&tmp, &pt[point_state.input_pos]);
rustsecp256k1_v0_3_1_gej_add_ge_var(&buckets[0], &buckets[0], &tmp, NULL);
}
}
if (n > 0) {
idx = (n - 1)/2;
rustsecp256k1_v0_3_1_gej_add_ge_var(&buckets[idx], &buckets[idx], &pt[point_state.input_pos], NULL);
} else if (n < 0) {
idx = -(n + 1)/2;
rustsecp256k1_v0_3_1_ge_neg(&tmp, &pt[point_state.input_pos]);
rustsecp256k1_v0_3_1_gej_add_ge_var(&buckets[idx], &buckets[idx], &tmp, NULL);
}
}
for(j = 0; j < bucket_window; j++) {
rustsecp256k1_v0_3_1_gej_double_var(r, r, NULL);
}
rustsecp256k1_v0_3_1_gej_set_infinity(&running_sum);
/* Accumulate the sum: bucket[0] + 3*bucket[1] + 5*bucket[2] + 7*bucket[3] + ...
* = bucket[0] + bucket[1] + bucket[2] + bucket[3] + ...
* + 2 * (bucket[1] + 2*bucket[2] + 3*bucket[3] + ...)
* using an intermediate running sum:
* running_sum = bucket[0] + bucket[1] + bucket[2] + ...
*
* The doubling is done implicitly by deferring the final window doubling (of 'r').
*/
for(j = ECMULT_TABLE_SIZE(bucket_window+2) - 1; j > 0; j--) {
rustsecp256k1_v0_3_1_gej_add_var(&running_sum, &running_sum, &buckets[j], NULL);
rustsecp256k1_v0_3_1_gej_add_var(r, r, &running_sum, NULL);
}
rustsecp256k1_v0_3_1_gej_add_var(&running_sum, &running_sum, &buckets[0], NULL);
rustsecp256k1_v0_3_1_gej_double_var(r, r, NULL);
rustsecp256k1_v0_3_1_gej_add_var(r, r, &running_sum, NULL);
}
return 1;
}
/**
* Returns optimal bucket_window (number of bits of a scalar represented by a
* set of buckets) for a given number of points.
*/
static int rustsecp256k1_v0_3_1_pippenger_bucket_window(size_t n) {
#ifdef USE_ENDOMORPHISM
if (n <= 1) {
return 1;
} else if (n <= 4) {
return 2;
} else if (n <= 20) {
return 3;
} else if (n <= 57) {
return 4;
} else if (n <= 136) {
return 5;
} else if (n <= 235) {
return 6;
} else if (n <= 1260) {
return 7;
} else if (n <= 4420) {
return 9;
} else if (n <= 7880) {
return 10;
} else if (n <= 16050) {
return 11;
} else {
return PIPPENGER_MAX_BUCKET_WINDOW;
}
#else
if (n <= 1) {
return 1;
} else if (n <= 11) {
return 2;
} else if (n <= 45) {
return 3;
} else if (n <= 100) {
return 4;
} else if (n <= 275) {
return 5;
} else if (n <= 625) {
return 6;
} else if (n <= 1850) {
return 7;
} else if (n <= 3400) {
return 8;
} else if (n <= 9630) {
return 9;
} else if (n <= 17900) {
return 10;
} else if (n <= 32800) {
return 11;
} else {
return PIPPENGER_MAX_BUCKET_WINDOW;
}
#endif
}
/**
* Returns the maximum optimal number of points for a bucket_window.
*/
static size_t rustsecp256k1_v0_3_1_pippenger_bucket_window_inv(int bucket_window) {
switch(bucket_window) {
#ifdef USE_ENDOMORPHISM
case 1: return 1;
case 2: return 4;
case 3: return 20;
case 4: return 57;
case 5: return 136;
case 6: return 235;
case 7: return 1260;
case 8: return 1260;
case 9: return 4420;
case 10: return 7880;
case 11: return 16050;
case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
#else
case 1: return 1;
case 2: return 11;
case 3: return 45;
case 4: return 100;
case 5: return 275;
case 6: return 625;
case 7: return 1850;
case 8: return 3400;
case 9: return 9630;
case 10: return 17900;
case 11: return 32800;
case PIPPENGER_MAX_BUCKET_WINDOW: return SIZE_MAX;
#endif
}
return 0;
}
#ifdef USE_ENDOMORPHISM
SECP256K1_INLINE static void rustsecp256k1_v0_3_1_ecmult_endo_split(rustsecp256k1_v0_3_1_scalar *s1, rustsecp256k1_v0_3_1_scalar *s2, rustsecp256k1_v0_3_1_ge *p1, rustsecp256k1_v0_3_1_ge *p2) {
rustsecp256k1_v0_3_1_scalar tmp = *s1;
rustsecp256k1_v0_3_1_scalar_split_lambda(s1, s2, &tmp);
rustsecp256k1_v0_3_1_ge_mul_lambda(p2, p1);
if (rustsecp256k1_v0_3_1_scalar_is_high(s1)) {
rustsecp256k1_v0_3_1_scalar_negate(s1, s1);
rustsecp256k1_v0_3_1_ge_neg(p1, p1);
}
if (rustsecp256k1_v0_3_1_scalar_is_high(s2)) {
rustsecp256k1_v0_3_1_scalar_negate(s2, s2);
rustsecp256k1_v0_3_1_ge_neg(p2, p2);
}
}
#endif
/**
* Returns the scratch size required for a given number of points (excluding
* base point G) without considering alignment.
*/
static size_t rustsecp256k1_v0_3_1_pippenger_scratch_size(size_t n_points, int bucket_window) {
#ifdef USE_ENDOMORPHISM
size_t entries = 2*n_points + 2;
#else
size_t entries = n_points + 1;
#endif
size_t entry_size = sizeof(rustsecp256k1_v0_3_1_ge) + sizeof(rustsecp256k1_v0_3_1_scalar) + sizeof(struct rustsecp256k1_v0_3_1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
return (sizeof(rustsecp256k1_v0_3_1_gej) << bucket_window) + sizeof(struct rustsecp256k1_v0_3_1_pippenger_state) + entries * entry_size;
}
static int rustsecp256k1_v0_3_1_ecmult_pippenger_batch(const rustsecp256k1_v0_3_1_callback* error_callback, const rustsecp256k1_v0_3_1_ecmult_context *ctx, rustsecp256k1_v0_3_1_scratch *scratch, rustsecp256k1_v0_3_1_gej *r, const rustsecp256k1_v0_3_1_scalar *inp_g_sc, rustsecp256k1_v0_3_1_ecmult_multi_callback cb, void *cbdata, size_t n_points, size_t cb_offset) {
const size_t scratch_checkpoint = rustsecp256k1_v0_3_1_scratch_checkpoint(error_callback, scratch);
/* Use 2(n+1) with the endomorphism, n+1 without, when calculating batch
* sizes. The reason for +1 is that we add the G scalar to the list of
* other scalars. */
#ifdef USE_ENDOMORPHISM
size_t entries = 2*n_points + 2;
#else
size_t entries = n_points + 1;
#endif
rustsecp256k1_v0_3_1_ge *points;
rustsecp256k1_v0_3_1_scalar *scalars;
rustsecp256k1_v0_3_1_gej *buckets;
struct rustsecp256k1_v0_3_1_pippenger_state *state_space;
size_t idx = 0;
size_t point_idx = 0;
int i, j;
int bucket_window;
(void)ctx;
rustsecp256k1_v0_3_1_gej_set_infinity(r);
if (inp_g_sc == NULL && n_points == 0) {
return 1;
}
bucket_window = rustsecp256k1_v0_3_1_pippenger_bucket_window(n_points);
points = (rustsecp256k1_v0_3_1_ge *) rustsecp256k1_v0_3_1_scratch_alloc(error_callback, scratch, entries * sizeof(*points));
scalars = (rustsecp256k1_v0_3_1_scalar *) rustsecp256k1_v0_3_1_scratch_alloc(error_callback, scratch, entries * sizeof(*scalars));
state_space = (struct rustsecp256k1_v0_3_1_pippenger_state *) rustsecp256k1_v0_3_1_scratch_alloc(error_callback, scratch, sizeof(*state_space));
if (points == NULL || scalars == NULL || state_space == NULL) {
rustsecp256k1_v0_3_1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
state_space->ps = (struct rustsecp256k1_v0_3_1_pippenger_point_state *) rustsecp256k1_v0_3_1_scratch_alloc(error_callback, scratch, entries * sizeof(*state_space->ps));
state_space->wnaf_na = (int *) rustsecp256k1_v0_3_1_scratch_alloc(error_callback, scratch, entries*(WNAF_SIZE(bucket_window+1)) * sizeof(int));
buckets = (rustsecp256k1_v0_3_1_gej *) rustsecp256k1_v0_3_1_scratch_alloc(error_callback, scratch, (1<<bucket_window) * sizeof(*buckets));
if (state_space->ps == NULL || state_space->wnaf_na == NULL || buckets == NULL) {
rustsecp256k1_v0_3_1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
if (inp_g_sc != NULL) {
scalars[0] = *inp_g_sc;
points[0] = rustsecp256k1_v0_3_1_ge_const_g;
idx++;
#ifdef USE_ENDOMORPHISM
rustsecp256k1_v0_3_1_ecmult_endo_split(&scalars[0], &scalars[1], &points[0], &points[1]);
idx++;
#endif
}
while (point_idx < n_points) {
if (!cb(&scalars[idx], &points[idx], point_idx + cb_offset, cbdata)) {
rustsecp256k1_v0_3_1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 0;
}
idx++;
#ifdef USE_ENDOMORPHISM
rustsecp256k1_v0_3_1_ecmult_endo_split(&scalars[idx - 1], &scalars[idx], &points[idx - 1], &points[idx]);
idx++;
#endif
point_idx++;
}
rustsecp256k1_v0_3_1_ecmult_pippenger_wnaf(buckets, bucket_window, state_space, r, scalars, points, idx);
/* Clear data */
for(i = 0; (size_t)i < idx; i++) {
rustsecp256k1_v0_3_1_scalar_clear(&scalars[i]);
state_space->ps[i].skew_na = 0;
for(j = 0; j < WNAF_SIZE(bucket_window+1); j++) {
state_space->wnaf_na[i * WNAF_SIZE(bucket_window+1) + j] = 0;
}
}
for(i = 0; i < 1<<bucket_window; i++) {
rustsecp256k1_v0_3_1_gej_clear(&buckets[i]);
}
rustsecp256k1_v0_3_1_scratch_apply_checkpoint(error_callback, scratch, scratch_checkpoint);
return 1;
}
/* Wrapper for rustsecp256k1_v0_3_1_ecmult_multi_func interface */
static int rustsecp256k1_v0_3_1_ecmult_pippenger_batch_single(const rustsecp256k1_v0_3_1_callback* error_callback, const rustsecp256k1_v0_3_1_ecmult_context *actx, rustsecp256k1_v0_3_1_scratch *scratch, rustsecp256k1_v0_3_1_gej *r, const rustsecp256k1_v0_3_1_scalar *inp_g_sc, rustsecp256k1_v0_3_1_ecmult_multi_callback cb, void *cbdata, size_t n) {
return rustsecp256k1_v0_3_1_ecmult_pippenger_batch(error_callback, actx, scratch, r, inp_g_sc, cb, cbdata, n, 0);
}
/**
* Returns the maximum number of points in addition to G that can be used with
* a given scratch space. The function ensures that fewer points may also be
* used.
*/
static size_t rustsecp256k1_v0_3_1_pippenger_max_points(const rustsecp256k1_v0_3_1_callback* error_callback, rustsecp256k1_v0_3_1_scratch *scratch) {
size_t max_alloc = rustsecp256k1_v0_3_1_scratch_max_allocation(error_callback, scratch, PIPPENGER_SCRATCH_OBJECTS);
int bucket_window;
size_t res = 0;
for (bucket_window = 1; bucket_window <= PIPPENGER_MAX_BUCKET_WINDOW; bucket_window++) {
size_t n_points;
size_t max_points = rustsecp256k1_v0_3_1_pippenger_bucket_window_inv(bucket_window);
size_t space_for_points;
size_t space_overhead;
size_t entry_size = sizeof(rustsecp256k1_v0_3_1_ge) + sizeof(rustsecp256k1_v0_3_1_scalar) + sizeof(struct rustsecp256k1_v0_3_1_pippenger_point_state) + (WNAF_SIZE(bucket_window+1)+1)*sizeof(int);
#ifdef USE_ENDOMORPHISM
entry_size = 2*entry_size;
#endif
space_overhead = (sizeof(rustsecp256k1_v0_3_1_gej) << bucket_window) + entry_size + sizeof(struct rustsecp256k1_v0_3_1_pippenger_state);
if (space_overhead > max_alloc) {
break;
}
space_for_points = max_alloc - space_overhead;
n_points = space_for_points/entry_size;
n_points = n_points > max_points ? max_points : n_points;
if (n_points > res) {
res = n_points;
}
if (n_points < max_points) {
/* A larger bucket_window may support even more points. But if we
* would choose that then the caller couldn't safely use any number
* smaller than what this function returns */
break;
}
}
return res;
}
/* Computes ecmult_multi by simply multiplying and adding each point. Does not
* require a scratch space */
static int rustsecp256k1_v0_3_1_ecmult_multi_simple_var(const rustsecp256k1_v0_3_1_ecmult_context *ctx, rustsecp256k1_v0_3_1_gej *r, const rustsecp256k1_v0_3_1_scalar *inp_g_sc, rustsecp256k1_v0_3_1_ecmult_multi_callback cb, void *cbdata, size_t n_points) {
size_t point_idx;
rustsecp256k1_v0_3_1_scalar szero;
rustsecp256k1_v0_3_1_gej tmpj;
rustsecp256k1_v0_3_1_scalar_set_int(&szero, 0);
rustsecp256k1_v0_3_1_gej_set_infinity(r);
rustsecp256k1_v0_3_1_gej_set_infinity(&tmpj);
/* r = inp_g_sc*G */
rustsecp256k1_v0_3_1_ecmult(ctx, r, &tmpj, &szero, inp_g_sc);
for (point_idx = 0; point_idx < n_points; point_idx++) {
rustsecp256k1_v0_3_1_ge point;
rustsecp256k1_v0_3_1_gej pointj;
rustsecp256k1_v0_3_1_scalar scalar;
if (!cb(&scalar, &point, point_idx, cbdata)) {
return 0;
}
/* r += scalar*point */
rustsecp256k1_v0_3_1_gej_set_ge(&pointj, &point);
rustsecp256k1_v0_3_1_ecmult(ctx, &tmpj, &pointj, &scalar, NULL);
rustsecp256k1_v0_3_1_gej_add_var(r, r, &tmpj, NULL);
}
return 1;
}
/* Compute the number of batches and the batch size given the maximum batch size and the
* total number of points */
static int rustsecp256k1_v0_3_1_ecmult_multi_batch_size_helper(size_t *n_batches, size_t *n_batch_points, size_t max_n_batch_points, size_t n) {
if (max_n_batch_points == 0) {
return 0;
}
if (max_n_batch_points > ECMULT_MAX_POINTS_PER_BATCH) {
max_n_batch_points = ECMULT_MAX_POINTS_PER_BATCH;
}
if (n == 0) {
*n_batches = 0;
*n_batch_points = 0;
return 1;
}
/* Compute ceil(n/max_n_batch_points) and ceil(n/n_batches) */
*n_batches = 1 + (n - 1) / max_n_batch_points;
*n_batch_points = 1 + (n - 1) / *n_batches;
return 1;
}
typedef int (*rustsecp256k1_v0_3_1_ecmult_multi_func)(const rustsecp256k1_v0_3_1_callback* error_callback, const rustsecp256k1_v0_3_1_ecmult_context*, rustsecp256k1_v0_3_1_scratch*, rustsecp256k1_v0_3_1_gej*, const rustsecp256k1_v0_3_1_scalar*, rustsecp256k1_v0_3_1_ecmult_multi_callback cb, void*, size_t);
static int rustsecp256k1_v0_3_1_ecmult_multi_var(const rustsecp256k1_v0_3_1_callback* error_callback, const rustsecp256k1_v0_3_1_ecmult_context *ctx, rustsecp256k1_v0_3_1_scratch *scratch, rustsecp256k1_v0_3_1_gej *r, const rustsecp256k1_v0_3_1_scalar *inp_g_sc, rustsecp256k1_v0_3_1_ecmult_multi_callback cb, void *cbdata, size_t n) {
size_t i;
int (*f)(const rustsecp256k1_v0_3_1_callback* error_callback, const rustsecp256k1_v0_3_1_ecmult_context*, rustsecp256k1_v0_3_1_scratch*, rustsecp256k1_v0_3_1_gej*, const rustsecp256k1_v0_3_1_scalar*, rustsecp256k1_v0_3_1_ecmult_multi_callback cb, void*, size_t, size_t);
size_t n_batches;
size_t n_batch_points;
rustsecp256k1_v0_3_1_gej_set_infinity(r);
if (inp_g_sc == NULL && n == 0) {
return 1;
} else if (n == 0) {
rustsecp256k1_v0_3_1_scalar szero;
rustsecp256k1_v0_3_1_scalar_set_int(&szero, 0);
rustsecp256k1_v0_3_1_ecmult(ctx, r, r, &szero, inp_g_sc);
return 1;
}
if (scratch == NULL) {
return rustsecp256k1_v0_3_1_ecmult_multi_simple_var(ctx, r, inp_g_sc, cb, cbdata, n);
}
/* Compute the batch sizes for Pippenger's algorithm given a scratch space. If it's greater than
* a threshold use Pippenger's algorithm. Otherwise use Strauss' algorithm.
* As a first step check if there's enough space for Pippenger's algo (which requires less space
* than Strauss' algo) and if not, use the simple algorithm. */
if (!rustsecp256k1_v0_3_1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, rustsecp256k1_v0_3_1_pippenger_max_points(error_callback, scratch), n)) {
return rustsecp256k1_v0_3_1_ecmult_multi_simple_var(ctx, r, inp_g_sc, cb, cbdata, n);
}
if (n_batch_points >= ECMULT_PIPPENGER_THRESHOLD) {
f = rustsecp256k1_v0_3_1_ecmult_pippenger_batch;
} else {
if (!rustsecp256k1_v0_3_1_ecmult_multi_batch_size_helper(&n_batches, &n_batch_points, rustsecp256k1_v0_3_1_strauss_max_points(error_callback, scratch), n)) {
return rustsecp256k1_v0_3_1_ecmult_multi_simple_var(ctx, r, inp_g_sc, cb, cbdata, n);
}
f = rustsecp256k1_v0_3_1_ecmult_strauss_batch;
}
for(i = 0; i < n_batches; i++) {
size_t nbp = n < n_batch_points ? n : n_batch_points;
size_t offset = n_batch_points*i;
rustsecp256k1_v0_3_1_gej tmp;
if (!f(error_callback, ctx, scratch, &tmp, i == 0 ? inp_g_sc : NULL, cb, cbdata, nbp, offset)) {
return 0;
}
rustsecp256k1_v0_3_1_gej_add_var(r, r, &tmp, NULL);
n -= nbp;
}
return 1;
}
#endif /* SECP256K1_ECMULT_IMPL_H */