rust-secp256k1-unsafe-fast/secp256k1-sys/depend/secp256k1/src/assumptions.h

81 lines
4.3 KiB
C

/***********************************************************************
* Copyright (c) 2020 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ASSUMPTIONS_H
#define SECP256K1_ASSUMPTIONS_H
#include <limits.h>
#include "util.h"
/* This library, like most software, relies on a number of compiler implementation defined (but not undefined)
behaviours. Although the behaviours we require are essentially universal we test them specifically here to
reduce the odds of experiencing an unwelcome surprise.
*/
struct rustsecp256k1_v0_5_0_assumption_checker {
/* This uses a trick to implement a static assertion in C89: a type with an array of negative size is not
allowed. */
int dummy_array[(
/* Bytes are 8 bits. */
(CHAR_BIT == 8) &&
/* No integer promotion for uint32_t. This ensures that we can multiply uintXX_t values where XX >= 32
without signed overflow, which would be undefined behaviour. */
(UINT_MAX <= UINT32_MAX) &&
/* Conversions from unsigned to signed outside of the bounds of the signed type are
implementation-defined. Verify that they function as reinterpreting the lower
bits of the input in two's complement notation. Do this for conversions:
- from uint(N)_t to int(N)_t with negative result
- from uint(2N)_t to int(N)_t with negative result
- from int(2N)_t to int(N)_t with negative result
- from int(2N)_t to int(N)_t with positive result */
/* To int8_t. */
((int8_t)(uint8_t)0xAB == (int8_t)-(int8_t)0x55) &&
((int8_t)(uint16_t)0xABCD == (int8_t)-(int8_t)0x33) &&
((int8_t)(int16_t)(uint16_t)0xCDEF == (int8_t)(uint8_t)0xEF) &&
((int8_t)(int16_t)(uint16_t)0x9234 == (int8_t)(uint8_t)0x34) &&
/* To int16_t. */
((int16_t)(uint16_t)0xBCDE == (int16_t)-(int16_t)0x4322) &&
((int16_t)(uint32_t)0xA1B2C3D4 == (int16_t)-(int16_t)0x3C2C) &&
((int16_t)(int32_t)(uint32_t)0xC1D2E3F4 == (int16_t)(uint16_t)0xE3F4) &&
((int16_t)(int32_t)(uint32_t)0x92345678 == (int16_t)(uint16_t)0x5678) &&
/* To int32_t. */
((int32_t)(uint32_t)0xB2C3D4E5 == (int32_t)-(int32_t)0x4D3C2B1B) &&
((int32_t)(uint64_t)0xA123B456C789D012ULL == (int32_t)-(int32_t)0x38762FEE) &&
((int32_t)(int64_t)(uint64_t)0xC1D2E3F4A5B6C7D8ULL == (int32_t)(uint32_t)0xA5B6C7D8) &&
((int32_t)(int64_t)(uint64_t)0xABCDEF0123456789ULL == (int32_t)(uint32_t)0x23456789) &&
/* To int64_t. */
((int64_t)(uint64_t)0xB123C456D789E012ULL == (int64_t)-(int64_t)0x4EDC3BA928761FEEULL) &&
#if defined(SECP256K1_WIDEMUL_INT128)
((int64_t)(((uint128_t)0xA1234567B8901234ULL << 64) + 0xC5678901D2345678ULL) == (int64_t)-(int64_t)0x3A9876FE2DCBA988ULL) &&
(((int64_t)(int128_t)(((uint128_t)0xB1C2D3E4F5A6B7C8ULL << 64) + 0xD9E0F1A2B3C4D5E6ULL)) == (int64_t)(uint64_t)0xD9E0F1A2B3C4D5E6ULL) &&
(((int64_t)(int128_t)(((uint128_t)0xABCDEF0123456789ULL << 64) + 0x0123456789ABCDEFULL)) == (int64_t)(uint64_t)0x0123456789ABCDEFULL) &&
/* To int128_t. */
((int128_t)(((uint128_t)0xB1234567C8901234ULL << 64) + 0xD5678901E2345678ULL) == (int128_t)(-(int128_t)0x8E1648B3F50E80DCULL * 0x8E1648B3F50E80DDULL + 0x5EA688D5482F9464ULL)) &&
#endif
/* Right shift on negative signed values is implementation defined. Verify that it
acts as a right shift in two's complement with sign extension (i.e duplicating
the top bit into newly added bits). */
((((int8_t)0xE8) >> 2) == (int8_t)(uint8_t)0xFA) &&
((((int16_t)0xE9AC) >> 4) == (int16_t)(uint16_t)0xFE9A) &&
((((int32_t)0x937C918A) >> 9) == (int32_t)(uint32_t)0xFFC9BE48) &&
((((int64_t)0xA8B72231DF9CF4B9ULL) >> 19) == (int64_t)(uint64_t)0xFFFFF516E4463BF3ULL) &&
#if defined(SECP256K1_WIDEMUL_INT128)
((((int128_t)(((uint128_t)0xCD833A65684A0DBCULL << 64) + 0xB349312F71EA7637ULL)) >> 39) == (int128_t)(((uint128_t)0xFFFFFFFFFF9B0674ULL << 64) + 0xCAD0941B79669262ULL)) &&
#endif
1) * 2 - 1];
};
#endif /* SECP256K1_ASSUMPTIONS_H */