rust-secp256k1-unsafe-fast/src/key.rs

2478 lines
84 KiB
Rust

// SPDX-License-Identifier: CC0-1.0
//! Public and secret keys.
//!
use core::convert::TryFrom;
use core::ops::{self, BitXor};
use core::{fmt, ptr, str};
#[cfg(feature = "serde")]
use serde::ser::SerializeTuple;
use crate::ellswift::ElligatorSwift;
use crate::ffi::types::c_uint;
use crate::ffi::{self, CPtr};
use crate::Error::{self, InvalidPublicKey, InvalidPublicKeySum, InvalidSecretKey};
#[cfg(feature = "global-context")]
use crate::SECP256K1;
use crate::{
constants, ecdsa, from_hex, schnorr, Message, Scalar, Secp256k1, Signing, Verification,
};
#[cfg(feature = "hashes")]
use crate::{hashes, ThirtyTwoByteHash};
/// Secret key - a 256-bit key used to create ECDSA and Taproot signatures.
///
/// This value should be generated using a [cryptographically secure pseudorandom number generator].
///
/// # Side channel attacks
///
/// We have attempted to reduce the side channel attack surface by implementing a constant time `eq`
/// method. For similar reasons we explicitly do not implement `PartialOrd`, `Ord`, or `Hash` on
/// `SecretKey`. If you really want to order secrets keys then you can use `AsRef` to get at the
/// underlying bytes and compare them - however this is almost certainly a bad idea.
///
/// # Serde support
///
/// Implements de/serialization with the `serde` feature enabled. We treat the byte value as a tuple
/// of 32 `u8`s for non-human-readable formats. This representation is optimal for for some formats
/// (e.g. [`bincode`]) however other formats may be less optimal (e.g. [`cbor`]).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # #[cfg(feature = "rand-std")] {
/// use secp256k1::{rand, Secp256k1, SecretKey};
///
/// let secp = Secp256k1::new();
/// let secret_key = SecretKey::new(&mut rand::thread_rng());
/// # }
/// ```
/// [`bincode`]: https://docs.rs/bincode
/// [`cbor`]: https://docs.rs/cbor
/// [cryptographically secure pseudorandom number generator]: https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
#[derive(Copy, Clone)]
pub struct SecretKey([u8; constants::SECRET_KEY_SIZE]);
impl_display_secret!(SecretKey);
impl_non_secure_erase!(SecretKey, 0, [1u8; constants::SECRET_KEY_SIZE]);
impl PartialEq for SecretKey {
/// This implementation is designed to be constant time to help prevent side channel attacks.
#[inline]
fn eq(&self, other: &Self) -> bool {
let accum = self.0.iter().zip(&other.0).fold(0, |accum, (a, b)| accum | a ^ b);
unsafe { core::ptr::read_volatile(&accum) == 0 }
}
}
impl Eq for SecretKey {}
impl AsRef<[u8; constants::SECRET_KEY_SIZE]> for SecretKey {
/// Gets a reference to the underlying array.
///
/// # Side channel attacks
///
/// Using ordering functions (`PartialOrd`/`Ord`) on a reference to secret keys leaks data
/// because the implementations are not constant time. Doing so will make your code vulnerable
/// to side channel attacks. [`SecretKey::eq`] is implemented using a constant time algorithm,
/// please consider using it to do comparisons of secret keys.
#[inline]
fn as_ref(&self) -> &[u8; constants::SECRET_KEY_SIZE] {
let SecretKey(dat) = self;
dat
}
}
impl<I> ops::Index<I> for SecretKey
where
[u8]: ops::Index<I>,
{
type Output = <[u8] as ops::Index<I>>::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output { &self.0[index] }
}
impl ffi::CPtr for SecretKey {
type Target = u8;
fn as_c_ptr(&self) -> *const Self::Target {
let SecretKey(dat) = self;
dat.as_ptr()
}
fn as_mut_c_ptr(&mut self) -> *mut Self::Target {
let &mut SecretKey(ref mut dat) = self;
dat.as_mut_ptr()
}
}
impl str::FromStr for SecretKey {
type Err = Error;
fn from_str(s: &str) -> Result<SecretKey, Error> {
let mut res = [0u8; constants::SECRET_KEY_SIZE];
match from_hex(s, &mut res) {
Ok(constants::SECRET_KEY_SIZE) => SecretKey::from_slice(&res),
_ => Err(Error::InvalidSecretKey),
}
}
}
/// Public key - used to verify ECDSA signatures and to do Taproot tweaks.
///
/// # Serde support
///
/// Implements de/serialization with the `serde` feature enabled. We treat the byte value as a tuple
/// of 33 `u8`s for non-human-readable formats. This representation is optimal for for some formats
/// (e.g. [`bincode`]) however other formats may be less optimal (e.g. [`cbor`]).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # #[cfg(feature = "alloc")] {
/// use secp256k1::{SecretKey, Secp256k1, PublicKey};
///
/// let secp = Secp256k1::new();
/// let secret_key = SecretKey::from_slice(&[0xcd; 32]).expect("32 bytes, within curve order");
/// let public_key = PublicKey::from_secret_key(&secp, &secret_key);
/// # }
/// ```
/// [`bincode`]: https://docs.rs/bincode
/// [`cbor`]: https://docs.rs/cbor
#[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct PublicKey(ffi::PublicKey);
impl_fast_comparisons!(PublicKey);
impl fmt::LowerHex for PublicKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let ser = self.serialize();
for ch in &ser[..] {
write!(f, "{:02x}", *ch)?;
}
Ok(())
}
}
impl fmt::Display for PublicKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(self, f) }
}
impl str::FromStr for PublicKey {
type Err = Error;
fn from_str(s: &str) -> Result<PublicKey, Error> {
let mut res = [0u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE];
match from_hex(s, &mut res) {
Ok(constants::PUBLIC_KEY_SIZE) =>
PublicKey::from_slice(&res[0..constants::PUBLIC_KEY_SIZE]),
Ok(constants::UNCOMPRESSED_PUBLIC_KEY_SIZE) => PublicKey::from_slice(&res),
_ => Err(Error::InvalidPublicKey),
}
}
}
impl SecretKey {
/// Generates a new random secret key.
///
/// # Examples
///
/// ```
/// # #[cfg(all(feature = "std", feature = "rand-std"))] {
/// use secp256k1::{rand, SecretKey};
/// let secret_key = SecretKey::new(&mut rand::thread_rng());
/// # }
/// ```
#[inline]
#[cfg(feature = "rand")]
pub fn new<R: rand::Rng + ?Sized>(rng: &mut R) -> SecretKey {
let mut data = crate::random_32_bytes(rng);
unsafe {
while ffi::secp256k1_ec_seckey_verify(
ffi::secp256k1_context_no_precomp,
data.as_c_ptr(),
) == 0
{
data = crate::random_32_bytes(rng);
}
}
SecretKey(data)
}
/// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key.
///
/// # Examples
///
/// ```
/// use secp256k1::SecretKey;
/// let sk = SecretKey::from_slice(&[0xcd; 32]).expect("32 bytes, within curve order");
/// ```
#[inline]
pub fn from_slice(data: &[u8]) -> Result<SecretKey, Error> {
match <[u8; constants::SECRET_KEY_SIZE]>::try_from(data) {
Ok(data) => {
unsafe {
if ffi::secp256k1_ec_seckey_verify(
ffi::secp256k1_context_no_precomp,
data.as_c_ptr(),
) == 0
{
return Err(InvalidSecretKey);
}
}
Ok(SecretKey(data))
}
Err(_) => Err(InvalidSecretKey),
}
}
/// Creates a new secret key using data from BIP-340 [`Keypair`].
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "rand-std")] {
/// use secp256k1::{rand, Secp256k1, SecretKey, Keypair};
///
/// let secp = Secp256k1::new();
/// let keypair = Keypair::new(&secp, &mut rand::thread_rng());
/// let secret_key = SecretKey::from_keypair(&keypair);
/// # }
/// ```
#[inline]
pub fn from_keypair(keypair: &Keypair) -> Self {
let mut sk = [0u8; constants::SECRET_KEY_SIZE];
unsafe {
let ret = ffi::secp256k1_keypair_sec(
ffi::secp256k1_context_no_precomp,
sk.as_mut_c_ptr(),
keypair.as_c_ptr(),
);
debug_assert_eq!(ret, 1);
}
SecretKey(sk)
}
/// Constructs a [`SecretKey`] by hashing `data` with hash algorithm `H`.
///
/// Requires the feature `hashes` to be enabled.
///
/// # Examples
///
/// ```
/// # #[cfg(feature="hashes")] {
/// use secp256k1::hashes::{sha256, Hash};
/// use secp256k1::SecretKey;
///
/// let sk1 = SecretKey::from_hashed_data::<sha256::Hash>("Hello world!".as_bytes());
/// // is equivalent to
/// let sk2 = SecretKey::from(sha256::Hash::hash("Hello world!".as_bytes()));
///
/// assert_eq!(sk1, sk2);
/// # }
/// ```
#[cfg(feature = "hashes")]
#[inline]
pub fn from_hashed_data<H: ThirtyTwoByteHash + hashes::Hash>(data: &[u8]) -> Self {
<H as hashes::Hash>::hash(data).into()
}
/// Returns the secret key as a byte value.
#[inline]
pub fn secret_bytes(&self) -> [u8; constants::SECRET_KEY_SIZE] { self.0 }
/// Negates the secret key.
#[inline]
#[must_use = "you forgot to use the negated secret key"]
pub fn negate(mut self) -> SecretKey {
unsafe {
let res = ffi::secp256k1_ec_seckey_negate(
ffi::secp256k1_context_no_precomp,
self.as_mut_c_ptr(),
);
debug_assert_eq!(res, 1);
}
self
}
/// Tweaks a [`SecretKey`] by adding `tweak` modulo the curve order.
///
/// # Errors
///
/// Returns an error if the resulting key would be invalid.
#[inline]
pub fn add_tweak(mut self, tweak: &Scalar) -> Result<SecretKey, Error> {
unsafe {
if ffi::secp256k1_ec_seckey_tweak_add(
ffi::secp256k1_context_no_precomp,
self.as_mut_c_ptr(),
tweak.as_c_ptr(),
) != 1
{
Err(Error::InvalidTweak)
} else {
Ok(self)
}
}
}
/// Tweaks a [`SecretKey`] by multiplying by `tweak` modulo the curve order.
///
/// # Errors
///
/// Returns an error if the resulting key would be invalid.
#[inline]
pub fn mul_tweak(mut self, tweak: &Scalar) -> Result<SecretKey, Error> {
unsafe {
if ffi::secp256k1_ec_seckey_tweak_mul(
ffi::secp256k1_context_no_precomp,
self.as_mut_c_ptr(),
tweak.as_c_ptr(),
) != 1
{
Err(Error::InvalidTweak)
} else {
Ok(self)
}
}
}
/// Constructs an ECDSA signature for `msg` using the global [`SECP256K1`] context.
#[inline]
#[cfg(feature = "global-context")]
pub fn sign_ecdsa(&self, msg: Message) -> ecdsa::Signature { SECP256K1.sign_ecdsa(&msg, self) }
/// Returns the [`Keypair`] for this [`SecretKey`].
///
/// This is equivalent to using [`Keypair::from_secret_key`].
#[inline]
pub fn keypair<C: Signing>(&self, secp: &Secp256k1<C>) -> Keypair {
Keypair::from_secret_key(secp, self)
}
/// Returns the [`PublicKey`] for this [`SecretKey`].
///
/// This is equivalent to using [`PublicKey::from_secret_key`].
#[inline]
pub fn public_key<C: Signing>(&self, secp: &Secp256k1<C>) -> PublicKey {
PublicKey::from_secret_key(secp, self)
}
/// Returns the [`XOnlyPublicKey`] (and it's [`Parity`]) for this [`SecretKey`].
///
/// This is equivalent to `XOnlyPublicKey::from_keypair(self.keypair(secp))`.
#[inline]
pub fn x_only_public_key<C: Signing>(&self, secp: &Secp256k1<C>) -> (XOnlyPublicKey, Parity) {
let kp = self.keypair(secp);
XOnlyPublicKey::from_keypair(&kp)
}
}
#[cfg(feature = "hashes")]
impl<T: ThirtyTwoByteHash> From<T> for SecretKey {
/// Converts a 32-byte hash directly to a secret key without error paths.
fn from(t: T) -> SecretKey {
SecretKey::from_slice(&t.into_32()).expect("failed to create secret key")
}
}
#[cfg(feature = "serde")]
impl serde::Serialize for SecretKey {
fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
if s.is_human_readable() {
let mut buf = [0u8; constants::SECRET_KEY_SIZE * 2];
s.serialize_str(crate::to_hex(&self.0, &mut buf).expect("fixed-size hex serialization"))
} else {
let mut tuple = s.serialize_tuple(constants::SECRET_KEY_SIZE)?;
for byte in self.0.iter() {
tuple.serialize_element(byte)?;
}
tuple.end()
}
}
}
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for SecretKey {
fn deserialize<D: serde::Deserializer<'de>>(d: D) -> Result<Self, D::Error> {
if d.is_human_readable() {
d.deserialize_str(super::serde_util::FromStrVisitor::new(
"a hex string representing 32 byte SecretKey",
))
} else {
let visitor = super::serde_util::Tuple32Visitor::new(
"raw 32 bytes SecretKey",
SecretKey::from_slice,
);
d.deserialize_tuple(constants::SECRET_KEY_SIZE, visitor)
}
}
}
impl PublicKey {
/// Obtains a raw const pointer suitable for use with FFI functions.
#[inline]
#[deprecated(since = "0.25.0", note = "Use Self::as_c_ptr if you need to access the FFI layer")]
pub fn as_ptr(&self) -> *const ffi::PublicKey { self.as_c_ptr() }
/// Obtains a raw mutable pointer suitable for use with FFI functions.
#[inline]
#[deprecated(
since = "0.25.0",
note = "Use Self::as_mut_c_ptr if you need to access the FFI layer"
)]
pub fn as_mut_ptr(&mut self) -> *mut ffi::PublicKey { self.as_mut_c_ptr() }
/// Creates a new public key from a [`SecretKey`].
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "rand-std")] {
/// use secp256k1::{rand, Secp256k1, SecretKey, PublicKey};
///
/// let secp = Secp256k1::new();
/// let secret_key = SecretKey::new(&mut rand::thread_rng());
/// let public_key = PublicKey::from_secret_key(&secp, &secret_key);
/// # }
/// ```
#[inline]
pub fn from_secret_key<C: Signing>(secp: &Secp256k1<C>, sk: &SecretKey) -> PublicKey {
unsafe {
let mut pk = ffi::PublicKey::new();
// We can assume the return value because it's not possible to construct
// an invalid `SecretKey` without transmute trickery or something.
let res = ffi::secp256k1_ec_pubkey_create(secp.ctx.as_ptr(), &mut pk, sk.as_c_ptr());
debug_assert_eq!(res, 1);
PublicKey(pk)
}
}
/// Creates a new public key from an [`ElligatorSwift`].
#[inline]
pub fn from_ellswift(ellswift: ElligatorSwift) -> PublicKey { ElligatorSwift::decode(ellswift) }
/// Creates a new public key from a [`SecretKey`] and the global [`SECP256K1`] context.
#[inline]
#[cfg(feature = "global-context")]
pub fn from_secret_key_global(sk: &SecretKey) -> PublicKey {
PublicKey::from_secret_key(SECP256K1, sk)
}
/// Creates a public key directly from a slice.
#[inline]
pub fn from_slice(data: &[u8]) -> Result<PublicKey, Error> {
if data.is_empty() {
return Err(Error::InvalidPublicKey);
}
unsafe {
let mut pk = ffi::PublicKey::new();
if ffi::secp256k1_ec_pubkey_parse(
ffi::secp256k1_context_no_precomp,
&mut pk,
data.as_c_ptr(),
data.len(),
) == 1
{
Ok(PublicKey(pk))
} else {
Err(InvalidPublicKey)
}
}
}
/// Creates a new compressed public key using data from BIP-340 [`Keypair`].
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "rand-std")] {
/// use secp256k1::{rand, Secp256k1, PublicKey, Keypair};
///
/// let secp = Secp256k1::new();
/// let keypair = Keypair::new(&secp, &mut rand::thread_rng());
/// let public_key = PublicKey::from_keypair(&keypair);
/// # }
/// ```
#[inline]
pub fn from_keypair(keypair: &Keypair) -> Self {
unsafe {
let mut pk = ffi::PublicKey::new();
let ret = ffi::secp256k1_keypair_pub(
ffi::secp256k1_context_no_precomp,
&mut pk,
keypair.as_c_ptr(),
);
debug_assert_eq!(ret, 1);
PublicKey(pk)
}
}
/// Creates a [`PublicKey`] using the key material from `pk` combined with the `parity`.
pub fn from_x_only_public_key(pk: XOnlyPublicKey, parity: Parity) -> PublicKey {
let mut buf = [0u8; 33];
// First byte of a compressed key should be `0x02 AND parity`.
buf[0] = match parity {
Parity::Even => 0x02,
Parity::Odd => 0x03,
};
buf[1..].clone_from_slice(&pk.serialize());
PublicKey::from_slice(&buf).expect("we know the buffer is valid")
}
#[inline]
/// Serializes the key as a byte-encoded pair of values. In compressed form the y-coordinate is
/// represented by only a single bit, as x determines it up to one bit.
pub fn serialize(&self) -> [u8; constants::PUBLIC_KEY_SIZE] {
let mut ret = [0u8; constants::PUBLIC_KEY_SIZE];
self.serialize_internal(&mut ret, ffi::SECP256K1_SER_COMPRESSED);
ret
}
#[inline]
/// Serializes the key as a byte-encoded pair of values, in uncompressed form.
pub fn serialize_uncompressed(&self) -> [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] {
let mut ret = [0u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE];
self.serialize_internal(&mut ret, ffi::SECP256K1_SER_UNCOMPRESSED);
ret
}
#[inline(always)]
fn serialize_internal(&self, ret: &mut [u8], flag: c_uint) {
let mut ret_len = ret.len();
let res = unsafe {
ffi::secp256k1_ec_pubkey_serialize(
ffi::secp256k1_context_no_precomp,
ret.as_mut_c_ptr(),
&mut ret_len,
self.as_c_ptr(),
flag,
)
};
debug_assert_eq!(res, 1);
debug_assert_eq!(ret_len, ret.len());
}
/// Negates the public key.
#[inline]
#[must_use = "you forgot to use the negated public key"]
pub fn negate<C: Verification>(mut self, secp: &Secp256k1<C>) -> PublicKey {
unsafe {
let res = ffi::secp256k1_ec_pubkey_negate(secp.ctx.as_ptr(), &mut self.0);
debug_assert_eq!(res, 1);
}
self
}
/// Tweaks a [`PublicKey`] by adding `tweak * G` modulo the curve order.
///
/// # Errors
///
/// Returns an error if the resulting key would be invalid.
#[inline]
pub fn add_exp_tweak<C: Verification>(
mut self,
secp: &Secp256k1<C>,
tweak: &Scalar,
) -> Result<PublicKey, Error> {
unsafe {
if ffi::secp256k1_ec_pubkey_tweak_add(secp.ctx.as_ptr(), &mut self.0, tweak.as_c_ptr())
== 1
{
Ok(self)
} else {
Err(Error::InvalidTweak)
}
}
}
/// Tweaks a [`PublicKey`] by multiplying by `tweak` modulo the curve order.
///
/// # Errors
///
/// Returns an error if the resulting key would be invalid.
#[inline]
pub fn mul_tweak<C: Verification>(
mut self,
secp: &Secp256k1<C>,
other: &Scalar,
) -> Result<PublicKey, Error> {
unsafe {
if ffi::secp256k1_ec_pubkey_tweak_mul(secp.ctx.as_ptr(), &mut self.0, other.as_c_ptr())
== 1
{
Ok(self)
} else {
Err(Error::InvalidTweak)
}
}
}
/// Adds a second key to this one, returning the sum.
///
/// # Errors
///
/// If the result would be the point at infinity, i.e. adding this point to its own negation.
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "rand-std")] {
/// use secp256k1::{rand, Secp256k1};
///
/// let secp = Secp256k1::new();
/// let mut rng = rand::thread_rng();
/// let (_, pk1) = secp.generate_keypair(&mut rng);
/// let (_, pk2) = secp.generate_keypair(&mut rng);
/// let sum = pk1.combine(&pk2).expect("It's improbable to fail for 2 random public keys");
/// # }
/// ```
pub fn combine(&self, other: &PublicKey) -> Result<PublicKey, Error> {
PublicKey::combine_keys(&[self, other])
}
/// Adds the keys in the provided slice together, returning the sum.
///
/// # Errors
///
/// Errors under any of the following conditions:
/// - The result would be the point at infinity, i.e. adding a point to its own negation.
/// - The provided slice is empty.
/// - The number of elements in the provided slice is greater than `i32::MAX`.
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "rand-std")] {
/// use secp256k1::{rand, Secp256k1, PublicKey};
///
/// let secp = Secp256k1::new();
/// let mut rng = rand::thread_rng();
/// let (_, pk1) = secp.generate_keypair(&mut rng);
/// let (_, pk2) = secp.generate_keypair(&mut rng);
/// let (_, pk3) = secp.generate_keypair(&mut rng);
/// let sum = PublicKey::combine_keys(&[&pk1, &pk2, &pk3]).expect("It's improbable to fail for 3 random public keys");
/// # }
/// ```
pub fn combine_keys(keys: &[&PublicKey]) -> Result<PublicKey, Error> {
use core::i32::MAX;
use core::mem::transmute;
if keys.is_empty() || keys.len() > MAX as usize {
return Err(InvalidPublicKeySum);
}
unsafe {
let mut ret = ffi::PublicKey::new();
let ptrs: &[*const ffi::PublicKey] =
transmute::<&[&PublicKey], &[*const ffi::PublicKey]>(keys);
if ffi::secp256k1_ec_pubkey_combine(
ffi::secp256k1_context_no_precomp,
&mut ret,
ptrs.as_c_ptr(),
keys.len(),
) == 1
{
Ok(PublicKey(ret))
} else {
Err(InvalidPublicKeySum)
}
}
}
/// Returns the [`XOnlyPublicKey`] (and it's [`Parity`]) for this [`PublicKey`].
#[inline]
pub fn x_only_public_key(&self) -> (XOnlyPublicKey, Parity) {
let mut pk_parity = 0;
unsafe {
let mut xonly_pk = ffi::XOnlyPublicKey::new();
let ret = ffi::secp256k1_xonly_pubkey_from_pubkey(
ffi::secp256k1_context_no_precomp,
&mut xonly_pk,
&mut pk_parity,
self.as_c_ptr(),
);
debug_assert_eq!(ret, 1);
let parity =
Parity::from_i32(pk_parity).expect("should not panic, pk_parity is 0 or 1");
(XOnlyPublicKey(xonly_pk), parity)
}
}
/// Checks that `sig` is a valid ECDSA signature for `msg` using this public key.
pub fn verify<C: Verification>(
&self,
secp: &Secp256k1<C>,
msg: &Message,
sig: &ecdsa::Signature,
) -> Result<(), Error> {
secp.verify_ecdsa(msg, sig, self)
}
}
/// This trait enables interaction with the FFI layer and even though it is part of the public API
/// normal users should never need to directly interact with FFI types.
impl CPtr for PublicKey {
type Target = ffi::PublicKey;
/// Obtains a const pointer suitable for use with FFI functions.
fn as_c_ptr(&self) -> *const Self::Target { &self.0 }
/// Obtains a mutable pointer suitable for use with FFI functions.
fn as_mut_c_ptr(&mut self) -> *mut Self::Target { &mut self.0 }
}
/// Creates a new public key from a FFI public key.
///
/// Note, normal users should never need to interact directly with FFI types.
impl From<ffi::PublicKey> for PublicKey {
#[inline]
fn from(pk: ffi::PublicKey) -> PublicKey { PublicKey(pk) }
}
#[cfg(feature = "serde")]
impl serde::Serialize for PublicKey {
fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
if s.is_human_readable() {
s.collect_str(self)
} else {
let mut tuple = s.serialize_tuple(constants::PUBLIC_KEY_SIZE)?;
// Serialize in compressed form.
for byte in self.serialize().iter() {
tuple.serialize_element(&byte)?;
}
tuple.end()
}
}
}
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for PublicKey {
fn deserialize<D: serde::Deserializer<'de>>(d: D) -> Result<PublicKey, D::Error> {
if d.is_human_readable() {
d.deserialize_str(super::serde_util::FromStrVisitor::new(
"an ASCII hex string representing a public key",
))
} else {
let visitor = super::serde_util::Tuple33Visitor::new(
"33 bytes compressed public key",
PublicKey::from_slice,
);
d.deserialize_tuple(constants::PUBLIC_KEY_SIZE, visitor)
}
}
}
/// Opaque data structure that holds a keypair consisting of a secret and a public key.
///
/// # Serde support
///
/// Implements de/serialization with the `serde` and_`global-context` features enabled. Serializes
/// the secret bytes only. We treat the byte value as a tuple of 32 `u8`s for non-human-readable
/// formats. This representation is optimal for for some formats (e.g. [`bincode`]) however other
/// formats may be less optimal (e.g. [`cbor`]). For human-readable formats we use a hex string.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # #[cfg(feature = "rand-std")] {
/// use secp256k1::{rand, Keypair, Secp256k1};
///
/// let secp = Secp256k1::new();
/// let (secret_key, public_key) = secp.generate_keypair(&mut rand::thread_rng());
/// let keypair = Keypair::from_secret_key(&secp, &secret_key);
/// # }
/// ```
/// [`bincode`]: https://docs.rs/bincode
/// [`cbor`]: https://docs.rs/cbor
#[derive(Copy, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct Keypair(ffi::Keypair);
impl_display_secret!(Keypair);
impl_fast_comparisons!(Keypair);
impl Keypair {
/// Obtains a raw const pointer suitable for use with FFI functions.
#[inline]
#[deprecated(since = "0.25.0", note = "Use Self::as_c_ptr if you need to access the FFI layer")]
pub fn as_ptr(&self) -> *const ffi::Keypair { self.as_c_ptr() }
/// Obtains a raw mutable pointer suitable for use with FFI functions.
#[inline]
#[deprecated(
since = "0.25.0",
note = "Use Self::as_mut_c_ptr if you need to access the FFI layer"
)]
pub fn as_mut_ptr(&mut self) -> *mut ffi::Keypair { self.as_mut_c_ptr() }
/// Creates a [`Keypair`] directly from a Secp256k1 secret key.
#[inline]
pub fn from_secret_key<C: Signing>(secp: &Secp256k1<C>, sk: &SecretKey) -> Keypair {
unsafe {
let mut kp = ffi::Keypair::new();
if ffi::secp256k1_keypair_create(secp.ctx.as_ptr(), &mut kp, sk.as_c_ptr()) == 1 {
Keypair(kp)
} else {
panic!("the provided secret key is invalid: it is corrupted or was not produced by Secp256k1 library")
}
}
}
/// Creates a [`Keypair`] directly from a secret key slice.
///
/// # Errors
///
/// [`Error::InvalidSecretKey`] if the provided data has an incorrect length, exceeds Secp256k1
/// field `p` value or the corresponding public key is not even.
#[inline]
pub fn from_seckey_slice<C: Signing>(
secp: &Secp256k1<C>,
data: &[u8],
) -> Result<Keypair, Error> {
if data.is_empty() || data.len() != constants::SECRET_KEY_SIZE {
return Err(Error::InvalidSecretKey);
}
unsafe {
let mut kp = ffi::Keypair::new();
if ffi::secp256k1_keypair_create(secp.ctx.as_ptr(), &mut kp, data.as_c_ptr()) == 1 {
Ok(Keypair(kp))
} else {
Err(Error::InvalidSecretKey)
}
}
}
/// Creates a [`Keypair`] directly from a secret key string.
///
/// # Errors
///
/// [`Error::InvalidSecretKey`] if corresponding public key for the provided secret key is not even.
#[inline]
pub fn from_seckey_str<C: Signing>(secp: &Secp256k1<C>, s: &str) -> Result<Keypair, Error> {
let mut res = [0u8; constants::SECRET_KEY_SIZE];
match from_hex(s, &mut res) {
Ok(constants::SECRET_KEY_SIZE) =>
Keypair::from_seckey_slice(secp, &res[0..constants::SECRET_KEY_SIZE]),
_ => Err(Error::InvalidPublicKey),
}
}
/// Creates a [`Keypair`] directly from a secret key string and the global [`SECP256K1`] context.
///
/// # Errors
///
/// [`Error::InvalidSecretKey`] if corresponding public key for the provided secret key is not even.
#[inline]
#[cfg(feature = "global-context")]
pub fn from_seckey_str_global(s: &str) -> Result<Keypair, Error> {
Keypair::from_seckey_str(SECP256K1, s)
}
/// Generates a new random secret key.
/// # Examples
///
/// ```
/// # #[cfg(feature = "rand-std")] {
/// use secp256k1::{rand, Secp256k1, SecretKey, Keypair};
///
/// let secp = Secp256k1::new();
/// let keypair = Keypair::new(&secp, &mut rand::thread_rng());
/// # }
/// ```
#[inline]
#[cfg(feature = "rand")]
pub fn new<R: rand::Rng + ?Sized, C: Signing>(secp: &Secp256k1<C>, rng: &mut R) -> Keypair {
let mut data = crate::random_32_bytes(rng);
unsafe {
let mut keypair = ffi::Keypair::new();
while ffi::secp256k1_keypair_create(secp.ctx.as_ptr(), &mut keypair, data.as_c_ptr())
== 0
{
data = crate::random_32_bytes(rng);
}
Keypair(keypair)
}
}
/// Generates a new random secret key using the global [`SECP256K1`] context.
#[inline]
#[cfg(all(feature = "global-context", feature = "rand"))]
pub fn new_global<R: ::rand::Rng + ?Sized>(rng: &mut R) -> Keypair {
Keypair::new(SECP256K1, rng)
}
/// Returns the secret bytes for this key pair.
#[inline]
pub fn secret_bytes(&self) -> [u8; constants::SECRET_KEY_SIZE] {
*SecretKey::from_keypair(self).as_ref()
}
/// Tweaks a keypair by first converting the public key to an xonly key and tweaking it.
///
/// # Errors
///
/// Returns an error if the resulting key would be invalid.
///
/// NB: Will not error if the tweaked public key has an odd value and can't be used for
/// BIP 340-342 purposes.
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "rand-std")] {
/// use secp256k1::{Secp256k1, Keypair, Scalar};
///
/// let secp = Secp256k1::new();
/// let tweak = Scalar::random();
///
/// let mut keypair = Keypair::new(&secp, &mut rand::thread_rng());
/// let tweaked = keypair.add_xonly_tweak(&secp, &tweak).expect("Improbable to fail with a randomly generated tweak");
/// # }
/// ```
// TODO: Add checked implementation
#[inline]
pub fn add_xonly_tweak<C: Verification>(
mut self,
secp: &Secp256k1<C>,
tweak: &Scalar,
) -> Result<Keypair, Error> {
unsafe {
let err = ffi::secp256k1_keypair_xonly_tweak_add(
secp.ctx.as_ptr(),
&mut self.0,
tweak.as_c_ptr(),
);
if err != 1 {
return Err(Error::InvalidTweak);
}
Ok(self)
}
}
/// Returns the [`SecretKey`] for this [`Keypair`].
///
/// This is equivalent to using [`SecretKey::from_keypair`].
#[inline]
pub fn secret_key(&self) -> SecretKey { SecretKey::from_keypair(self) }
/// Returns the [`PublicKey`] for this [`Keypair`].
///
/// This is equivalent to using [`PublicKey::from_keypair`].
#[inline]
pub fn public_key(&self) -> PublicKey { PublicKey::from_keypair(self) }
/// Returns the [`XOnlyPublicKey`] (and it's [`Parity`]) for this [`Keypair`].
///
/// This is equivalent to using [`XOnlyPublicKey::from_keypair`].
#[inline]
pub fn x_only_public_key(&self) -> (XOnlyPublicKey, Parity) {
XOnlyPublicKey::from_keypair(self)
}
/// Constructs an schnorr signature for `msg` using the global [`SECP256K1`] context.
#[inline]
#[cfg(all(feature = "global-context", feature = "rand-std"))]
pub fn sign_schnorr(&self, msg: Message) -> schnorr::Signature {
SECP256K1.sign_schnorr(&msg, self)
}
/// Attempts to erase the secret within the underlying array.
///
/// Note, however, that the compiler is allowed to freely copy or move the contents
/// of this array to other places in memory. Preventing this behavior is very subtle.
/// For more discussion on this, please see the documentation of the
/// [`zeroize`](https://docs.rs/zeroize) crate.
#[inline]
pub fn non_secure_erase(&mut self) { self.0.non_secure_erase(); }
}
impl From<Keypair> for SecretKey {
#[inline]
fn from(pair: Keypair) -> Self { SecretKey::from_keypair(&pair) }
}
impl<'a> From<&'a Keypair> for SecretKey {
#[inline]
fn from(pair: &'a Keypair) -> Self { SecretKey::from_keypair(pair) }
}
impl From<Keypair> for PublicKey {
#[inline]
fn from(pair: Keypair) -> Self { PublicKey::from_keypair(&pair) }
}
impl<'a> From<&'a Keypair> for PublicKey {
#[inline]
fn from(pair: &'a Keypair) -> Self { PublicKey::from_keypair(pair) }
}
impl str::FromStr for Keypair {
type Err = Error;
#[allow(unused_variables, unreachable_code)] // When built with no default features.
fn from_str(s: &str) -> Result<Self, Self::Err> {
#[cfg(feature = "global-context")]
let ctx = SECP256K1;
#[cfg(all(not(feature = "global-context"), feature = "alloc"))]
let ctx = Secp256k1::signing_only();
#[cfg(not(any(feature = "global-context", feature = "alloc")))]
let ctx: Secp256k1<crate::SignOnlyPreallocated> = panic!("The previous implementation was panicking too, please enable the global-context feature of rust-secp256k1");
#[allow(clippy::needless_borrow)]
Keypair::from_seckey_str(&ctx, s)
}
}
#[cfg(feature = "serde")]
impl serde::Serialize for Keypair {
fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
if s.is_human_readable() {
let mut buf = [0u8; constants::SECRET_KEY_SIZE * 2];
s.serialize_str(
crate::to_hex(&self.secret_bytes(), &mut buf)
.expect("fixed-size hex serialization"),
)
} else {
let mut tuple = s.serialize_tuple(constants::SECRET_KEY_SIZE)?;
for byte in self.secret_bytes().iter() {
tuple.serialize_element(&byte)?;
}
tuple.end()
}
}
}
#[cfg(feature = "serde")]
#[allow(unused_variables)] // For `data` under some feature combinations (the unconditional panic below).
#[allow(unreachable_code)] // For `Keypair::from_seckey_slice` after unconditional panic.
impl<'de> serde::Deserialize<'de> for Keypair {
fn deserialize<D: serde::Deserializer<'de>>(d: D) -> Result<Self, D::Error> {
if d.is_human_readable() {
d.deserialize_str(super::serde_util::FromStrVisitor::new(
"a hex string representing 32 byte Keypair",
))
} else {
let visitor = super::serde_util::Tuple32Visitor::new("raw 32 bytes Keypair", |data| {
#[cfg(feature = "global-context")]
let ctx = SECP256K1;
#[cfg(all(not(feature = "global-context"), feature = "alloc"))]
let ctx = Secp256k1::signing_only();
#[cfg(not(any(feature = "global-context", feature = "alloc")))]
let ctx: Secp256k1<crate::SignOnlyPreallocated> = panic!("cannot deserialize key pair without a context (please enable either the global-context or alloc feature)");
#[allow(clippy::needless_borrow)]
Keypair::from_seckey_slice(&ctx, data)
});
d.deserialize_tuple(constants::SECRET_KEY_SIZE, visitor)
}
}
}
impl CPtr for Keypair {
type Target = ffi::Keypair;
fn as_c_ptr(&self) -> *const Self::Target { &self.0 }
fn as_mut_c_ptr(&mut self) -> *mut Self::Target { &mut self.0 }
}
/// An x-only public key, used for verification of Taproot signatures and serialized according to BIP-340.
///
/// # Serde support
///
/// Implements de/serialization with the `serde` feature enabled. We treat the byte value as a tuple
/// of 32 `u8`s for non-human-readable formats. This representation is optimal for for some formats
/// (e.g. [`bincode`]) however other formats may be less optimal (e.g. [`cbor`]).
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # #[cfg(feature = "rand-std")] {
/// use secp256k1::{rand, Secp256k1, Keypair, XOnlyPublicKey};
///
/// let secp = Secp256k1::new();
/// let keypair = Keypair::new(&secp, &mut rand::thread_rng());
/// let xonly = XOnlyPublicKey::from_keypair(&keypair);
/// # }
/// ```
/// [`bincode`]: https://docs.rs/bincode
/// [`cbor`]: https://docs.rs/cbor
#[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct XOnlyPublicKey(ffi::XOnlyPublicKey);
impl_fast_comparisons!(XOnlyPublicKey);
impl fmt::LowerHex for XOnlyPublicKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let ser = self.serialize();
for ch in &ser[..] {
write!(f, "{:02x}", *ch)?;
}
Ok(())
}
}
impl fmt::Display for XOnlyPublicKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(self, f) }
}
impl str::FromStr for XOnlyPublicKey {
type Err = Error;
fn from_str(s: &str) -> Result<XOnlyPublicKey, Error> {
let mut res = [0u8; constants::SCHNORR_PUBLIC_KEY_SIZE];
match from_hex(s, &mut res) {
Ok(constants::SCHNORR_PUBLIC_KEY_SIZE) =>
XOnlyPublicKey::from_slice(&res[0..constants::SCHNORR_PUBLIC_KEY_SIZE]),
_ => Err(Error::InvalidPublicKey),
}
}
}
impl XOnlyPublicKey {
/// Obtains a raw const pointer suitable for use with FFI functions.
#[inline]
#[deprecated(since = "0.25.0", note = "Use Self::as_c_ptr if you need to access the FFI layer")]
pub fn as_ptr(&self) -> *const ffi::XOnlyPublicKey { self.as_c_ptr() }
/// Obtains a raw mutable pointer suitable for use with FFI functions.
#[inline]
#[deprecated(
since = "0.25.0",
note = "Use Self::as_mut_c_ptr if you need to access the FFI layer"
)]
pub fn as_mut_ptr(&mut self) -> *mut ffi::XOnlyPublicKey { self.as_mut_c_ptr() }
/// Returns the [`XOnlyPublicKey`] (and it's [`Parity`]) for `keypair`.
#[inline]
pub fn from_keypair(keypair: &Keypair) -> (XOnlyPublicKey, Parity) {
let mut pk_parity = 0;
unsafe {
let mut xonly_pk = ffi::XOnlyPublicKey::new();
let ret = ffi::secp256k1_keypair_xonly_pub(
ffi::secp256k1_context_no_precomp,
&mut xonly_pk,
&mut pk_parity,
keypair.as_c_ptr(),
);
debug_assert_eq!(ret, 1);
let parity =
Parity::from_i32(pk_parity).expect("should not panic, pk_parity is 0 or 1");
(XOnlyPublicKey(xonly_pk), parity)
}
}
/// Creates a schnorr public key directly from a slice.
///
/// # Errors
///
/// Returns [`Error::InvalidPublicKey`] if the length of the data slice is not 32 bytes or the
/// slice does not represent a valid Secp256k1 point x coordinate.
#[inline]
pub fn from_slice(data: &[u8]) -> Result<XOnlyPublicKey, Error> {
if data.is_empty() || data.len() != constants::SCHNORR_PUBLIC_KEY_SIZE {
return Err(Error::InvalidPublicKey);
}
unsafe {
let mut pk = ffi::XOnlyPublicKey::new();
if ffi::secp256k1_xonly_pubkey_parse(
ffi::secp256k1_context_no_precomp,
&mut pk,
data.as_c_ptr(),
) == 1
{
Ok(XOnlyPublicKey(pk))
} else {
Err(Error::InvalidPublicKey)
}
}
}
#[inline]
/// Serializes the key as a byte-encoded x coordinate value (32 bytes).
pub fn serialize(&self) -> [u8; constants::SCHNORR_PUBLIC_KEY_SIZE] {
let mut ret = [0u8; constants::SCHNORR_PUBLIC_KEY_SIZE];
unsafe {
let err = ffi::secp256k1_xonly_pubkey_serialize(
ffi::secp256k1_context_no_precomp,
ret.as_mut_c_ptr(),
self.as_c_ptr(),
);
debug_assert_eq!(err, 1);
}
ret
}
/// Tweaks an [`XOnlyPublicKey`] by adding the generator multiplied with the given tweak to it.
///
/// # Returns
///
/// The newly tweaked key plus an opaque type representing the parity of the tweaked key, this
/// should be provided to `tweak_add_check` which can be used to verify a tweak more efficiently
/// than regenerating it and checking equality.
///
/// # Errors
///
/// If the resulting key would be invalid.
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "rand-std")] {
/// use secp256k1::{Secp256k1, Keypair, Scalar, XOnlyPublicKey};
///
/// let secp = Secp256k1::new();
/// let tweak = Scalar::random();
///
/// let mut keypair = Keypair::new(&secp, &mut rand::thread_rng());
/// let (xonly, _parity) = keypair.x_only_public_key();
/// let tweaked = xonly.add_tweak(&secp, &tweak).expect("Improbable to fail with a randomly generated tweak");
/// # }
/// ```
pub fn add_tweak<V: Verification>(
mut self,
secp: &Secp256k1<V>,
tweak: &Scalar,
) -> Result<(XOnlyPublicKey, Parity), Error> {
let mut pk_parity = 0;
unsafe {
let mut pubkey = ffi::PublicKey::new();
let mut err = ffi::secp256k1_xonly_pubkey_tweak_add(
secp.ctx.as_ptr(),
&mut pubkey,
self.as_c_ptr(),
tweak.as_c_ptr(),
);
if err != 1 {
return Err(Error::InvalidTweak);
}
err = ffi::secp256k1_xonly_pubkey_from_pubkey(
secp.ctx.as_ptr(),
&mut self.0,
&mut pk_parity,
&pubkey,
);
if err == 0 {
return Err(Error::InvalidPublicKey);
}
let parity = Parity::from_i32(pk_parity)?;
Ok((self, parity))
}
}
/// Verifies that a tweak produced by [`XOnlyPublicKey::add_tweak`] was computed correctly.
///
/// Should be called on the original untweaked key. Takes the tweaked key and output parity from
/// [`XOnlyPublicKey::add_tweak`] as input.
///
/// Currently this is not much more efficient than just recomputing the tweak and checking
/// equality. However, in future this API will support batch verification, which is
/// significantly faster, so it is wise to design protocols with this in mind.
///
/// # Returns
///
/// True if tweak and check is successful, false otherwise.
///
/// # Examples
///
/// ```
/// # #[cfg(feature = "rand-std")] {
/// use secp256k1::{Secp256k1, Keypair, Scalar};
///
/// let secp = Secp256k1::new();
/// let tweak = Scalar::random();
///
/// let mut keypair = Keypair::new(&secp, &mut rand::thread_rng());
/// let (mut public_key, _) = keypair.x_only_public_key();
/// let original = public_key;
/// let (tweaked, parity) = public_key.add_tweak(&secp, &tweak).expect("Improbable to fail with a randomly generated tweak");
/// assert!(original.tweak_add_check(&secp, &tweaked, parity, tweak));
/// # }
/// ```
pub fn tweak_add_check<V: Verification>(
&self,
secp: &Secp256k1<V>,
tweaked_key: &Self,
tweaked_parity: Parity,
tweak: Scalar,
) -> bool {
let tweaked_ser = tweaked_key.serialize();
unsafe {
let err = ffi::secp256k1_xonly_pubkey_tweak_add_check(
secp.ctx.as_ptr(),
tweaked_ser.as_c_ptr(),
tweaked_parity.to_i32(),
&self.0,
tweak.as_c_ptr(),
);
err == 1
}
}
/// Returns the [`PublicKey`] for this [`XOnlyPublicKey`].
///
/// This is equivalent to using [`PublicKey::from_xonly_and_parity(self, parity)`].
#[inline]
pub fn public_key(&self, parity: Parity) -> PublicKey {
PublicKey::from_x_only_public_key(*self, parity)
}
/// Checks that `sig` is a valid schnorr signature for `msg` using this public key.
pub fn verify<C: Verification>(
&self,
secp: &Secp256k1<C>,
msg: &Message,
sig: &schnorr::Signature,
) -> Result<(), Error> {
secp.verify_schnorr(sig, msg, self)
}
}
/// Represents the parity passed between FFI function calls.
#[derive(Copy, Clone, PartialEq, Eq, Debug, PartialOrd, Ord, Hash)]
pub enum Parity {
/// Even parity.
Even = 0,
/// Odd parity.
Odd = 1,
}
impl Parity {
/// Converts parity into an integer (byte) value.
///
/// This returns `0` for even parity and `1` for odd parity.
pub fn to_u8(self) -> u8 { self as u8 }
/// Converts parity into an integer value.
///
/// This returns `0` for even parity and `1` for odd parity.
pub fn to_i32(self) -> i32 { self as i32 }
/// Constructs a [`Parity`] from a byte.
///
/// The only allowed values are `0` meaning even parity and `1` meaning odd.
/// Other values result in error being returned.
pub fn from_u8(parity: u8) -> Result<Parity, InvalidParityValue> {
Parity::from_i32(parity.into())
}
/// Constructs a [`Parity`] from a signed integer.
///
/// The only allowed values are `0` meaning even parity and `1` meaning odd.
/// Other values result in error being returned.
pub fn from_i32(parity: i32) -> Result<Parity, InvalidParityValue> {
match parity {
0 => Ok(Parity::Even),
1 => Ok(Parity::Odd),
_ => Err(InvalidParityValue(parity)),
}
}
}
/// `Even` for `0`, `Odd` for `1`, error for anything else
impl TryFrom<i32> for Parity {
type Error = InvalidParityValue;
fn try_from(parity: i32) -> Result<Self, Self::Error> { Self::from_i32(parity) }
}
/// `Even` for `0`, `Odd` for `1`, error for anything else
impl TryFrom<u8> for Parity {
type Error = InvalidParityValue;
fn try_from(parity: u8) -> Result<Self, Self::Error> { Self::from_u8(parity) }
}
/// The conversion returns `0` for even parity and `1` for odd.
impl From<Parity> for i32 {
fn from(parity: Parity) -> i32 { parity.to_i32() }
}
/// The conversion returns `0` for even parity and `1` for odd.
impl From<Parity> for u8 {
fn from(parity: Parity) -> u8 { parity.to_u8() }
}
/// Returns even parity if the operands are equal, odd otherwise.
impl BitXor for Parity {
type Output = Parity;
fn bitxor(self, rhs: Parity) -> Self::Output {
// This works because Parity has only two values (i.e. only 1 bit of information).
if self == rhs {
Parity::Even // 1^1==0 and 0^0==0
} else {
Parity::Odd // 1^0==1 and 0^1==1
}
}
}
/// Error returned when conversion from an integer to `Parity` fails.
//
// Note that we don't allow inspecting the value because we may change the type.
// Yes, this comment is intentionally NOT doc comment.
// Too many derives for compatibility with current Error type.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash, Ord, PartialOrd)]
pub struct InvalidParityValue(i32);
impl fmt::Display for InvalidParityValue {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "invalid value {} for Parity - must be 0 or 1", self.0)
}
}
#[cfg(feature = "std")]
impl std::error::Error for InvalidParityValue {}
impl From<InvalidParityValue> for Error {
fn from(error: InvalidParityValue) -> Self { Error::InvalidParityValue(error) }
}
/// The parity is serialized as `u8` - `0` for even, `1` for odd.
#[cfg(feature = "serde")]
impl serde::Serialize for Parity {
fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
s.serialize_u8(self.to_u8())
}
}
/// The parity is deserialized as `u8` - `0` for even, `1` for odd.
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for Parity {
fn deserialize<D: serde::Deserializer<'de>>(d: D) -> Result<Self, D::Error> {
struct Visitor;
impl<'de> serde::de::Visitor<'de> for Visitor {
type Value = Parity;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("8-bit integer (byte) with value 0 or 1")
}
fn visit_u8<E>(self, v: u8) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
use serde::de::Unexpected;
Parity::from_u8(v)
.map_err(|_| E::invalid_value(Unexpected::Unsigned(v.into()), &"0 or 1"))
}
}
d.deserialize_u8(Visitor)
}
}
impl CPtr for XOnlyPublicKey {
type Target = ffi::XOnlyPublicKey;
fn as_c_ptr(&self) -> *const Self::Target { &self.0 }
fn as_mut_c_ptr(&mut self) -> *mut Self::Target { &mut self.0 }
}
/// Creates a new schnorr public key from a FFI x-only public key.
impl From<ffi::XOnlyPublicKey> for XOnlyPublicKey {
#[inline]
fn from(pk: ffi::XOnlyPublicKey) -> XOnlyPublicKey { XOnlyPublicKey(pk) }
}
impl From<PublicKey> for XOnlyPublicKey {
fn from(src: PublicKey) -> XOnlyPublicKey {
unsafe {
let mut pk = ffi::XOnlyPublicKey::new();
assert_eq!(
1,
ffi::secp256k1_xonly_pubkey_from_pubkey(
ffi::secp256k1_context_no_precomp,
&mut pk,
ptr::null_mut(),
src.as_c_ptr(),
)
);
XOnlyPublicKey(pk)
}
}
}
#[cfg(feature = "serde")]
impl serde::Serialize for XOnlyPublicKey {
fn serialize<S: serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
if s.is_human_readable() {
s.collect_str(self)
} else {
let mut tuple = s.serialize_tuple(constants::SCHNORR_PUBLIC_KEY_SIZE)?;
for byte in self.serialize().iter() {
tuple.serialize_element(&byte)?;
}
tuple.end()
}
}
}
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for XOnlyPublicKey {
fn deserialize<D: serde::Deserializer<'de>>(d: D) -> Result<Self, D::Error> {
if d.is_human_readable() {
d.deserialize_str(super::serde_util::FromStrVisitor::new(
"a hex string representing 32 byte schnorr public key",
))
} else {
let visitor = super::serde_util::Tuple32Visitor::new(
"raw 32 bytes schnorr public key",
XOnlyPublicKey::from_slice,
);
d.deserialize_tuple(constants::SCHNORR_PUBLIC_KEY_SIZE, visitor)
}
}
}
#[cfg(test)]
#[allow(unused_imports)]
mod test {
use core::str::FromStr;
#[cfg(feature = "rand")]
use rand::{self, rngs::mock::StepRng, RngCore};
use serde_test::{Configure, Token};
#[cfg(target_arch = "wasm32")]
use wasm_bindgen_test::wasm_bindgen_test as test;
use super::{Keypair, Parity, PublicKey, Secp256k1, SecretKey, XOnlyPublicKey, *};
use crate::Error::{InvalidPublicKey, InvalidSecretKey};
use crate::{constants, from_hex, to_hex, Scalar};
#[cfg(not(secp256k1_fuzz))]
macro_rules! hex {
($hex:expr) => {{
let mut result = vec![0; $hex.len() / 2];
from_hex($hex, &mut result).expect("valid hex string");
result
}};
}
#[test]
fn skey_from_slice() {
let sk = SecretKey::from_slice(&[1; 31]);
assert_eq!(sk, Err(InvalidSecretKey));
let sk = SecretKey::from_slice(&[1; 32]);
assert!(sk.is_ok());
}
#[test]
fn pubkey_from_slice() {
assert_eq!(PublicKey::from_slice(&[]), Err(InvalidPublicKey));
assert_eq!(PublicKey::from_slice(&[1, 2, 3]), Err(InvalidPublicKey));
let uncompressed = PublicKey::from_slice(&[
4, 54, 57, 149, 239, 162, 148, 175, 246, 254, 239, 75, 154, 152, 10, 82, 234, 224, 85,
220, 40, 100, 57, 121, 30, 162, 94, 156, 135, 67, 74, 49, 179, 57, 236, 53, 162, 124,
149, 144, 168, 77, 74, 30, 72, 211, 229, 110, 111, 55, 96, 193, 86, 227, 183, 152, 195,
155, 51, 247, 123, 113, 60, 228, 188,
]);
assert!(uncompressed.is_ok());
let compressed = PublicKey::from_slice(&[
3, 23, 183, 225, 206, 31, 159, 148, 195, 42, 67, 115, 146, 41, 248, 140, 11, 3, 51, 41,
111, 180, 110, 143, 114, 134, 88, 73, 198, 174, 52, 184, 78,
]);
assert!(compressed.is_ok());
}
#[test]
#[cfg(feature = "rand-std")]
fn keypair_slice_round_trip() {
let s = Secp256k1::new();
let (sk1, pk1) = s.generate_keypair(&mut rand::thread_rng());
assert_eq!(SecretKey::from_slice(&sk1[..]), Ok(sk1));
assert_eq!(PublicKey::from_slice(&pk1.serialize()[..]), Ok(pk1));
assert_eq!(PublicKey::from_slice(&pk1.serialize_uncompressed()[..]), Ok(pk1));
}
#[test]
#[cfg(all(feature = "std", not(secp256k1_fuzz)))]
fn erased_keypair_is_valid() {
let s = Secp256k1::new();
let kp = Keypair::from_seckey_slice(&s, &[1u8; constants::SECRET_KEY_SIZE])
.expect("valid secret key");
let mut kp2 = kp;
kp2.non_secure_erase();
assert!(kp.eq_fast_unstable(&kp2));
}
#[test]
#[rustfmt::skip]
fn invalid_secret_key() {
// Zero
assert_eq!(SecretKey::from_slice(&[0; 32]), Err(InvalidSecretKey));
assert_eq!(
SecretKey::from_str("0000000000000000000000000000000000000000000000000000000000000000"),
Err(InvalidSecretKey)
);
// -1
assert_eq!(SecretKey::from_slice(&[0xff; 32]), Err(InvalidSecretKey));
// Top of range
assert!(SecretKey::from_slice(&[
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40,
]).is_ok());
// One past top of range
assert!(SecretKey::from_slice(&[
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41,
]).is_err());
}
#[test]
#[cfg(all(feature = "rand", feature = "alloc"))]
fn test_out_of_range() {
struct BadRng(u8);
impl RngCore for BadRng {
fn next_u32(&mut self) -> u32 { unimplemented!() }
fn next_u64(&mut self) -> u64 { unimplemented!() }
// This will set a secret key to a little over the
// group order, then decrement with repeated calls
// until it returns a valid key
fn fill_bytes(&mut self, data: &mut [u8]) {
#[rustfmt::skip]
let group_order: [u8; 32] = [
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41];
assert_eq!(data.len(), 32);
data.copy_from_slice(&group_order[..]);
data[31] = self.0;
self.0 -= 1;
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> {
self.fill_bytes(dest);
Ok(())
}
}
let s = Secp256k1::new();
s.generate_keypair(&mut BadRng(0xff));
}
#[test]
fn test_pubkey_from_bad_slice() {
// Bad sizes
assert_eq!(
PublicKey::from_slice(&[0; constants::PUBLIC_KEY_SIZE - 1]),
Err(InvalidPublicKey)
);
assert_eq!(
PublicKey::from_slice(&[0; constants::PUBLIC_KEY_SIZE + 1]),
Err(InvalidPublicKey)
);
assert_eq!(
PublicKey::from_slice(&[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE - 1]),
Err(InvalidPublicKey)
);
assert_eq!(
PublicKey::from_slice(&[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE + 1]),
Err(InvalidPublicKey)
);
// Bad parse
assert_eq!(
PublicKey::from_slice(&[0xff; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]),
Err(InvalidPublicKey)
);
assert_eq!(
PublicKey::from_slice(&[0x55; constants::PUBLIC_KEY_SIZE]),
Err(InvalidPublicKey)
);
assert_eq!(PublicKey::from_slice(&[]), Err(InvalidPublicKey));
}
#[test]
fn test_seckey_from_bad_slice() {
// Bad sizes
assert_eq!(
SecretKey::from_slice(&[0; constants::SECRET_KEY_SIZE - 1]),
Err(InvalidSecretKey)
);
assert_eq!(
SecretKey::from_slice(&[0; constants::SECRET_KEY_SIZE + 1]),
Err(InvalidSecretKey)
);
// Bad parse
assert_eq!(
SecretKey::from_slice(&[0xff; constants::SECRET_KEY_SIZE]),
Err(InvalidSecretKey)
);
assert_eq!(
SecretKey::from_slice(&[0x00; constants::SECRET_KEY_SIZE]),
Err(InvalidSecretKey)
);
assert_eq!(SecretKey::from_slice(&[]), Err(InvalidSecretKey));
}
#[test]
#[cfg(all(feature = "rand", feature = "alloc"))]
fn test_debug_output() {
let s = Secp256k1::new();
let (sk, _) = s.generate_keypair(&mut StepRng::new(1, 1));
assert_eq!(&format!("{:?}", sk), "SecretKey(#d3e0c51a23169bb5)");
let mut buf = [0u8; constants::SECRET_KEY_SIZE * 2];
assert_eq!(
to_hex(&sk[..], &mut buf).unwrap(),
"0100000000000000020000000000000003000000000000000400000000000000"
);
}
#[test]
#[cfg(feature = "alloc")]
fn test_display_output() {
#[rustfmt::skip]
static SK_BYTES: [u8; 32] = [
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00,
0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63,
];
#[cfg(not(secp256k1_fuzz))]
let s = Secp256k1::signing_only();
let sk = SecretKey::from_slice(&SK_BYTES).expect("sk");
// In fuzzing mode secret->public key derivation is different, so
// hard-code the expected result.
#[cfg(not(secp256k1_fuzz))]
let pk = PublicKey::from_secret_key(&s, &sk);
#[cfg(secp256k1_fuzz)]
let pk = PublicKey::from_slice(&[
0x02, 0x18, 0x84, 0x57, 0x81, 0xf6, 0x31, 0xc4, 0x8f, 0x1c, 0x97, 0x09, 0xe2, 0x30,
0x92, 0x06, 0x7d, 0x06, 0x83, 0x7f, 0x30, 0xaa, 0x0c, 0xd0, 0x54, 0x4a, 0xc8, 0x87,
0xfe, 0x91, 0xdd, 0xd1, 0x66,
])
.expect("pk");
assert_eq!(
sk.display_secret().to_string(),
"01010101010101010001020304050607ffff0000ffff00006363636363636363"
);
assert_eq!(
SecretKey::from_str("01010101010101010001020304050607ffff0000ffff00006363636363636363")
.unwrap(),
sk
);
assert_eq!(
pk.to_string(),
"0218845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd166"
);
assert_eq!(
PublicKey::from_str(
"0218845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd166"
)
.unwrap(),
pk
);
assert_eq!(
PublicKey::from_str(
"04\
18845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd166\
84B84DB303A340CD7D6823EE88174747D12A67D2F8F2F9BA40846EE5EE7A44F6"
)
.unwrap(),
pk
);
assert!(SecretKey::from_str(
"fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
)
.is_err());
assert!(SecretKey::from_str(
"01010101010101010001020304050607ffff0000ffff0000636363636363636363"
)
.is_err());
assert!(SecretKey::from_str(
"01010101010101010001020304050607ffff0000ffff0000636363636363636"
)
.is_err());
assert!(SecretKey::from_str(
"01010101010101010001020304050607ffff0000ffff000063636363636363"
)
.is_err());
assert!(SecretKey::from_str(
"01010101010101010001020304050607ffff0000ffff000063636363636363xx"
)
.is_err());
assert!(PublicKey::from_str(
"0300000000000000000000000000000000000000000000000000000000000000000"
)
.is_err());
assert!(PublicKey::from_str(
"0218845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd16601"
)
.is_err());
assert!(PublicKey::from_str(
"0218845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd16"
)
.is_err());
assert!(PublicKey::from_str(
"0218845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd1"
)
.is_err());
assert!(PublicKey::from_str(
"xx0218845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd1"
)
.is_err());
let long_str = "a".repeat(1024 * 1024);
assert!(SecretKey::from_str(&long_str).is_err());
assert!(PublicKey::from_str(&long_str).is_err());
}
#[test]
// In fuzzing mode the Y coordinate is expected to match the X, so this
// test uses invalid public keys.
#[cfg(not(secp256k1_fuzz))]
#[cfg(all(feature = "alloc", feature = "rand"))]
fn test_pubkey_serialize() {
let s = Secp256k1::new();
let (_, pk1) = s.generate_keypair(&mut StepRng::new(1, 1));
assert_eq!(
&pk1.serialize_uncompressed()[..],
&[
4, 124, 121, 49, 14, 253, 63, 197, 50, 39, 194, 107, 17, 193, 219, 108, 154, 126,
9, 181, 248, 2, 12, 149, 233, 198, 71, 149, 134, 250, 184, 154, 229, 185, 28, 165,
110, 27, 3, 162, 126, 238, 167, 157, 242, 221, 76, 251, 237, 34, 231, 72, 39, 245,
3, 191, 64, 111, 170, 117, 103, 82, 28, 102, 163
][..]
);
assert_eq!(
&pk1.serialize()[..],
&[
3, 124, 121, 49, 14, 253, 63, 197, 50, 39, 194, 107, 17, 193, 219, 108, 154, 126,
9, 181, 248, 2, 12, 149, 233, 198, 71, 149, 134, 250, 184, 154, 229
][..]
);
}
#[test]
#[cfg(feature = "rand-std")]
fn tweak_add_arbitrary_data() {
let s = Secp256k1::new();
let (sk, pk) = s.generate_keypair(&mut rand::thread_rng());
assert_eq!(PublicKey::from_secret_key(&s, &sk), pk); // Sanity check.
// TODO: This would be better tested with a _lot_ of different tweaks.
let tweak = Scalar::random();
let tweaked_sk = sk.add_tweak(&tweak).unwrap();
assert_ne!(sk, tweaked_sk); // Make sure we did something.
let tweaked_pk = pk.add_exp_tweak(&s, &tweak).unwrap();
assert_ne!(pk, tweaked_pk);
assert_eq!(PublicKey::from_secret_key(&s, &tweaked_sk), tweaked_pk);
}
#[test]
#[cfg(feature = "rand-std")]
fn tweak_add_zero() {
let s = Secp256k1::new();
let (sk, pk) = s.generate_keypair(&mut rand::thread_rng());
let tweak = Scalar::ZERO;
let tweaked_sk = sk.add_tweak(&tweak).unwrap();
assert_eq!(sk, tweaked_sk); // Tweak by zero does nothing.
let tweaked_pk = pk.add_exp_tweak(&s, &tweak).unwrap();
assert_eq!(pk, tweaked_pk);
}
#[test]
#[cfg(feature = "rand-std")]
fn tweak_mul_arbitrary_data() {
let s = Secp256k1::new();
let (sk, pk) = s.generate_keypair(&mut rand::thread_rng());
assert_eq!(PublicKey::from_secret_key(&s, &sk), pk); // Sanity check.
// TODO: This would be better tested with a _lot_ of different tweaks.
let tweak = Scalar::random();
let tweaked_sk = sk.mul_tweak(&tweak).unwrap();
assert_ne!(sk, tweaked_sk); // Make sure we did something.
let tweaked_pk = pk.mul_tweak(&s, &tweak).unwrap();
assert_ne!(pk, tweaked_pk);
assert_eq!(PublicKey::from_secret_key(&s, &tweaked_sk), tweaked_pk);
}
#[test]
#[cfg(feature = "rand-std")]
fn tweak_mul_zero() {
let s = Secp256k1::new();
let (sk, _) = s.generate_keypair(&mut rand::thread_rng());
let tweak = Scalar::ZERO;
assert!(sk.mul_tweak(&tweak).is_err())
}
#[test]
#[cfg(feature = "rand-std")]
fn test_negation() {
let s = Secp256k1::new();
let (sk, pk) = s.generate_keypair(&mut rand::thread_rng());
assert_eq!(PublicKey::from_secret_key(&s, &sk), pk); // Sanity check.
let neg = sk.negate();
assert_ne!(sk, neg);
let back_sk = neg.negate();
assert_eq!(sk, back_sk);
let neg = pk.negate(&s);
assert_ne!(pk, neg);
let back_pk = neg.negate(&s);
assert_eq!(pk, back_pk);
assert_eq!(PublicKey::from_secret_key(&s, &back_sk), pk);
}
#[test]
#[cfg(feature = "rand-std")]
fn pubkey_hash() {
use std::collections::hash_map::DefaultHasher;
use std::collections::HashSet;
use std::hash::{Hash, Hasher};
fn hash<T: Hash>(t: &T) -> u64 {
let mut s = DefaultHasher::new();
t.hash(&mut s);
s.finish()
}
let s = Secp256k1::new();
let mut set = HashSet::new();
const COUNT: usize = 1024;
for _ in 0..COUNT {
let (_, pk) = s.generate_keypair(&mut rand::thread_rng());
let hash = hash(&pk);
assert!(!set.contains(&hash));
set.insert(hash);
}
assert_eq!(set.len(), COUNT);
}
#[test]
#[cfg(not(secp256k1_fuzz))]
fn pubkey_combine() {
let compressed1 = PublicKey::from_slice(&hex!(
"0241cc121c419921942add6db6482fb36243faf83317c866d2a28d8c6d7089f7ba"
))
.unwrap();
let compressed2 = PublicKey::from_slice(&hex!(
"02e6642fd69bd211f93f7f1f36ca51a26a5290eb2dd1b0d8279a87bb0d480c8443"
))
.unwrap();
let exp_sum = PublicKey::from_slice(&hex!(
"0384526253c27c7aef56c7b71a5cd25bebb66dddda437826defc5b2568bde81f07"
))
.unwrap();
let sum1 = compressed1.combine(&compressed2);
assert!(sum1.is_ok());
let sum2 = compressed2.combine(&compressed1);
assert!(sum2.is_ok());
assert_eq!(sum1, sum2);
assert_eq!(sum1.unwrap(), exp_sum);
}
#[test]
#[cfg(not(secp256k1_fuzz))]
fn pubkey_combine_keys() {
let compressed1 = PublicKey::from_slice(&hex!(
"0241cc121c419921942add6db6482fb36243faf83317c866d2a28d8c6d7089f7ba"
))
.unwrap();
let compressed2 = PublicKey::from_slice(&hex!(
"02e6642fd69bd211f93f7f1f36ca51a26a5290eb2dd1b0d8279a87bb0d480c8443"
))
.unwrap();
let compressed3 = PublicKey::from_slice(&hex!(
"03e74897d8644eb3e5b391ca2ab257aec2080f4d1a95cad57e454e47f021168eb0"
))
.unwrap();
let exp_sum = PublicKey::from_slice(&hex!(
"0252d73a47f66cf341e5651542f0348f452b7c793af62a6d8bff75ade703a451ad"
))
.unwrap();
let sum1 = PublicKey::combine_keys(&[&compressed1, &compressed2, &compressed3]);
assert!(sum1.is_ok());
let sum2 = PublicKey::combine_keys(&[&compressed1, &compressed2, &compressed3]);
assert!(sum2.is_ok());
assert_eq!(sum1, sum2);
assert_eq!(sum1.unwrap(), exp_sum);
}
#[test]
#[cfg(not(secp256k1_fuzz))]
fn pubkey_combine_keys_empty_slice() {
assert!(PublicKey::combine_keys(&[]).is_err());
}
#[test]
#[cfg(feature = "rand-std")]
fn create_pubkey_combine() {
let s = Secp256k1::new();
let (sk1, pk1) = s.generate_keypair(&mut rand::thread_rng());
let (sk2, pk2) = s.generate_keypair(&mut rand::thread_rng());
let sum1 = pk1.combine(&pk2);
assert!(sum1.is_ok());
let sum2 = pk2.combine(&pk1);
assert!(sum2.is_ok());
assert_eq!(sum1, sum2);
let tweaked = sk1.add_tweak(&Scalar::from(sk2)).unwrap();
let sksum = PublicKey::from_secret_key(&s, &tweaked);
assert_eq!(Ok(sksum), sum1);
}
#[cfg(not(secp256k1_fuzz))]
#[test]
#[allow(clippy::nonminimal_bool)]
fn pubkey_equal() {
let pk1 = PublicKey::from_slice(&hex!(
"0241cc121c419921942add6db6482fb36243faf83317c866d2a28d8c6d7089f7ba"
))
.unwrap();
let pk2 = pk1;
let pk3 = PublicKey::from_slice(&hex!(
"02e6642fd69bd211f93f7f1f36ca51a26a5290eb2dd1b0d8279a87bb0d480c8443"
))
.unwrap();
assert_eq!(pk1, pk2);
assert!(pk1 <= pk2);
assert!(pk2 <= pk1);
assert!(!(pk2 < pk1));
assert!(!(pk1 < pk2));
assert!(pk3 > pk1);
assert!(pk1 < pk3);
assert!(pk3 >= pk1);
assert!(pk1 <= pk3);
}
#[test]
#[cfg(all(feature = "serde", feature = "alloc"))]
fn test_serde() {
use serde_test::{assert_tokens, Configure, Token};
#[rustfmt::skip]
static SK_BYTES: [u8; 32] = [
1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 2, 3, 4, 5, 6, 7,
0xff, 0xff, 0, 0, 0xff, 0xff, 0, 0,
99, 99, 99, 99, 99, 99, 99, 99
];
static SK_STR: &str = "01010101010101010001020304050607ffff0000ffff00006363636363636363";
#[cfg(secp256k1_fuzz)]
#[rustfmt::skip]
static PK_BYTES: [u8; 33] = [
0x02,
0x18, 0x84, 0x57, 0x81, 0xf6, 0x31, 0xc4, 0x8f,
0x1c, 0x97, 0x09, 0xe2, 0x30, 0x92, 0x06, 0x7d,
0x06, 0x83, 0x7f, 0x30, 0xaa, 0x0c, 0xd0, 0x54,
0x4a, 0xc8, 0x87, 0xfe, 0x91, 0xdd, 0xd1, 0x66,
];
static PK_STR: &str = "0218845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd166";
#[cfg(not(secp256k1_fuzz))]
let s = Secp256k1::new();
let sk = SecretKey::from_slice(&SK_BYTES).unwrap();
// In fuzzing mode secret->public key derivation is different, so
// hard-code the expected result.
#[cfg(not(secp256k1_fuzz))]
let pk = PublicKey::from_secret_key(&s, &sk);
#[cfg(secp256k1_fuzz)]
let pk = PublicKey::from_slice(&PK_BYTES).expect("pk");
#[rustfmt::skip]
assert_tokens(&sk.compact(), &[
Token::Tuple{ len: 32 },
Token::U8(1), Token::U8(1), Token::U8(1), Token::U8(1), Token::U8(1), Token::U8(1), Token::U8(1), Token::U8(1),
Token::U8(0), Token::U8(1), Token::U8(2), Token::U8(3), Token::U8(4), Token::U8(5), Token::U8(6), Token::U8(7),
Token::U8(0xff), Token::U8(0xff), Token::U8(0), Token::U8(0), Token::U8(0xff), Token::U8(0xff), Token::U8(0), Token::U8(0),
Token::U8(99), Token::U8(99), Token::U8(99), Token::U8(99), Token::U8(99), Token::U8(99), Token::U8(99), Token::U8(99),
Token::TupleEnd
]);
assert_tokens(&sk.readable(), &[Token::BorrowedStr(SK_STR)]);
assert_tokens(&sk.readable(), &[Token::Str(SK_STR)]);
assert_tokens(&sk.readable(), &[Token::String(SK_STR)]);
#[rustfmt::skip]
assert_tokens(&pk.compact(), &[
Token::Tuple{ len: 33 },
Token::U8(0x02),
Token::U8(0x18), Token::U8(0x84), Token::U8(0x57), Token::U8(0x81), Token::U8(0xf6), Token::U8(0x31), Token::U8(0xc4), Token::U8(0x8f),
Token::U8(0x1c), Token::U8(0x97), Token::U8(0x09), Token::U8(0xe2), Token::U8(0x30), Token::U8(0x92), Token::U8(0x06), Token::U8(0x7d),
Token::U8(0x06), Token::U8(0x83), Token::U8(0x7f), Token::U8(0x30), Token::U8(0xaa), Token::U8(0x0c), Token::U8(0xd0), Token::U8(0x54),
Token::U8(0x4a), Token::U8(0xc8), Token::U8(0x87), Token::U8(0xfe), Token::U8(0x91), Token::U8(0xdd), Token::U8(0xd1), Token::U8(0x66),
Token::TupleEnd
]);
assert_tokens(&pk.readable(), &[Token::BorrowedStr(PK_STR)]);
assert_tokens(&pk.readable(), &[Token::Str(PK_STR)]);
assert_tokens(&pk.readable(), &[Token::String(PK_STR)]);
}
#[test]
#[cfg(feature = "rand-std")]
fn test_tweak_add_then_tweak_add_check() {
let s = Secp256k1::new();
// TODO: 10 times is arbitrary, we should test this a _lot_ of times.
for _ in 0..10 {
let tweak = Scalar::random();
let kp = Keypair::new(&s, &mut rand::thread_rng());
let (xonly, _) = XOnlyPublicKey::from_keypair(&kp);
let tweaked_kp = kp.add_xonly_tweak(&s, &tweak).expect("keypair tweak add failed");
let (tweaked_xonly, parity) =
xonly.add_tweak(&s, &tweak).expect("xonly pubkey tweak failed");
let (want_tweaked_xonly, tweaked_kp_parity) = XOnlyPublicKey::from_keypair(&tweaked_kp);
assert_eq!(tweaked_xonly, want_tweaked_xonly);
assert_eq!(parity, tweaked_kp_parity);
assert!(xonly.tweak_add_check(&s, &tweaked_xonly, parity, tweak));
}
}
#[test]
fn test_from_key_pubkey() {
let kpk1 = PublicKey::from_str(
"02e6642fd69bd211f93f7f1f36ca51a26a5290eb2dd1b0d8279a87bb0d480c8443",
)
.unwrap();
let kpk2 = PublicKey::from_str(
"0384526253c27c7aef56c7b71a5cd25bebb66dddda437826defc5b2568bde81f07",
)
.unwrap();
let pk1 = XOnlyPublicKey::from(kpk1);
let pk2 = XOnlyPublicKey::from(kpk2);
assert_eq!(pk1.serialize()[..], kpk1.serialize()[1..]);
assert_eq!(pk2.serialize()[..], kpk2.serialize()[1..]);
}
#[test]
#[cfg(all(feature = "global-context", feature = "serde"))]
fn test_serde_keypair() {
use serde::{Deserialize, Deserializer, Serialize, Serializer};
use serde_test::{assert_tokens, Configure, Token};
use crate::key::Keypair;
use crate::SECP256K1;
#[rustfmt::skip]
static SK_BYTES: [u8; 32] = [
1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 2, 3, 4, 5, 6, 7,
0xff, 0xff, 0, 0, 0xff, 0xff, 0, 0,
99, 99, 99, 99, 99, 99, 99, 99
];
static SK_STR: &str = "01010101010101010001020304050607ffff0000ffff00006363636363636363";
let sk = Keypair::from_seckey_slice(SECP256K1, &SK_BYTES).unwrap();
#[rustfmt::skip]
assert_tokens(&sk.compact(), &[
Token::Tuple{ len: 32 },
Token::U8(1), Token::U8(1), Token::U8(1), Token::U8(1), Token::U8(1), Token::U8(1), Token::U8(1), Token::U8(1),
Token::U8(0), Token::U8(1), Token::U8(2), Token::U8(3), Token::U8(4), Token::U8(5), Token::U8(6), Token::U8(7),
Token::U8(0xff), Token::U8(0xff), Token::U8(0), Token::U8(0), Token::U8(0xff), Token::U8(0xff), Token::U8(0), Token::U8(0),
Token::U8(99), Token::U8(99), Token::U8(99), Token::U8(99), Token::U8(99), Token::U8(99), Token::U8(99), Token::U8(99),
Token::TupleEnd
]);
assert_tokens(&sk.readable(), &[Token::BorrowedStr(SK_STR)]);
assert_tokens(&sk.readable(), &[Token::Str(SK_STR)]);
assert_tokens(&sk.readable(), &[Token::String(SK_STR)]);
}
#[cfg(all(not(secp256k1_fuzz), feature = "alloc"))]
fn keys() -> (SecretKey, PublicKey, Keypair, XOnlyPublicKey) {
let secp = Secp256k1::new();
#[rustfmt::skip]
static SK_BYTES: [u8; 32] = [
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0x00, 0x00,
0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63, 0x63,
];
#[rustfmt::skip]
static PK_BYTES: [u8; 32] = [
0x18, 0x84, 0x57, 0x81, 0xf6, 0x31, 0xc4, 0x8f,
0x1c, 0x97, 0x09, 0xe2, 0x30, 0x92, 0x06, 0x7d,
0x06, 0x83, 0x7f, 0x30, 0xaa, 0x0c, 0xd0, 0x54,
0x4a, 0xc8, 0x87, 0xfe, 0x91, 0xdd, 0xd1, 0x66
];
let mut pk_bytes = [0u8; 33];
pk_bytes[0] = 0x02; // Use positive Y co-ordinate.
pk_bytes[1..].clone_from_slice(&PK_BYTES);
let sk = SecretKey::from_slice(&SK_BYTES).expect("failed to parse sk bytes");
let pk = PublicKey::from_slice(&pk_bytes).expect("failed to create pk from iterator");
let kp = Keypair::from_secret_key(&secp, &sk);
let xonly = XOnlyPublicKey::from_slice(&PK_BYTES).expect("failed to get xonly from slice");
(sk, pk, kp, xonly)
}
#[test]
#[cfg(all(not(secp256k1_fuzz), feature = "alloc"))]
fn convert_public_key_to_xonly_public_key() {
let (_sk, pk, _kp, want) = keys();
let (got, parity) = pk.x_only_public_key();
assert_eq!(parity, Parity::Even);
assert_eq!(got, want)
}
#[test]
#[cfg(all(not(secp256k1_fuzz), feature = "alloc"))]
fn convert_secret_key_to_public_key() {
let secp = Secp256k1::new();
let (sk, want, _kp, _xonly) = keys();
let got = sk.public_key(&secp);
assert_eq!(got, want)
}
#[test]
#[cfg(all(not(secp256k1_fuzz), feature = "alloc"))]
fn convert_secret_key_to_x_only_public_key() {
let secp = Secp256k1::new();
let (sk, _pk, _kp, want) = keys();
let (got, parity) = sk.x_only_public_key(&secp);
assert_eq!(parity, Parity::Even);
assert_eq!(got, want)
}
#[test]
#[cfg(all(not(secp256k1_fuzz), feature = "alloc"))]
fn convert_keypair_to_public_key() {
let (_sk, want, kp, _xonly) = keys();
let got = kp.public_key();
assert_eq!(got, want)
}
#[test]
#[cfg(all(not(secp256k1_fuzz), feature = "alloc"))]
fn convert_keypair_to_x_only_public_key() {
let (_sk, _pk, kp, want) = keys();
let (got, parity) = kp.x_only_public_key();
assert_eq!(parity, Parity::Even);
assert_eq!(got, want)
}
// SecretKey -> Keypair -> SecretKey
#[test]
#[cfg(all(not(secp256k1_fuzz), feature = "alloc"))]
fn roundtrip_secret_key_via_keypair() {
let secp = Secp256k1::new();
let (sk, _pk, _kp, _xonly) = keys();
let kp = sk.keypair(&secp);
let back = kp.secret_key();
assert_eq!(back, sk)
}
// Keypair -> SecretKey -> Keypair
#[test]
#[cfg(all(not(secp256k1_fuzz), feature = "alloc"))]
fn roundtrip_keypair_via_secret_key() {
let secp = Secp256k1::new();
let (_sk, _pk, kp, _xonly) = keys();
let sk = kp.secret_key();
let back = sk.keypair(&secp);
assert_eq!(back, kp)
}
// XOnlyPublicKey -> PublicKey -> XOnlyPublicKey
#[test]
#[cfg(all(not(secp256k1_fuzz), feature = "alloc"))]
fn roundtrip_x_only_public_key_via_public_key() {
let (_sk, _pk, _kp, xonly) = keys();
let pk = xonly.public_key(Parity::Even);
let (back, parity) = pk.x_only_public_key();
assert_eq!(parity, Parity::Even);
assert_eq!(back, xonly)
}
// PublicKey -> XOnlyPublicKey -> PublicKey
#[test]
#[cfg(all(not(secp256k1_fuzz), feature = "alloc"))]
fn roundtrip_public_key_via_x_only_public_key() {
let (_sk, pk, _kp, _xonly) = keys();
let (xonly, parity) = pk.x_only_public_key();
let back = xonly.public_key(parity);
assert_eq!(back, pk)
}
#[test]
fn public_key_from_x_only_public_key_and_odd_parity() {
let s = "18845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd166";
let mut want = String::from("03");
want.push_str(s);
let xonly = XOnlyPublicKey::from_str(s).expect("failed to parse xonly pubkey string");
let pk = xonly.public_key(Parity::Odd);
let got = format!("{}", pk);
assert_eq!(got, want)
}
#[test]
#[cfg(not(secp256k1_fuzz))]
#[cfg(all(feature = "global-context", feature = "serde"))]
fn test_serde_x_only_pubkey() {
use serde_test::{assert_tokens, Configure, Token};
#[rustfmt::skip]
static SK_BYTES: [u8; 32] = [
1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 2, 3, 4, 5, 6, 7,
0xff, 0xff, 0, 0, 0xff, 0xff, 0, 0,
99, 99, 99, 99, 99, 99, 99, 99
];
static PK_STR: &str = "18845781f631c48f1c9709e23092067d06837f30aa0cd0544ac887fe91ddd166";
let kp = Keypair::from_seckey_slice(crate::SECP256K1, &SK_BYTES).unwrap();
let (pk, _parity) = XOnlyPublicKey::from_keypair(&kp);
#[rustfmt::skip]
assert_tokens(&pk.compact(), &[
Token::Tuple{ len: 32 },
Token::U8(0x18), Token::U8(0x84), Token::U8(0x57), Token::U8(0x81), Token::U8(0xf6), Token::U8(0x31), Token::U8(0xc4), Token::U8(0x8f),
Token::U8(0x1c), Token::U8(0x97), Token::U8(0x09), Token::U8(0xe2), Token::U8(0x30), Token::U8(0x92), Token::U8(0x06), Token::U8(0x7d),
Token::U8(0x06), Token::U8(0x83), Token::U8(0x7f), Token::U8(0x30), Token::U8(0xaa), Token::U8(0x0c), Token::U8(0xd0), Token::U8(0x54),
Token::U8(0x4a), Token::U8(0xc8), Token::U8(0x87), Token::U8(0xfe), Token::U8(0x91), Token::U8(0xdd), Token::U8(0xd1), Token::U8(0x66),
Token::TupleEnd
]);
assert_tokens(&pk.readable(), &[Token::BorrowedStr(PK_STR)]);
assert_tokens(&pk.readable(), &[Token::Str(PK_STR)]);
assert_tokens(&pk.readable(), &[Token::String(PK_STR)]);
}
#[test]
#[cfg(feature = "rand-std")]
fn test_keypair_from_str() {
let ctx = crate::Secp256k1::new();
let keypair = Keypair::new(&ctx, &mut rand::thread_rng());
let mut buf = [0_u8; constants::SECRET_KEY_SIZE * 2]; // Holds hex digits.
let s = to_hex(&keypair.secret_key().secret_bytes(), &mut buf).unwrap();
let parsed_key = Keypair::from_str(s).unwrap();
assert_eq!(parsed_key, keypair);
}
#[test]
#[cfg(all(any(feature = "alloc", feature = "global-context"), feature = "serde"))]
fn test_keypair_deserialize_serde() {
let ctx = crate::Secp256k1::new();
let sec_key_str = "4242424242424242424242424242424242424242424242424242424242424242";
let keypair = Keypair::from_seckey_str(&ctx, sec_key_str).unwrap();
serde_test::assert_tokens(&keypair.readable(), &[Token::String(sec_key_str)]);
let sec_key_bytes = keypair.secret_key().secret_bytes();
let tokens = std::iter::once(Token::Tuple { len: 32 })
.chain(sec_key_bytes.iter().copied().map(Token::U8))
.chain(std::iter::once(Token::TupleEnd))
.collect::<Vec<_>>();
serde_test::assert_tokens(&keypair.compact(), &tokens);
}
#[test]
#[should_panic(expected = "The previous implementation was panicking too")]
#[cfg(not(any(feature = "alloc", feature = "global-context")))]
fn test_parse_keypair_no_alloc_panic() {
let key_hex = "4242424242424242424242424242424242424242424242424242424242424242";
let _: Keypair = key_hex.parse().expect("We shouldn't even get this far");
}
}
#[cfg(bench)]
mod benches {
use std::collections::BTreeSet;
use test::Bencher;
use crate::constants::GENERATOR_X;
use crate::PublicKey;
#[bench]
fn bench_pk_ordering(b: &mut Bencher) {
let mut map = BTreeSet::new();
let mut g_slice = [02u8; 33];
g_slice[1..].copy_from_slice(&GENERATOR_X);
let g = PublicKey::from_slice(&g_slice).unwrap();
let mut pk = g;
b.iter(|| {
map.insert(pk);
pk = pk.combine(&pk).unwrap();
})
}
}