rust-secp256k1-unsafe-fast/secp256k1-sys/depend/secp256k1/src/modinv64_impl.h

594 lines
28 KiB
C

/***********************************************************************
* Copyright (c) 2020 Peter Dettman *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODINV64_IMPL_H
#define SECP256K1_MODINV64_IMPL_H
#include "modinv64.h"
#include "util.h"
/* This file implements modular inversion based on the paper "Fast constant-time gcd computation and
* modular inversion" by Daniel J. Bernstein and Bo-Yin Yang.
*
* For an explanation of the algorithm, see doc/safegcd_implementation.md. This file contains an
* implementation for N=62, using 62-bit signed limbs represented as int64_t.
*/
#ifdef VERIFY
/* Helper function to compute the absolute value of an int64_t.
* (we don't use abs/labs/llabs as it depends on the int sizes). */
static int64_t rustsecp256k1_v0_5_0_modinv64_abs(int64_t v) {
VERIFY_CHECK(v > INT64_MIN);
if (v < 0) return -v;
return v;
}
static const rustsecp256k1_v0_5_0_modinv64_signed62 SECP256K1_SIGNED62_ONE = {{1}};
/* Compute a*factor and put it in r. All but the top limb in r will be in range [0,2^62). */
static void rustsecp256k1_v0_5_0_modinv64_mul_62(rustsecp256k1_v0_5_0_modinv64_signed62 *r, const rustsecp256k1_v0_5_0_modinv64_signed62 *a, int alen, int64_t factor) {
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
int128_t c = 0;
int i;
for (i = 0; i < 4; ++i) {
if (i < alen) c += (int128_t)a->v[i] * factor;
r->v[i] = (int64_t)c & M62; c >>= 62;
}
if (4 < alen) c += (int128_t)a->v[4] * factor;
VERIFY_CHECK(c == (int64_t)c);
r->v[4] = (int64_t)c;
}
/* Return -1 for a<b*factor, 0 for a==b*factor, 1 for a>b*factor. A has alen limbs; b has 5. */
static int rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(const rustsecp256k1_v0_5_0_modinv64_signed62 *a, int alen, const rustsecp256k1_v0_5_0_modinv64_signed62 *b, int64_t factor) {
int i;
rustsecp256k1_v0_5_0_modinv64_signed62 am, bm;
rustsecp256k1_v0_5_0_modinv64_mul_62(&am, a, alen, 1); /* Normalize all but the top limb of a. */
rustsecp256k1_v0_5_0_modinv64_mul_62(&bm, b, 5, factor);
for (i = 0; i < 4; ++i) {
/* Verify that all but the top limb of a and b are normalized. */
VERIFY_CHECK(am.v[i] >> 62 == 0);
VERIFY_CHECK(bm.v[i] >> 62 == 0);
}
for (i = 4; i >= 0; --i) {
if (am.v[i] < bm.v[i]) return -1;
if (am.v[i] > bm.v[i]) return 1;
}
return 0;
}
#endif
/* Take as input a signed62 number in range (-2*modulus,modulus), and add a multiple of the modulus
* to it to bring it to range [0,modulus). If sign < 0, the input will also be negated in the
* process. The input must have limbs in range (-2^62,2^62). The output will have limbs in range
* [0,2^62). */
static void rustsecp256k1_v0_5_0_modinv64_normalize_62(rustsecp256k1_v0_5_0_modinv64_signed62 *r, int64_t sign, const rustsecp256k1_v0_5_0_modinv64_modinfo *modinfo) {
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
int64_t r0 = r->v[0], r1 = r->v[1], r2 = r->v[2], r3 = r->v[3], r4 = r->v[4];
int64_t cond_add, cond_negate;
#ifdef VERIFY
/* Verify that all limbs are in range (-2^62,2^62). */
int i;
for (i = 0; i < 5; ++i) {
VERIFY_CHECK(r->v[i] >= -M62);
VERIFY_CHECK(r->v[i] <= M62);
}
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, -2) > 0); /* r > -2*modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
#endif
/* In a first step, add the modulus if the input is negative, and then negate if requested.
* This brings r from range (-2*modulus,modulus) to range (-modulus,modulus). As all input
* limbs are in range (-2^62,2^62), this cannot overflow an int64_t. Note that the right
* shifts below are signed sign-extending shifts (see assumptions.h for tests that that is
* indeed the behavior of the right shift operator). */
cond_add = r4 >> 63;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
cond_negate = sign >> 63;
r0 = (r0 ^ cond_negate) - cond_negate;
r1 = (r1 ^ cond_negate) - cond_negate;
r2 = (r2 ^ cond_negate) - cond_negate;
r3 = (r3 ^ cond_negate) - cond_negate;
r4 = (r4 ^ cond_negate) - cond_negate;
/* Propagate the top bits, to bring limbs back to range (-2^62,2^62). */
r1 += r0 >> 62; r0 &= M62;
r2 += r1 >> 62; r1 &= M62;
r3 += r2 >> 62; r2 &= M62;
r4 += r3 >> 62; r3 &= M62;
/* In a second step add the modulus again if the result is still negative, bringing
* r to range [0,modulus). */
cond_add = r4 >> 63;
r0 += modinfo->modulus.v[0] & cond_add;
r1 += modinfo->modulus.v[1] & cond_add;
r2 += modinfo->modulus.v[2] & cond_add;
r3 += modinfo->modulus.v[3] & cond_add;
r4 += modinfo->modulus.v[4] & cond_add;
/* And propagate again. */
r1 += r0 >> 62; r0 &= M62;
r2 += r1 >> 62; r1 &= M62;
r3 += r2 >> 62; r2 &= M62;
r4 += r3 >> 62; r3 &= M62;
r->v[0] = r0;
r->v[1] = r1;
r->v[2] = r2;
r->v[3] = r3;
r->v[4] = r4;
#ifdef VERIFY
VERIFY_CHECK(r0 >> 62 == 0);
VERIFY_CHECK(r1 >> 62 == 0);
VERIFY_CHECK(r2 >> 62 == 0);
VERIFY_CHECK(r3 >> 62 == 0);
VERIFY_CHECK(r4 >> 62 == 0);
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 0) >= 0); /* r >= 0 */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(r, 5, &modinfo->modulus, 1) < 0); /* r < modulus */
#endif
}
/* Data type for transition matrices (see section 3 of explanation).
*
* t = [ u v ]
* [ q r ]
*/
typedef struct {
int64_t u, v, q, r;
} rustsecp256k1_v0_5_0_modinv64_trans2x2;
/* Compute the transition matrix and eta for 59 divsteps (where zeta=-(delta+1/2)).
* Note that the transformation matrix is scaled by 2^62 and not 2^59.
*
* Input: zeta: initial zeta
* f0: bottom limb of initial f
* g0: bottom limb of initial g
* Output: t: transition matrix
* Return: final zeta
*
* Implements the divsteps_n_matrix function from the explanation.
*/
static int64_t rustsecp256k1_v0_5_0_modinv64_divsteps_59(int64_t zeta, uint64_t f0, uint64_t g0, rustsecp256k1_v0_5_0_modinv64_trans2x2 *t) {
/* u,v,q,r are the elements of the transformation matrix being built up,
* starting with the identity matrix times 8 (because the caller expects
* a result scaled by 2^62). Semantically they are signed integers
* in range [-2^62,2^62], but here represented as unsigned mod 2^64. This
* permits left shifting (which is UB for negative numbers). The range
* being inside [-2^63,2^63) means that casting to signed works correctly.
*/
uint64_t u = 8, v = 0, q = 0, r = 8;
uint64_t c1, c2, f = f0, g = g0, x, y, z;
int i;
for (i = 3; i < 62; ++i) {
VERIFY_CHECK((f & 1) == 1); /* f must always be odd */
VERIFY_CHECK((u * f0 + v * g0) == f << i);
VERIFY_CHECK((q * f0 + r * g0) == g << i);
/* Compute conditional masks for (zeta < 0) and for (g & 1). */
c1 = zeta >> 63;
c2 = -(g & 1);
/* Compute x,y,z, conditionally negated versions of f,u,v. */
x = (f ^ c1) - c1;
y = (u ^ c1) - c1;
z = (v ^ c1) - c1;
/* Conditionally add x,y,z to g,q,r. */
g += x & c2;
q += y & c2;
r += z & c2;
/* In what follows, c1 is a condition mask for (zeta < 0) and (g & 1). */
c1 &= c2;
/* Conditionally change zeta into -zeta-2 or zeta-1. */
zeta = (zeta ^ c1) - 1;
/* Conditionally add g,q,r to f,u,v. */
f += g & c1;
u += q & c1;
v += r & c1;
/* Shifts */
g >>= 1;
u <<= 1;
v <<= 1;
/* Bounds on zeta that follow from the bounds on iteration count (max 10*59 divsteps). */
VERIFY_CHECK(zeta >= -591 && zeta <= 591);
}
/* Return data in t and return value. */
t->u = (int64_t)u;
t->v = (int64_t)v;
t->q = (int64_t)q;
t->r = (int64_t)r;
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2, the
* aggregate of 59 of them will have determinant 2^59. Multiplying with the initial
* 8*identity (which has determinant 2^6) means the overall outputs has determinant
* 2^65. */
VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 65);
return zeta;
}
/* Compute the transition matrix and eta for 62 divsteps (variable time, eta=-delta).
*
* Input: eta: initial eta
* f0: bottom limb of initial f
* g0: bottom limb of initial g
* Output: t: transition matrix
* Return: final eta
*
* Implements the divsteps_n_matrix_var function from the explanation.
*/
static int64_t rustsecp256k1_v0_5_0_modinv64_divsteps_62_var(int64_t eta, uint64_t f0, uint64_t g0, rustsecp256k1_v0_5_0_modinv64_trans2x2 *t) {
/* Transformation matrix; see comments in rustsecp256k1_v0_5_0_modinv64_divsteps_62. */
uint64_t u = 1, v = 0, q = 0, r = 1;
uint64_t f = f0, g = g0, m;
uint32_t w;
int i = 62, limit, zeros;
for (;;) {
/* Use a sentinel bit to count zeros only up to i. */
zeros = rustsecp256k1_v0_5_0_ctz64_var(g | (UINT64_MAX << i));
/* Perform zeros divsteps at once; they all just divide g by two. */
g >>= zeros;
u <<= zeros;
v <<= zeros;
eta -= zeros;
i -= zeros;
/* We're done once we've done 62 divsteps. */
if (i == 0) break;
VERIFY_CHECK((f & 1) == 1);
VERIFY_CHECK((g & 1) == 1);
VERIFY_CHECK((u * f0 + v * g0) == f << (62 - i));
VERIFY_CHECK((q * f0 + r * g0) == g << (62 - i));
/* Bounds on eta that follow from the bounds on iteration count (max 12*62 divsteps). */
VERIFY_CHECK(eta >= -745 && eta <= 745);
/* If eta is negative, negate it and replace f,g with g,-f. */
if (eta < 0) {
uint64_t tmp;
eta = -eta;
tmp = f; f = g; g = -tmp;
tmp = u; u = q; q = -tmp;
tmp = v; v = r; r = -tmp;
/* Use a formula to cancel out up to 6 bits of g. Also, no more than i can be cancelled
* out (as we'd be done before that point), and no more than eta+1 can be done as its
* will flip again once that happens. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
VERIFY_CHECK(limit > 0 && limit <= 62);
/* m is a mask for the bottom min(limit, 6) bits. */
m = (UINT64_MAX >> (64 - limit)) & 63U;
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 6)
* bits. */
w = (f * g * (f * f - 2)) & m;
} else {
/* In this branch, use a simpler formula that only lets us cancel up to 4 bits of g, as
* eta tends to be smaller here. */
limit = ((int)eta + 1) > i ? i : ((int)eta + 1);
VERIFY_CHECK(limit > 0 && limit <= 62);
/* m is a mask for the bottom min(limit, 4) bits. */
m = (UINT64_MAX >> (64 - limit)) & 15U;
/* Find what multiple of f must be added to g to cancel its bottom min(limit, 4)
* bits. */
w = f + (((f + 1) & 4) << 1);
w = (-w * g) & m;
}
g += f * w;
q += u * w;
r += v * w;
VERIFY_CHECK((g & m) == 0);
}
/* Return data in t and return value. */
t->u = (int64_t)u;
t->v = (int64_t)v;
t->q = (int64_t)q;
t->r = (int64_t)r;
/* The determinant of t must be a power of two. This guarantees that multiplication with t
* does not change the gcd of f and g, apart from adding a power-of-2 factor to it (which
* will be divided out again). As each divstep's individual matrix has determinant 2, the
* aggregate of 62 of them will have determinant 2^62. */
VERIFY_CHECK((int128_t)t->u * t->r - (int128_t)t->v * t->q == ((int128_t)1) << 62);
return eta;
}
/* Compute (t/2^62) * [d, e] mod modulus, where t is a transition matrix scaled by 2^62.
*
* On input and output, d and e are in range (-2*modulus,modulus). All output limbs will be in range
* (-2^62,2^62).
*
* This implements the update_de function from the explanation.
*/
static void rustsecp256k1_v0_5_0_modinv64_update_de_62(rustsecp256k1_v0_5_0_modinv64_signed62 *d, rustsecp256k1_v0_5_0_modinv64_signed62 *e, const rustsecp256k1_v0_5_0_modinv64_trans2x2 *t, const rustsecp256k1_v0_5_0_modinv64_modinfo* modinfo) {
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
const int64_t d0 = d->v[0], d1 = d->v[1], d2 = d->v[2], d3 = d->v[3], d4 = d->v[4];
const int64_t e0 = e->v[0], e1 = e->v[1], e2 = e->v[2], e3 = e->v[3], e4 = e->v[4];
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
int64_t md, me, sd, se;
int128_t cd, ce;
#ifdef VERIFY
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
VERIFY_CHECK((rustsecp256k1_v0_5_0_modinv64_abs(u) + rustsecp256k1_v0_5_0_modinv64_abs(v)) >= 0); /* |u|+|v| doesn't overflow */
VERIFY_CHECK((rustsecp256k1_v0_5_0_modinv64_abs(q) + rustsecp256k1_v0_5_0_modinv64_abs(r)) >= 0); /* |q|+|r| doesn't overflow */
VERIFY_CHECK((rustsecp256k1_v0_5_0_modinv64_abs(u) + rustsecp256k1_v0_5_0_modinv64_abs(v)) <= M62 + 1); /* |u|+|v| <= 2^62 */
VERIFY_CHECK((rustsecp256k1_v0_5_0_modinv64_abs(q) + rustsecp256k1_v0_5_0_modinv64_abs(r)) <= M62 + 1); /* |q|+|r| <= 2^62 */
#endif
/* [md,me] start as zero; plus [u,q] if d is negative; plus [v,r] if e is negative. */
sd = d4 >> 63;
se = e4 >> 63;
md = (u & sd) + (v & se);
me = (q & sd) + (r & se);
/* Begin computing t*[d,e]. */
cd = (int128_t)u * d0 + (int128_t)v * e0;
ce = (int128_t)q * d0 + (int128_t)r * e0;
/* Correct md,me so that t*[d,e]+modulus*[md,me] has 62 zero bottom bits. */
md -= (modinfo->modulus_inv62 * (uint64_t)cd + md) & M62;
me -= (modinfo->modulus_inv62 * (uint64_t)ce + me) & M62;
/* Update the beginning of computation for t*[d,e]+modulus*[md,me] now md,me are known. */
cd += (int128_t)modinfo->modulus.v[0] * md;
ce += (int128_t)modinfo->modulus.v[0] * me;
/* Verify that the low 62 bits of the computation are indeed zero, and then throw them away. */
VERIFY_CHECK(((int64_t)cd & M62) == 0); cd >>= 62;
VERIFY_CHECK(((int64_t)ce & M62) == 0); ce >>= 62;
/* Compute limb 1 of t*[d,e]+modulus*[md,me], and store it as output limb 0 (= down shift). */
cd += (int128_t)u * d1 + (int128_t)v * e1;
ce += (int128_t)q * d1 + (int128_t)r * e1;
if (modinfo->modulus.v[1]) { /* Optimize for the case where limb of modulus is zero. */
cd += (int128_t)modinfo->modulus.v[1] * md;
ce += (int128_t)modinfo->modulus.v[1] * me;
}
d->v[0] = (int64_t)cd & M62; cd >>= 62;
e->v[0] = (int64_t)ce & M62; ce >>= 62;
/* Compute limb 2 of t*[d,e]+modulus*[md,me], and store it as output limb 1. */
cd += (int128_t)u * d2 + (int128_t)v * e2;
ce += (int128_t)q * d2 + (int128_t)r * e2;
if (modinfo->modulus.v[2]) { /* Optimize for the case where limb of modulus is zero. */
cd += (int128_t)modinfo->modulus.v[2] * md;
ce += (int128_t)modinfo->modulus.v[2] * me;
}
d->v[1] = (int64_t)cd & M62; cd >>= 62;
e->v[1] = (int64_t)ce & M62; ce >>= 62;
/* Compute limb 3 of t*[d,e]+modulus*[md,me], and store it as output limb 2. */
cd += (int128_t)u * d3 + (int128_t)v * e3;
ce += (int128_t)q * d3 + (int128_t)r * e3;
if (modinfo->modulus.v[3]) { /* Optimize for the case where limb of modulus is zero. */
cd += (int128_t)modinfo->modulus.v[3] * md;
ce += (int128_t)modinfo->modulus.v[3] * me;
}
d->v[2] = (int64_t)cd & M62; cd >>= 62;
e->v[2] = (int64_t)ce & M62; ce >>= 62;
/* Compute limb 4 of t*[d,e]+modulus*[md,me], and store it as output limb 3. */
cd += (int128_t)u * d4 + (int128_t)v * e4;
ce += (int128_t)q * d4 + (int128_t)r * e4;
cd += (int128_t)modinfo->modulus.v[4] * md;
ce += (int128_t)modinfo->modulus.v[4] * me;
d->v[3] = (int64_t)cd & M62; cd >>= 62;
e->v[3] = (int64_t)ce & M62; ce >>= 62;
/* What remains is limb 5 of t*[d,e]+modulus*[md,me]; store it as output limb 4. */
d->v[4] = (int64_t)cd;
e->v[4] = (int64_t)ce;
#ifdef VERIFY
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, -2) > 0); /* d > -2*modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(d, 5, &modinfo->modulus, 1) < 0); /* d < modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, -2) > 0); /* e > -2*modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(e, 5, &modinfo->modulus, 1) < 0); /* e < modulus */
#endif
}
/* Compute (t/2^62) * [f, g], where t is a transition matrix scaled by 2^62.
*
* This implements the update_fg function from the explanation.
*/
static void rustsecp256k1_v0_5_0_modinv64_update_fg_62(rustsecp256k1_v0_5_0_modinv64_signed62 *f, rustsecp256k1_v0_5_0_modinv64_signed62 *g, const rustsecp256k1_v0_5_0_modinv64_trans2x2 *t) {
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
const int64_t f0 = f->v[0], f1 = f->v[1], f2 = f->v[2], f3 = f->v[3], f4 = f->v[4];
const int64_t g0 = g->v[0], g1 = g->v[1], g2 = g->v[2], g3 = g->v[3], g4 = g->v[4];
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
int128_t cf, cg;
/* Start computing t*[f,g]. */
cf = (int128_t)u * f0 + (int128_t)v * g0;
cg = (int128_t)q * f0 + (int128_t)r * g0;
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
VERIFY_CHECK(((int64_t)cf & M62) == 0); cf >>= 62;
VERIFY_CHECK(((int64_t)cg & M62) == 0); cg >>= 62;
/* Compute limb 1 of t*[f,g], and store it as output limb 0 (= down shift). */
cf += (int128_t)u * f1 + (int128_t)v * g1;
cg += (int128_t)q * f1 + (int128_t)r * g1;
f->v[0] = (int64_t)cf & M62; cf >>= 62;
g->v[0] = (int64_t)cg & M62; cg >>= 62;
/* Compute limb 2 of t*[f,g], and store it as output limb 1. */
cf += (int128_t)u * f2 + (int128_t)v * g2;
cg += (int128_t)q * f2 + (int128_t)r * g2;
f->v[1] = (int64_t)cf & M62; cf >>= 62;
g->v[1] = (int64_t)cg & M62; cg >>= 62;
/* Compute limb 3 of t*[f,g], and store it as output limb 2. */
cf += (int128_t)u * f3 + (int128_t)v * g3;
cg += (int128_t)q * f3 + (int128_t)r * g3;
f->v[2] = (int64_t)cf & M62; cf >>= 62;
g->v[2] = (int64_t)cg & M62; cg >>= 62;
/* Compute limb 4 of t*[f,g], and store it as output limb 3. */
cf += (int128_t)u * f4 + (int128_t)v * g4;
cg += (int128_t)q * f4 + (int128_t)r * g4;
f->v[3] = (int64_t)cf & M62; cf >>= 62;
g->v[3] = (int64_t)cg & M62; cg >>= 62;
/* What remains is limb 5 of t*[f,g]; store it as output limb 4. */
f->v[4] = (int64_t)cf;
g->v[4] = (int64_t)cg;
}
/* Compute (t/2^62) * [f, g], where t is a transition matrix for 62 divsteps.
*
* Version that operates on a variable number of limbs in f and g.
*
* This implements the update_fg function from the explanation.
*/
static void rustsecp256k1_v0_5_0_modinv64_update_fg_62_var(int len, rustsecp256k1_v0_5_0_modinv64_signed62 *f, rustsecp256k1_v0_5_0_modinv64_signed62 *g, const rustsecp256k1_v0_5_0_modinv64_trans2x2 *t) {
const int64_t M62 = (int64_t)(UINT64_MAX >> 2);
const int64_t u = t->u, v = t->v, q = t->q, r = t->r;
int64_t fi, gi;
int128_t cf, cg;
int i;
VERIFY_CHECK(len > 0);
/* Start computing t*[f,g]. */
fi = f->v[0];
gi = g->v[0];
cf = (int128_t)u * fi + (int128_t)v * gi;
cg = (int128_t)q * fi + (int128_t)r * gi;
/* Verify that the bottom 62 bits of the result are zero, and then throw them away. */
VERIFY_CHECK(((int64_t)cf & M62) == 0); cf >>= 62;
VERIFY_CHECK(((int64_t)cg & M62) == 0); cg >>= 62;
/* Now iteratively compute limb i=1..len of t*[f,g], and store them in output limb i-1 (shifting
* down by 62 bits). */
for (i = 1; i < len; ++i) {
fi = f->v[i];
gi = g->v[i];
cf += (int128_t)u * fi + (int128_t)v * gi;
cg += (int128_t)q * fi + (int128_t)r * gi;
f->v[i - 1] = (int64_t)cf & M62; cf >>= 62;
g->v[i - 1] = (int64_t)cg & M62; cg >>= 62;
}
/* What remains is limb (len) of t*[f,g]; store it as output limb (len-1). */
f->v[len - 1] = (int64_t)cf;
g->v[len - 1] = (int64_t)cg;
}
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (constant time in x). */
static void rustsecp256k1_v0_5_0_modinv64(rustsecp256k1_v0_5_0_modinv64_signed62 *x, const rustsecp256k1_v0_5_0_modinv64_modinfo *modinfo) {
/* Start with d=0, e=1, f=modulus, g=x, zeta=-1. */
rustsecp256k1_v0_5_0_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
rustsecp256k1_v0_5_0_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
rustsecp256k1_v0_5_0_modinv64_signed62 f = modinfo->modulus;
rustsecp256k1_v0_5_0_modinv64_signed62 g = *x;
int i;
int64_t zeta = -1; /* zeta = -(delta+1/2); delta starts at 1/2. */
/* Do 10 iterations of 59 divsteps each = 590 divsteps. This suffices for 256-bit inputs. */
for (i = 0; i < 10; ++i) {
/* Compute transition matrix and new zeta after 59 divsteps. */
rustsecp256k1_v0_5_0_modinv64_trans2x2 t;
zeta = rustsecp256k1_v0_5_0_modinv64_divsteps_59(zeta, f.v[0], g.v[0], &t);
/* Update d,e using that transition matrix. */
rustsecp256k1_v0_5_0_modinv64_update_de_62(&d, &e, &t, modinfo);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
rustsecp256k1_v0_5_0_modinv64_update_fg_62(&f, &g, &t);
#ifdef VERIFY
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&g, 5, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* At this point sufficient iterations have been performed that g must have reached 0
* and (if g was not originally 0) f must now equal +/- GCD of the initial f, g
* values i.e. +/- 1, and d now contains +/- the modular inverse. */
#ifdef VERIFY
/* g == 0 */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&g, 5, &SECP256K1_SIGNED62_ONE, 0) == 0);
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, 5, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, 1) == 0 ||
rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, 5, &modinfo->modulus, -1) == 0)));
#endif
/* Optionally negate d, normalize to [0,modulus), and return it. */
rustsecp256k1_v0_5_0_modinv64_normalize_62(&d, f.v[4], modinfo);
*x = d;
}
/* Compute the inverse of x modulo modinfo->modulus, and replace x with it (variable time). */
static void rustsecp256k1_v0_5_0_modinv64_var(rustsecp256k1_v0_5_0_modinv64_signed62 *x, const rustsecp256k1_v0_5_0_modinv64_modinfo *modinfo) {
/* Start with d=0, e=1, f=modulus, g=x, eta=-1. */
rustsecp256k1_v0_5_0_modinv64_signed62 d = {{0, 0, 0, 0, 0}};
rustsecp256k1_v0_5_0_modinv64_signed62 e = {{1, 0, 0, 0, 0}};
rustsecp256k1_v0_5_0_modinv64_signed62 f = modinfo->modulus;
rustsecp256k1_v0_5_0_modinv64_signed62 g = *x;
#ifdef VERIFY
int i = 0;
#endif
int j, len = 5;
int64_t eta = -1; /* eta = -delta; delta is initially 1 */
int64_t cond, fn, gn;
/* Do iterations of 62 divsteps each until g=0. */
while (1) {
/* Compute transition matrix and new eta after 62 divsteps. */
rustsecp256k1_v0_5_0_modinv64_trans2x2 t;
eta = rustsecp256k1_v0_5_0_modinv64_divsteps_62_var(eta, f.v[0], g.v[0], &t);
/* Update d,e using that transition matrix. */
rustsecp256k1_v0_5_0_modinv64_update_de_62(&d, &e, &t, modinfo);
/* Update f,g using that transition matrix. */
#ifdef VERIFY
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
rustsecp256k1_v0_5_0_modinv64_update_fg_62_var(len, &f, &g, &t);
/* If the bottom limb of g is zero, there is a chance that g=0. */
if (g.v[0] == 0) {
cond = 0;
/* Check if the other limbs are also 0. */
for (j = 1; j < len; ++j) {
cond |= g.v[j];
}
/* If so, we're done. */
if (cond == 0) break;
}
/* Determine if len>1 and limb (len-1) of both f and g is 0 or -1. */
fn = f.v[len - 1];
gn = g.v[len - 1];
cond = ((int64_t)len - 2) >> 63;
cond |= fn ^ (fn >> 63);
cond |= gn ^ (gn >> 63);
/* If so, reduce length, propagating the sign of f and g's top limb into the one below. */
if (cond == 0) {
f.v[len - 2] |= (uint64_t)fn << 62;
g.v[len - 2] |= (uint64_t)gn << 62;
--len;
}
#ifdef VERIFY
VERIFY_CHECK(++i < 12); /* We should never need more than 12*62 = 744 divsteps */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) > 0); /* f > -modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) <= 0); /* f <= modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, -1) > 0); /* g > -modulus */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&g, len, &modinfo->modulus, 1) < 0); /* g < modulus */
#endif
}
/* At this point g is 0 and (if g was not originally 0) f must now equal +/- GCD of
* the initial f, g values i.e. +/- 1, and d now contains +/- the modular inverse. */
#ifdef VERIFY
/* g == 0 */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&g, len, &SECP256K1_SIGNED62_ONE, 0) == 0);
/* |f| == 1, or (x == 0 and d == 0 and |f|=modulus) */
VERIFY_CHECK(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, -1) == 0 ||
rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, len, &SECP256K1_SIGNED62_ONE, 1) == 0 ||
(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(x, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&d, 5, &SECP256K1_SIGNED62_ONE, 0) == 0 &&
(rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, 1) == 0 ||
rustsecp256k1_v0_5_0_modinv64_mul_cmp_62(&f, len, &modinfo->modulus, -1) == 0)));
#endif
/* Optionally negate d, normalize to [0,modulus), and return it. */
rustsecp256k1_v0_5_0_modinv64_normalize_62(&d, f.v[len - 1], modinfo);
*x = d;
}
#endif /* SECP256K1_MODINV64_IMPL_H */