135 lines
7.3 KiB
C
135 lines
7.3 KiB
C
/**********************************************************************
|
|
* Copyright (c) 2013, 2014 Pieter Wuille *
|
|
* Distributed under the MIT software license, see the accompanying *
|
|
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
|
**********************************************************************/
|
|
|
|
#ifndef SECP256K1_FIELD_H
|
|
#define SECP256K1_FIELD_H
|
|
|
|
/** Field element module.
|
|
*
|
|
* Field elements can be represented in several ways, but code accessing
|
|
* it (and implementations) need to take certain properties into account:
|
|
* - Each field element can be normalized or not.
|
|
* - Each field element has a magnitude, which represents how far away
|
|
* its representation is away from normalization. Normalized elements
|
|
* always have a magnitude of 1, but a magnitude of 1 doesn't imply
|
|
* normality.
|
|
*/
|
|
|
|
#if defined HAVE_CONFIG_H
|
|
#include "libsecp256k1-config.h"
|
|
#endif
|
|
|
|
#include "util.h"
|
|
|
|
#if defined(SECP256K1_WIDEMUL_INT128)
|
|
#include "field_5x52.h"
|
|
#elif defined(SECP256K1_WIDEMUL_INT64)
|
|
#include "field_10x26.h"
|
|
#else
|
|
#error "Please select wide multiplication implementation"
|
|
#endif
|
|
|
|
/** Normalize a field element. This brings the field element to a canonical representation, reduces
|
|
* its magnitude to 1, and reduces it modulo field size `p`.
|
|
*/
|
|
static void rustsecp256k1_v0_2_0_fe_normalize(rustsecp256k1_v0_2_0_fe *r);
|
|
|
|
/** Weakly normalize a field element: reduce its magnitude to 1, but don't fully normalize. */
|
|
static void rustsecp256k1_v0_2_0_fe_normalize_weak(rustsecp256k1_v0_2_0_fe *r);
|
|
|
|
/** Normalize a field element, without constant-time guarantee. */
|
|
static void rustsecp256k1_v0_2_0_fe_normalize_var(rustsecp256k1_v0_2_0_fe *r);
|
|
|
|
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
|
|
* implementation may optionally normalize the input, but this should not be relied upon. */
|
|
static int rustsecp256k1_v0_2_0_fe_normalizes_to_zero(rustsecp256k1_v0_2_0_fe *r);
|
|
|
|
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
|
|
* implementation may optionally normalize the input, but this should not be relied upon. */
|
|
static int rustsecp256k1_v0_2_0_fe_normalizes_to_zero_var(rustsecp256k1_v0_2_0_fe *r);
|
|
|
|
/** Set a field element equal to a small integer. Resulting field element is normalized. */
|
|
static void rustsecp256k1_v0_2_0_fe_set_int(rustsecp256k1_v0_2_0_fe *r, int a);
|
|
|
|
/** Sets a field element equal to zero, initializing all fields. */
|
|
static void rustsecp256k1_v0_2_0_fe_clear(rustsecp256k1_v0_2_0_fe *a);
|
|
|
|
/** Verify whether a field element is zero. Requires the input to be normalized. */
|
|
static int rustsecp256k1_v0_2_0_fe_is_zero(const rustsecp256k1_v0_2_0_fe *a);
|
|
|
|
/** Check the "oddness" of a field element. Requires the input to be normalized. */
|
|
static int rustsecp256k1_v0_2_0_fe_is_odd(const rustsecp256k1_v0_2_0_fe *a);
|
|
|
|
/** Compare two field elements. Requires magnitude-1 inputs. */
|
|
static int rustsecp256k1_v0_2_0_fe_equal(const rustsecp256k1_v0_2_0_fe *a, const rustsecp256k1_v0_2_0_fe *b);
|
|
|
|
/** Same as rustsecp256k1_v0_2_0_fe_equal, but may be variable time. */
|
|
static int rustsecp256k1_v0_2_0_fe_equal_var(const rustsecp256k1_v0_2_0_fe *a, const rustsecp256k1_v0_2_0_fe *b);
|
|
|
|
/** Compare two field elements. Requires both inputs to be normalized */
|
|
static int rustsecp256k1_v0_2_0_fe_cmp_var(const rustsecp256k1_v0_2_0_fe *a, const rustsecp256k1_v0_2_0_fe *b);
|
|
|
|
/** Set a field element equal to 32-byte big endian value. If successful, the resulting field element is normalized. */
|
|
static int rustsecp256k1_v0_2_0_fe_set_b32(rustsecp256k1_v0_2_0_fe *r, const unsigned char *a);
|
|
|
|
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
|
|
static void rustsecp256k1_v0_2_0_fe_get_b32(unsigned char *r, const rustsecp256k1_v0_2_0_fe *a);
|
|
|
|
/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
|
|
* as an argument. The magnitude of the output is one higher. */
|
|
static void rustsecp256k1_v0_2_0_fe_negate(rustsecp256k1_v0_2_0_fe *r, const rustsecp256k1_v0_2_0_fe *a, int m);
|
|
|
|
/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
|
|
* small integer. */
|
|
static void rustsecp256k1_v0_2_0_fe_mul_int(rustsecp256k1_v0_2_0_fe *r, int a);
|
|
|
|
/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
|
|
static void rustsecp256k1_v0_2_0_fe_add(rustsecp256k1_v0_2_0_fe *r, const rustsecp256k1_v0_2_0_fe *a);
|
|
|
|
/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
|
|
* The output magnitude is 1 (but not guaranteed to be normalized). */
|
|
static void rustsecp256k1_v0_2_0_fe_mul(rustsecp256k1_v0_2_0_fe *r, const rustsecp256k1_v0_2_0_fe *a, const rustsecp256k1_v0_2_0_fe * SECP256K1_RESTRICT b);
|
|
|
|
/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
|
|
* The output magnitude is 1 (but not guaranteed to be normalized). */
|
|
static void rustsecp256k1_v0_2_0_fe_sqr(rustsecp256k1_v0_2_0_fe *r, const rustsecp256k1_v0_2_0_fe *a);
|
|
|
|
/** If a has a square root, it is computed in r and 1 is returned. If a does not
|
|
* have a square root, the root of its negation is computed and 0 is returned.
|
|
* The input's magnitude can be at most 8. The output magnitude is 1 (but not
|
|
* guaranteed to be normalized). The result in r will always be a square
|
|
* itself. */
|
|
static int rustsecp256k1_v0_2_0_fe_sqrt(rustsecp256k1_v0_2_0_fe *r, const rustsecp256k1_v0_2_0_fe *a);
|
|
|
|
/** Checks whether a field element is a quadratic residue. */
|
|
static int rustsecp256k1_v0_2_0_fe_is_quad_var(const rustsecp256k1_v0_2_0_fe *a);
|
|
|
|
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
|
|
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
|
|
static void rustsecp256k1_v0_2_0_fe_inv(rustsecp256k1_v0_2_0_fe *r, const rustsecp256k1_v0_2_0_fe *a);
|
|
|
|
/** Potentially faster version of rustsecp256k1_v0_2_0_fe_inv, without constant-time guarantee. */
|
|
static void rustsecp256k1_v0_2_0_fe_inv_var(rustsecp256k1_v0_2_0_fe *r, const rustsecp256k1_v0_2_0_fe *a);
|
|
|
|
/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
|
|
* at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
|
|
* outputs must not overlap in memory. */
|
|
static void rustsecp256k1_v0_2_0_fe_inv_all_var(rustsecp256k1_v0_2_0_fe *r, const rustsecp256k1_v0_2_0_fe *a, size_t len);
|
|
|
|
/** Convert a field element to the storage type. */
|
|
static void rustsecp256k1_v0_2_0_fe_to_storage(rustsecp256k1_v0_2_0_fe_storage *r, const rustsecp256k1_v0_2_0_fe *a);
|
|
|
|
/** Convert a field element back from the storage type. */
|
|
static void rustsecp256k1_v0_2_0_fe_from_storage(rustsecp256k1_v0_2_0_fe *r, const rustsecp256k1_v0_2_0_fe_storage *a);
|
|
|
|
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
|
|
static void rustsecp256k1_v0_2_0_fe_storage_cmov(rustsecp256k1_v0_2_0_fe_storage *r, const rustsecp256k1_v0_2_0_fe_storage *a, int flag);
|
|
|
|
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
|
|
static void rustsecp256k1_v0_2_0_fe_cmov(rustsecp256k1_v0_2_0_fe *r, const rustsecp256k1_v0_2_0_fe *a, int flag);
|
|
|
|
#endif /* SECP256K1_FIELD_H */
|