134 lines
5.7 KiB
C
134 lines
5.7 KiB
C
/*************************************************************************
|
|
* Written in 2020-2022 by Elichai Turkel *
|
|
* To the extent possible under law, the author(s) have dedicated all *
|
|
* copyright and related and neighboring rights to the software in this *
|
|
* file to the public domain worldwide. This software is distributed *
|
|
* without any warranty. For the CC0 Public Domain Dedication, see *
|
|
* EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 *
|
|
*************************************************************************/
|
|
|
|
#include <stdio.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include <secp256k1.h>
|
|
|
|
#include "random.h"
|
|
|
|
|
|
|
|
int main(void) {
|
|
/* Instead of signing the message directly, we must sign a 32-byte hash.
|
|
* Here the message is "Hello, world!" and the hash function was SHA-256.
|
|
* An actual implementation should just call SHA-256, but this example
|
|
* hardcodes the output to avoid depending on an additional library.
|
|
* See https://bitcoin.stackexchange.com/questions/81115/if-someone-wanted-to-pretend-to-be-satoshi-by-posting-a-fake-signature-to-defrau/81116#81116 */
|
|
unsigned char msg_hash[32] = {
|
|
0x31, 0x5F, 0x5B, 0xDB, 0x76, 0xD0, 0x78, 0xC4,
|
|
0x3B, 0x8A, 0xC0, 0x06, 0x4E, 0x4A, 0x01, 0x64,
|
|
0x61, 0x2B, 0x1F, 0xCE, 0x77, 0xC8, 0x69, 0x34,
|
|
0x5B, 0xFC, 0x94, 0xC7, 0x58, 0x94, 0xED, 0xD3,
|
|
};
|
|
unsigned char seckey[32];
|
|
unsigned char randomize[32];
|
|
unsigned char compressed_pubkey[33];
|
|
unsigned char serialized_signature[64];
|
|
size_t len;
|
|
int is_signature_valid;
|
|
int return_val;
|
|
rustsecp256k1_v0_8_0_pubkey pubkey;
|
|
rustsecp256k1_v0_8_0_ecdsa_signature sig;
|
|
/* Before we can call actual API functions, we need to create a "context". */
|
|
rustsecp256k1_v0_8_0_context* ctx = rustsecp256k1_v0_8_0_context_create(SECP256K1_CONTEXT_NONE);
|
|
if (!fill_random(randomize, sizeof(randomize))) {
|
|
printf("Failed to generate randomness\n");
|
|
return 1;
|
|
}
|
|
/* Randomizing the context is recommended to protect against side-channel
|
|
* leakage See `rustsecp256k1_v0_8_0_context_randomize` in secp256k1.h for more
|
|
* information about it. This should never fail. */
|
|
return_val = rustsecp256k1_v0_8_0_context_randomize(ctx, randomize);
|
|
assert(return_val);
|
|
|
|
/*** Key Generation ***/
|
|
|
|
/* If the secret key is zero or out of range (bigger than secp256k1's
|
|
* order), we try to sample a new key. Note that the probability of this
|
|
* happening is negligible. */
|
|
while (1) {
|
|
if (!fill_random(seckey, sizeof(seckey))) {
|
|
printf("Failed to generate randomness\n");
|
|
return 1;
|
|
}
|
|
if (rustsecp256k1_v0_8_0_ec_seckey_verify(ctx, seckey)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Public key creation using a valid context with a verified secret key should never fail */
|
|
return_val = rustsecp256k1_v0_8_0_ec_pubkey_create(ctx, &pubkey, seckey);
|
|
assert(return_val);
|
|
|
|
/* Serialize the pubkey in a compressed form(33 bytes). Should always return 1. */
|
|
len = sizeof(compressed_pubkey);
|
|
return_val = rustsecp256k1_v0_8_0_ec_pubkey_serialize(ctx, compressed_pubkey, &len, &pubkey, SECP256K1_EC_COMPRESSED);
|
|
assert(return_val);
|
|
/* Should be the same size as the size of the output, because we passed a 33 byte array. */
|
|
assert(len == sizeof(compressed_pubkey));
|
|
|
|
/*** Signing ***/
|
|
|
|
/* Generate an ECDSA signature `noncefp` and `ndata` allows you to pass a
|
|
* custom nonce function, passing `NULL` will use the RFC-6979 safe default.
|
|
* Signing with a valid context, verified secret key
|
|
* and the default nonce function should never fail. */
|
|
return_val = rustsecp256k1_v0_8_0_ecdsa_sign(ctx, &sig, msg_hash, seckey, NULL, NULL);
|
|
assert(return_val);
|
|
|
|
/* Serialize the signature in a compact form. Should always return 1
|
|
* according to the documentation in secp256k1.h. */
|
|
return_val = rustsecp256k1_v0_8_0_ecdsa_signature_serialize_compact(ctx, serialized_signature, &sig);
|
|
assert(return_val);
|
|
|
|
|
|
/*** Verification ***/
|
|
|
|
/* Deserialize the signature. This will return 0 if the signature can't be parsed correctly. */
|
|
if (!rustsecp256k1_v0_8_0_ecdsa_signature_parse_compact(ctx, &sig, serialized_signature)) {
|
|
printf("Failed parsing the signature\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Deserialize the public key. This will return 0 if the public key can't be parsed correctly. */
|
|
if (!rustsecp256k1_v0_8_0_ec_pubkey_parse(ctx, &pubkey, compressed_pubkey, sizeof(compressed_pubkey))) {
|
|
printf("Failed parsing the public key\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Verify a signature. This will return 1 if it's valid and 0 if it's not. */
|
|
is_signature_valid = rustsecp256k1_v0_8_0_ecdsa_verify(ctx, &sig, msg_hash, &pubkey);
|
|
|
|
printf("Is the signature valid? %s\n", is_signature_valid ? "true" : "false");
|
|
printf("Secret Key: ");
|
|
print_hex(seckey, sizeof(seckey));
|
|
printf("Public Key: ");
|
|
print_hex(compressed_pubkey, sizeof(compressed_pubkey));
|
|
printf("Signature: ");
|
|
print_hex(serialized_signature, sizeof(serialized_signature));
|
|
|
|
|
|
/* This will clear everything from the context and free the memory */
|
|
rustsecp256k1_v0_8_0_context_destroy(ctx);
|
|
|
|
/* It's best practice to try to clear secrets from memory after using them.
|
|
* This is done because some bugs can allow an attacker to leak memory, for
|
|
* example through "out of bounds" array access (see Heartbleed), Or the OS
|
|
* swapping them to disk. Hence, we overwrite the secret key buffer with zeros.
|
|
*
|
|
* TODO: Prevent these writes from being optimized out, as any good compiler
|
|
* will remove any writes that aren't used. */
|
|
memset(seckey, 0, sizeof(seckey));
|
|
|
|
return 0;
|
|
}
|