rust-secp256k1-unsafe-fast/secp256k1-sys/depend/secp256k1/src/field.h

135 lines
7.3 KiB
C

/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_FIELD_H
#define SECP256K1_FIELD_H
/** Field element module.
*
* Field elements can be represented in several ways, but code accessing
* it (and implementations) need to take certain properties into account:
* - Each field element can be normalized or not.
* - Each field element has a magnitude, which represents how far away
* its representation is away from normalization. Normalized elements
* always have a magnitude of 1, but a magnitude of 1 doesn't imply
* normality.
*/
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#include "util.h"
#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "field_10x26.h"
#else
#error "Please select wide multiplication implementation"
#endif
/** Normalize a field element. This brings the field element to a canonical representation, reduces
* its magnitude to 1, and reduces it modulo field size `p`.
*/
static void rustsecp256k1_v0_3_1_fe_normalize(rustsecp256k1_v0_3_1_fe *r);
/** Weakly normalize a field element: reduce its magnitude to 1, but don't fully normalize. */
static void rustsecp256k1_v0_3_1_fe_normalize_weak(rustsecp256k1_v0_3_1_fe *r);
/** Normalize a field element, without constant-time guarantee. */
static void rustsecp256k1_v0_3_1_fe_normalize_var(rustsecp256k1_v0_3_1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
static int rustsecp256k1_v0_3_1_fe_normalizes_to_zero(rustsecp256k1_v0_3_1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
static int rustsecp256k1_v0_3_1_fe_normalizes_to_zero_var(rustsecp256k1_v0_3_1_fe *r);
/** Set a field element equal to a small integer. Resulting field element is normalized. */
static void rustsecp256k1_v0_3_1_fe_set_int(rustsecp256k1_v0_3_1_fe *r, int a);
/** Sets a field element equal to zero, initializing all fields. */
static void rustsecp256k1_v0_3_1_fe_clear(rustsecp256k1_v0_3_1_fe *a);
/** Verify whether a field element is zero. Requires the input to be normalized. */
static int rustsecp256k1_v0_3_1_fe_is_zero(const rustsecp256k1_v0_3_1_fe *a);
/** Check the "oddness" of a field element. Requires the input to be normalized. */
static int rustsecp256k1_v0_3_1_fe_is_odd(const rustsecp256k1_v0_3_1_fe *a);
/** Compare two field elements. Requires magnitude-1 inputs. */
static int rustsecp256k1_v0_3_1_fe_equal(const rustsecp256k1_v0_3_1_fe *a, const rustsecp256k1_v0_3_1_fe *b);
/** Same as rustsecp256k1_v0_3_1_fe_equal, but may be variable time. */
static int rustsecp256k1_v0_3_1_fe_equal_var(const rustsecp256k1_v0_3_1_fe *a, const rustsecp256k1_v0_3_1_fe *b);
/** Compare two field elements. Requires both inputs to be normalized */
static int rustsecp256k1_v0_3_1_fe_cmp_var(const rustsecp256k1_v0_3_1_fe *a, const rustsecp256k1_v0_3_1_fe *b);
/** Set a field element equal to 32-byte big endian value. If successful, the resulting field element is normalized. */
static int rustsecp256k1_v0_3_1_fe_set_b32(rustsecp256k1_v0_3_1_fe *r, const unsigned char *a);
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
static void rustsecp256k1_v0_3_1_fe_get_b32(unsigned char *r, const rustsecp256k1_v0_3_1_fe *a);
/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
* as an argument. The magnitude of the output is one higher. */
static void rustsecp256k1_v0_3_1_fe_negate(rustsecp256k1_v0_3_1_fe *r, const rustsecp256k1_v0_3_1_fe *a, int m);
/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
* small integer. */
static void rustsecp256k1_v0_3_1_fe_mul_int(rustsecp256k1_v0_3_1_fe *r, int a);
/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
static void rustsecp256k1_v0_3_1_fe_add(rustsecp256k1_v0_3_1_fe *r, const rustsecp256k1_v0_3_1_fe *a);
/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void rustsecp256k1_v0_3_1_fe_mul(rustsecp256k1_v0_3_1_fe *r, const rustsecp256k1_v0_3_1_fe *a, const rustsecp256k1_v0_3_1_fe * SECP256K1_RESTRICT b);
/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void rustsecp256k1_v0_3_1_fe_sqr(rustsecp256k1_v0_3_1_fe *r, const rustsecp256k1_v0_3_1_fe *a);
/** If a has a square root, it is computed in r and 1 is returned. If a does not
* have a square root, the root of its negation is computed and 0 is returned.
* The input's magnitude can be at most 8. The output magnitude is 1 (but not
* guaranteed to be normalized). The result in r will always be a square
* itself. */
static int rustsecp256k1_v0_3_1_fe_sqrt(rustsecp256k1_v0_3_1_fe *r, const rustsecp256k1_v0_3_1_fe *a);
/** Checks whether a field element is a quadratic residue. */
static int rustsecp256k1_v0_3_1_fe_is_quad_var(const rustsecp256k1_v0_3_1_fe *a);
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
static void rustsecp256k1_v0_3_1_fe_inv(rustsecp256k1_v0_3_1_fe *r, const rustsecp256k1_v0_3_1_fe *a);
/** Potentially faster version of rustsecp256k1_v0_3_1_fe_inv, without constant-time guarantee. */
static void rustsecp256k1_v0_3_1_fe_inv_var(rustsecp256k1_v0_3_1_fe *r, const rustsecp256k1_v0_3_1_fe *a);
/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
* at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
* outputs must not overlap in memory. */
static void rustsecp256k1_v0_3_1_fe_inv_all_var(rustsecp256k1_v0_3_1_fe *r, const rustsecp256k1_v0_3_1_fe *a, size_t len);
/** Convert a field element to the storage type. */
static void rustsecp256k1_v0_3_1_fe_to_storage(rustsecp256k1_v0_3_1_fe_storage *r, const rustsecp256k1_v0_3_1_fe *a);
/** Convert a field element back from the storage type. */
static void rustsecp256k1_v0_3_1_fe_from_storage(rustsecp256k1_v0_3_1_fe *r, const rustsecp256k1_v0_3_1_fe_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
static void rustsecp256k1_v0_3_1_fe_storage_cmov(rustsecp256k1_v0_3_1_fe_storage *r, const rustsecp256k1_v0_3_1_fe_storage *a, int flag);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/
static void rustsecp256k1_v0_3_1_fe_cmov(rustsecp256k1_v0_3_1_fe *r, const rustsecp256k1_v0_3_1_fe *a, int flag);
#endif /* SECP256K1_FIELD_H */