141 lines
4.5 KiB
C
141 lines
4.5 KiB
C
/***********************************************************************
|
|
* Copyright (c) 2013, 2014 Pieter Wuille *
|
|
* Distributed under the MIT software license, see the accompanying *
|
|
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
|
|
***********************************************************************/
|
|
|
|
#ifndef SECP256K1_FIELD_IMPL_H
|
|
#define SECP256K1_FIELD_IMPL_H
|
|
|
|
#if defined HAVE_CONFIG_H
|
|
#include "libsecp256k1-config.h"
|
|
#endif
|
|
|
|
#include "util.h"
|
|
|
|
#if defined(SECP256K1_WIDEMUL_INT128)
|
|
#include "field_5x52_impl.h"
|
|
#elif defined(SECP256K1_WIDEMUL_INT64)
|
|
#include "field_10x26_impl.h"
|
|
#else
|
|
#error "Please select wide multiplication implementation"
|
|
#endif
|
|
|
|
SECP256K1_INLINE static int rustsecp256k1_v0_4_1_fe_equal(const rustsecp256k1_v0_4_1_fe *a, const rustsecp256k1_v0_4_1_fe *b) {
|
|
rustsecp256k1_v0_4_1_fe na;
|
|
rustsecp256k1_v0_4_1_fe_negate(&na, a, 1);
|
|
rustsecp256k1_v0_4_1_fe_add(&na, b);
|
|
return rustsecp256k1_v0_4_1_fe_normalizes_to_zero(&na);
|
|
}
|
|
|
|
SECP256K1_INLINE static int rustsecp256k1_v0_4_1_fe_equal_var(const rustsecp256k1_v0_4_1_fe *a, const rustsecp256k1_v0_4_1_fe *b) {
|
|
rustsecp256k1_v0_4_1_fe na;
|
|
rustsecp256k1_v0_4_1_fe_negate(&na, a, 1);
|
|
rustsecp256k1_v0_4_1_fe_add(&na, b);
|
|
return rustsecp256k1_v0_4_1_fe_normalizes_to_zero_var(&na);
|
|
}
|
|
|
|
static int rustsecp256k1_v0_4_1_fe_sqrt(rustsecp256k1_v0_4_1_fe *r, const rustsecp256k1_v0_4_1_fe *a) {
|
|
/** Given that p is congruent to 3 mod 4, we can compute the square root of
|
|
* a mod p as the (p+1)/4'th power of a.
|
|
*
|
|
* As (p+1)/4 is an even number, it will have the same result for a and for
|
|
* (-a). Only one of these two numbers actually has a square root however,
|
|
* so we test at the end by squaring and comparing to the input.
|
|
* Also because (p+1)/4 is an even number, the computed square root is
|
|
* itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
|
|
*/
|
|
rustsecp256k1_v0_4_1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
|
|
int j;
|
|
|
|
VERIFY_CHECK(r != a);
|
|
|
|
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
|
|
* { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
|
|
* 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
|
|
*/
|
|
|
|
rustsecp256k1_v0_4_1_fe_sqr(&x2, a);
|
|
rustsecp256k1_v0_4_1_fe_mul(&x2, &x2, a);
|
|
|
|
rustsecp256k1_v0_4_1_fe_sqr(&x3, &x2);
|
|
rustsecp256k1_v0_4_1_fe_mul(&x3, &x3, a);
|
|
|
|
x6 = x3;
|
|
for (j=0; j<3; j++) {
|
|
rustsecp256k1_v0_4_1_fe_sqr(&x6, &x6);
|
|
}
|
|
rustsecp256k1_v0_4_1_fe_mul(&x6, &x6, &x3);
|
|
|
|
x9 = x6;
|
|
for (j=0; j<3; j++) {
|
|
rustsecp256k1_v0_4_1_fe_sqr(&x9, &x9);
|
|
}
|
|
rustsecp256k1_v0_4_1_fe_mul(&x9, &x9, &x3);
|
|
|
|
x11 = x9;
|
|
for (j=0; j<2; j++) {
|
|
rustsecp256k1_v0_4_1_fe_sqr(&x11, &x11);
|
|
}
|
|
rustsecp256k1_v0_4_1_fe_mul(&x11, &x11, &x2);
|
|
|
|
x22 = x11;
|
|
for (j=0; j<11; j++) {
|
|
rustsecp256k1_v0_4_1_fe_sqr(&x22, &x22);
|
|
}
|
|
rustsecp256k1_v0_4_1_fe_mul(&x22, &x22, &x11);
|
|
|
|
x44 = x22;
|
|
for (j=0; j<22; j++) {
|
|
rustsecp256k1_v0_4_1_fe_sqr(&x44, &x44);
|
|
}
|
|
rustsecp256k1_v0_4_1_fe_mul(&x44, &x44, &x22);
|
|
|
|
x88 = x44;
|
|
for (j=0; j<44; j++) {
|
|
rustsecp256k1_v0_4_1_fe_sqr(&x88, &x88);
|
|
}
|
|
rustsecp256k1_v0_4_1_fe_mul(&x88, &x88, &x44);
|
|
|
|
x176 = x88;
|
|
for (j=0; j<88; j++) {
|
|
rustsecp256k1_v0_4_1_fe_sqr(&x176, &x176);
|
|
}
|
|
rustsecp256k1_v0_4_1_fe_mul(&x176, &x176, &x88);
|
|
|
|
x220 = x176;
|
|
for (j=0; j<44; j++) {
|
|
rustsecp256k1_v0_4_1_fe_sqr(&x220, &x220);
|
|
}
|
|
rustsecp256k1_v0_4_1_fe_mul(&x220, &x220, &x44);
|
|
|
|
x223 = x220;
|
|
for (j=0; j<3; j++) {
|
|
rustsecp256k1_v0_4_1_fe_sqr(&x223, &x223);
|
|
}
|
|
rustsecp256k1_v0_4_1_fe_mul(&x223, &x223, &x3);
|
|
|
|
/* The final result is then assembled using a sliding window over the blocks. */
|
|
|
|
t1 = x223;
|
|
for (j=0; j<23; j++) {
|
|
rustsecp256k1_v0_4_1_fe_sqr(&t1, &t1);
|
|
}
|
|
rustsecp256k1_v0_4_1_fe_mul(&t1, &t1, &x22);
|
|
for (j=0; j<6; j++) {
|
|
rustsecp256k1_v0_4_1_fe_sqr(&t1, &t1);
|
|
}
|
|
rustsecp256k1_v0_4_1_fe_mul(&t1, &t1, &x2);
|
|
rustsecp256k1_v0_4_1_fe_sqr(&t1, &t1);
|
|
rustsecp256k1_v0_4_1_fe_sqr(r, &t1);
|
|
|
|
/* Check that a square root was actually calculated */
|
|
|
|
rustsecp256k1_v0_4_1_fe_sqr(&t1, r);
|
|
return rustsecp256k1_v0_4_1_fe_equal(&t1, a);
|
|
}
|
|
|
|
static const rustsecp256k1_v0_4_1_fe rustsecp256k1_v0_4_1_fe_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
|
|
|
|
#endif /* SECP256K1_FIELD_IMPL_H */
|