rust-secp256k1-unsafe-fast/src/key.rs

603 lines
20 KiB
Rust

// Bitcoin secp256k1 bindings
// Written in 2014 by
// Dawid Ciężarkiewicz
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! Public/Private keys
use std::intrinsics::copy_nonoverlapping;
use std::{fmt, marker, ops};
use rand::Rng;
use serialize::{Decoder, Decodable, Encoder, Encodable};
use serde::{Serialize, Deserialize, Serializer, Deserializer};
use super::Secp256k1;
use super::Error::{self, InvalidPublicKey, InvalidSecretKey, Unknown};
use constants;
use ffi;
/// Secret 256-bit key used as `x` in an ECDSA signature
pub struct SecretKey([u8; constants::SECRET_KEY_SIZE]);
impl_array_newtype!(SecretKey, u8, constants::SECRET_KEY_SIZE);
/// The number 1 encoded as a secret key
pub static ONE: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1]);
/// Public key
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct PublicKey(PublicKeyData);
#[derive(Copy, Eq)]
enum PublicKeyData {
Compressed([u8; constants::COMPRESSED_PUBLIC_KEY_SIZE]),
Uncompressed([u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE])
}
fn random_32_bytes<R:Rng>(rng: &mut R) -> [u8; 32] {
let mut ret = [0u8; 32];
rng.fill_bytes(&mut ret);
ret
}
impl SecretKey {
/// Creates a new random secret key
#[inline]
pub fn new<R: Rng>(secp: &mut Secp256k1<R>) -> SecretKey {
let mut data = random_32_bytes(&mut secp.rng);
unsafe {
while ffi::secp256k1_ec_seckey_verify(secp.ctx, data.as_ptr()) == 0 {
data = random_32_bytes(&mut secp.rng);
}
}
SecretKey(data)
}
/// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key
#[inline]
pub fn from_slice<R: Rng>(secp: &Secp256k1<R>, data: &[u8])
-> Result<SecretKey, Error> {
match data.len() {
constants::SECRET_KEY_SIZE => {
let mut ret = [0; constants::SECRET_KEY_SIZE];
unsafe {
if ffi::secp256k1_ec_seckey_verify(secp.ctx, data.as_ptr()) == 0 {
return Err(InvalidSecretKey);
}
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
data.len());
}
Ok(SecretKey(ret))
}
_ => Err(InvalidSecretKey)
}
}
#[inline]
/// Adds one secret key to another, modulo the curve order
pub fn add_assign<R: Rng>(&mut self,
secp: &Secp256k1<R>,
other: &SecretKey)
-> Result<(), Error> {
unsafe {
if ffi::secp256k1_ec_privkey_tweak_add(secp.ctx, self.as_mut_ptr(), other.as_ptr()) != 1 {
Err(Unknown)
} else {
Ok(())
}
}
}
}
impl PublicKey {
/// Creates a new zeroed out public key
#[inline]
pub fn new(compressed: bool) -> PublicKey {
PublicKey(
if compressed {
PublicKeyData::Compressed([0; constants::COMPRESSED_PUBLIC_KEY_SIZE])
} else {
PublicKeyData::Uncompressed([0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE])
}
)
}
/// Creates a new public key from a secret key.
#[inline]
pub fn from_secret_key<R: Rng>(secp: &Secp256k1<R>,
sk: &SecretKey,
compressed: bool)
-> PublicKey {
let mut pk = PublicKey::new(compressed);
let compressed = if compressed {1} else {0};
let mut len = 0;
unsafe {
// We can assume the return value because it's not possible to construct
// an invalid `SecretKey` without transmute trickery or something
assert_eq!(ffi::secp256k1_ec_pubkey_create(
secp.ctx,
pk.as_mut_ptr(), &mut len,
sk.as_ptr(), compressed), 1);
}
assert_eq!(len as usize, pk.len());
pk
}
/// Creates a public key directly from a slice
#[inline]
pub fn from_slice<R: Rng>(secp: &Secp256k1<R>, data: &[u8])
-> Result<PublicKey, Error> {
match data.len() {
constants::COMPRESSED_PUBLIC_KEY_SIZE => {
let mut ret = [0; constants::COMPRESSED_PUBLIC_KEY_SIZE];
unsafe {
if ffi::secp256k1_ec_pubkey_verify(secp.ctx, data.as_ptr(),
data.len() as ::libc::c_int) == 0 {
return Err(InvalidPublicKey);
}
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
data.len());
}
Ok(PublicKey(PublicKeyData::Compressed(ret)))
}
constants::UNCOMPRESSED_PUBLIC_KEY_SIZE => {
let mut ret = [0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE];
unsafe {
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
data.len());
}
Ok(PublicKey(PublicKeyData::Uncompressed(ret)))
}
_ => Err(InvalidPublicKey)
}
}
/// Returns whether the public key is compressed or uncompressed
#[inline]
pub fn is_compressed(&self) -> bool {
let &PublicKey(ref data) = self;
match *data {
PublicKeyData::Compressed(_) => true,
PublicKeyData::Uncompressed(_) => false
}
}
/// Returns the length of the public key
#[inline]
pub fn len(&self) -> usize {
let &PublicKey(ref data) = self;
match *data {
PublicKeyData::Compressed(ref x) => x.len(),
PublicKeyData::Uncompressed(ref x) => x.len()
}
}
/// Converts the public key to a raw pointer suitable for use
/// with the FFI functions
#[inline]
pub fn as_ptr(&self) -> *const u8 {
let &PublicKey(ref data) = self;
match *data {
PublicKeyData::Compressed(ref x) => x.as_ptr(),
PublicKeyData::Uncompressed(ref x) => x.as_ptr()
}
}
/// Converts the public key to a mutable raw pointer suitable for use
/// with the FFI functions
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut u8 {
let &mut PublicKey(ref mut data) = self;
match *data {
PublicKeyData::Compressed(ref mut x) => x.as_mut_ptr(),
PublicKeyData::Uncompressed(ref mut x) => x.as_mut_ptr()
}
}
#[inline]
/// Adds the pk corresponding to `other` to the pk `self` in place
pub fn add_exp_assign<R: Rng>(&mut self,
secp: &Secp256k1<R>,
other: &SecretKey)
-> Result<(), Error> {
unsafe {
if ffi::secp256k1_ec_pubkey_tweak_add(secp.ctx, self.as_mut_ptr(),
self.len() as ::libc::c_int,
other.as_ptr()) != 1 {
Err(Unknown)
} else {
Ok(())
}
}
}
}
// We have to do all these impls ourselves as Rust can't derive
// them for arrays
impl Clone for PublicKeyData {
fn clone(&self) -> PublicKeyData { *self }
}
impl PartialEq for PublicKeyData {
fn eq(&self, other: &PublicKeyData) -> bool {
&self[..] == &other[..]
}
}
impl fmt::Debug for PublicKeyData {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
(&self[..]).fmt(f)
}
}
impl ops::Index<usize> for PublicKeyData {
type Output = u8;
#[inline]
fn index(&self, index: usize) -> &u8 {
match *self {
PublicKeyData::Compressed(ref x) => &x[index],
PublicKeyData::Uncompressed(ref x) => &x[index]
}
}
}
impl ops::Index<usize> for PublicKey {
type Output = u8;
#[inline]
fn index(&self, index: usize) -> &u8 {
let &PublicKey(ref dat) = self;
&dat[index]
}
}
impl ops::Index<ops::Range<usize>> for PublicKeyData {
type Output = [u8];
#[inline]
fn index(&self, index: ops::Range<usize>) -> &[u8] {
match *self {
PublicKeyData::Compressed(ref x) => &x[index],
PublicKeyData::Uncompressed(ref x) => &x[index]
}
}
}
impl ops::Index<ops::Range<usize>> for PublicKey {
type Output = [u8];
#[inline]
fn index(&self, index: ops::Range<usize>) -> &[u8] {
let &PublicKey(ref dat) = self;
&dat[index]
}
}
impl ops::Index<ops::RangeTo<usize>> for PublicKeyData {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeTo<usize>) -> &[u8] {
match *self {
PublicKeyData::Compressed(ref x) => &x[index],
PublicKeyData::Uncompressed(ref x) => &x[index]
}
}
}
impl ops::Index<ops::RangeTo<usize>> for PublicKey {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeTo<usize>) -> &[u8] {
let &PublicKey(ref dat) = self;
&dat[index]
}
}
impl ops::Index<ops::RangeFrom<usize>> for PublicKeyData {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeFrom<usize>) -> &[u8] {
match *self {
PublicKeyData::Compressed(ref x) => &x[index],
PublicKeyData::Uncompressed(ref x) => &x[index]
}
}
}
impl ops::Index<ops::RangeFrom<usize>> for PublicKey {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeFrom<usize>) -> &[u8] {
let &PublicKey(ref dat) = self;
&dat[index]
}
}
impl ops::Index<ops::RangeFull> for PublicKeyData {
type Output = [u8];
#[inline]
fn index(&self, _: ops::RangeFull) -> &[u8] {
match *self {
PublicKeyData::Compressed(ref x) => &x[..],
PublicKeyData::Uncompressed(ref x) => &x[..]
}
}
}
impl ops::Index<ops::RangeFull> for PublicKey {
type Output = [u8];
#[inline]
fn index(&self, _: ops::RangeFull) -> &[u8] {
let &PublicKey(ref dat) = self;
&dat[..]
}
}
impl Decodable for PublicKey {
fn decode<D: Decoder>(d: &mut D) -> Result<PublicKey, D::Error> {
d.read_seq(|d, len| {
if len == constants::UNCOMPRESSED_PUBLIC_KEY_SIZE {
unsafe {
use std::mem;
let mut ret: [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();
for i in 0..len {
ret[i] = try!(d.read_seq_elt(i, |d| Decodable::decode(d)));
}
Ok(PublicKey(PublicKeyData::Uncompressed(ret)))
}
} else if len == constants::COMPRESSED_PUBLIC_KEY_SIZE {
unsafe {
use std::mem;
let mut ret: [u8; constants::COMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();
for i in 0..len {
ret[i] = try!(d.read_seq_elt(i, |d| Decodable::decode(d)));
}
Ok(PublicKey(PublicKeyData::Compressed(ret)))
}
} else {
Err(d.error("Invalid length"))
}
})
}
}
impl Encodable for PublicKey {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
(&self[..]).encode(s)
}
}
impl Deserialize for PublicKey {
fn deserialize<D>(d: &mut D) -> Result<PublicKey, D::Error>
where D: Deserializer
{
use serde::de;
struct Visitor {
marker: marker::PhantomData<PublicKey>,
}
impl de::Visitor for Visitor {
type Value = PublicKey;
#[inline]
fn visit_seq<V>(&mut self, mut v: V) -> Result<PublicKey, V::Error>
where V: de::SeqVisitor
{
assert!(constants::UNCOMPRESSED_PUBLIC_KEY_SIZE >= constants::COMPRESSED_PUBLIC_KEY_SIZE);
unsafe {
use std::mem;
let mut ret_u: [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();
let mut ret_c: [u8; constants::COMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();
let mut read_len = 0;
while read_len < constants::UNCOMPRESSED_PUBLIC_KEY_SIZE {
let read_ch = match try!(v.visit()) {
Some(c) => c,
None => break
};
ret_u[read_len] = read_ch;
if read_len < constants::COMPRESSED_PUBLIC_KEY_SIZE { ret_c[read_len] = read_ch; }
read_len += 1;
}
try!(v.end());
if read_len == constants::UNCOMPRESSED_PUBLIC_KEY_SIZE {
Ok(PublicKey(PublicKeyData::Uncompressed(ret_u)))
} else if read_len == constants::COMPRESSED_PUBLIC_KEY_SIZE {
Ok(PublicKey(PublicKeyData::Compressed(ret_c)))
} else {
return Err(de::Error::syntax_error());
}
}
}
}
// Begin actual function
d.visit(Visitor { marker: ::std::marker::PhantomData })
}
}
impl Serialize for PublicKey {
fn serialize<S>(&self, s: &mut S) -> Result<(), S::Error>
where S: Serializer
{
(&self.0[..]).serialize(s)
}
}
impl fmt::Debug for SecretKey {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
(&self[..]).fmt(f)
}
}
#[cfg(test)]
mod test {
use super::super::Secp256k1;
use super::super::Error::{InvalidPublicKey, InvalidSecretKey};
use super::{PublicKey, SecretKey};
#[test]
fn skey_from_slice() {
let s = Secp256k1::new().unwrap();
let sk = SecretKey::from_slice(&s, &[1; 31]);
assert_eq!(sk, Err(InvalidSecretKey));
let sk = SecretKey::from_slice(&s, &[1; 32]);
assert!(sk.is_ok());
}
#[test]
fn pubkey_from_slice() {
let s = Secp256k1::new().unwrap();
assert_eq!(PublicKey::from_slice(&s, &[]), Err(InvalidPublicKey));
assert_eq!(PublicKey::from_slice(&s, &[1, 2, 3]), Err(InvalidPublicKey));
let uncompressed = PublicKey::from_slice(&s, &[4, 54, 57, 149, 239, 162, 148, 175, 246, 254, 239, 75, 154, 152, 10, 82, 234, 224, 85, 220, 40, 100, 57, 121, 30, 162, 94, 156, 135, 67, 74, 49, 179, 57, 236, 53, 162, 124, 149, 144, 168, 77, 74, 30, 72, 211, 229, 110, 111, 55, 96, 193, 86, 227, 183, 152, 195, 155, 51, 247, 123, 113, 60, 228, 188]);
assert!(uncompressed.is_ok());
assert!(!uncompressed.unwrap().is_compressed());
let compressed = PublicKey::from_slice(&s, &[3, 23, 183, 225, 206, 31, 159, 148, 195, 42, 67, 115, 146, 41, 248, 140, 11, 3, 51, 41, 111, 180, 110, 143, 114, 134, 88, 73, 198, 174, 52, 184, 78]);
assert!(compressed.is_ok());
assert!(compressed.unwrap().is_compressed());
}
#[test]
fn keypair_slice_round_trip() {
let mut s = Secp256k1::new().unwrap();
let (sk1, pk1) = s.generate_keypair(true);
assert_eq!(SecretKey::from_slice(&s, &sk1[..]), Ok(sk1));
assert_eq!(PublicKey::from_slice(&s, &pk1[..]), Ok(pk1));
let (sk2, pk2) = s.generate_keypair(false);
assert_eq!(SecretKey::from_slice(&s, &sk2[..]), Ok(sk2));
assert_eq!(PublicKey::from_slice(&s, &pk2[..]), Ok(pk2));
}
#[test]
fn invalid_secret_key() {
let s = Secp256k1::new().unwrap();
// Zero
assert_eq!(SecretKey::from_slice(&s, &[0; 32]), Err(InvalidSecretKey));
// -1
assert_eq!(SecretKey::from_slice(&s, &[0xff; 32]), Err(InvalidSecretKey));
// Top of range
assert!(SecretKey::from_slice(&s,
&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]).is_ok());
// One past top of range
assert!(SecretKey::from_slice(&s,
&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]).is_err());
}
#[test]
fn test_serialize() {
use std::io::Cursor;
use serialize::{json, Decodable, Encodable};
macro_rules! round_trip (
($var:ident) => ({
let start = $var;
let mut encoded = String::new();
{
let mut encoder = json::Encoder::new(&mut encoded);
start.encode(&mut encoder).unwrap();
}
let json = json::Json::from_reader(&mut Cursor::new(encoded.as_bytes())).unwrap();
let mut decoder = json::Decoder::new(json);
let decoded = Decodable::decode(&mut decoder);
assert_eq!(Some(start), decoded.ok());
})
);
let mut s = Secp256k1::new().unwrap();
for _ in 0..500 {
let (sk, pk) = s.generate_keypair(false);
round_trip!(sk);
round_trip!(pk);
let (sk, pk) = s.generate_keypair(true);
round_trip!(sk);
round_trip!(pk);
}
}
#[test]
fn test_serialize_serde() {
use serde::{json, Serialize, Deserialize};
macro_rules! round_trip (
($var:ident) => ({
let start = $var;
let mut encoded = Vec::new();
{
let mut serializer = json::ser::Serializer::new(&mut encoded);
start.serialize(&mut serializer).unwrap();
}
let mut deserializer = json::de::Deserializer::new(encoded.iter().map(|c| Ok(*c))).unwrap();
let decoded = Deserialize::deserialize(&mut deserializer);
assert_eq!(Some(start), decoded.ok());
})
);
let mut s = Secp256k1::new().unwrap();
for _ in 0..500 {
let (sk, pk) = s.generate_keypair(false);
round_trip!(sk);
round_trip!(pk);
let (sk, pk) = s.generate_keypair(true);
round_trip!(sk);
round_trip!(pk);
}
}
#[test]
fn test_addition() {
let mut s = Secp256k1::new().unwrap();
let (mut sk1, mut pk1) = s.generate_keypair(true);
let (mut sk2, mut pk2) = s.generate_keypair(true);
assert_eq!(PublicKey::from_secret_key(&s, &sk1, true), pk1);
assert!(sk1.add_assign(&s, &sk2).is_ok());
assert!(pk1.add_exp_assign(&s, &sk2).is_ok());
assert_eq!(PublicKey::from_secret_key(&s, &sk1, true), pk1);
assert_eq!(PublicKey::from_secret_key(&s, &sk2, true), pk2);
assert!(sk2.add_assign(&s, &sk1).is_ok());
assert!(pk2.add_exp_assign(&s, &sk1).is_ok());
assert_eq!(PublicKey::from_secret_key(&s, &sk2, true), pk2);
}
}