614 lines
24 KiB
Rust
614 lines
24 KiB
Rust
// Bitcoin secp256k1 bindings
|
|
// Written in 2014 by
|
|
// Dawid Ciężarkiewicz
|
|
// Andrew Poelstra
|
|
//
|
|
// To the extent possible under law, the author(s) have dedicated all
|
|
// copyright and related and neighboring rights to this software to
|
|
// the public domain worldwide. This software is distributed without
|
|
// any warranty.
|
|
//
|
|
// You should have received a copy of the CC0 Public Domain Dedication
|
|
// along with this software.
|
|
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
|
|
//
|
|
|
|
//! # Public and secret keys
|
|
|
|
use std::intrinsics::copy_nonoverlapping;
|
|
use std::marker;
|
|
use arrayvec::ArrayVec;
|
|
use rand::Rng;
|
|
use serialize::{Decoder, Decodable, Encoder, Encodable};
|
|
use serde::{Serialize, Deserialize, Serializer, Deserializer};
|
|
|
|
use super::{Secp256k1, ContextFlag};
|
|
use super::Error::{self, IncapableContext, InvalidPublicKey, InvalidSecretKey};
|
|
use constants;
|
|
use ffi;
|
|
|
|
/// Secret 256-bit key used as `x` in an ECDSA signature
|
|
pub struct SecretKey([u8; constants::SECRET_KEY_SIZE]);
|
|
impl_array_newtype!(SecretKey, u8, constants::SECRET_KEY_SIZE);
|
|
impl_pretty_debug!(SecretKey);
|
|
|
|
/// The number 1 encoded as a secret key
|
|
pub static ONE: SecretKey = SecretKey([0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 1]);
|
|
|
|
/// A Secp256k1 public key, used for verification of signatures
|
|
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
|
|
pub struct PublicKey(ffi::PublicKey);
|
|
|
|
fn random_32_bytes<R: Rng>(rng: &mut R) -> [u8; 32] {
|
|
let mut ret = [0u8; 32];
|
|
rng.fill_bytes(&mut ret);
|
|
ret
|
|
}
|
|
|
|
impl SecretKey {
|
|
/// Creates a new random secret key
|
|
#[inline]
|
|
pub fn new<R: Rng>(secp: &Secp256k1, rng: &mut R) -> SecretKey {
|
|
let mut data = random_32_bytes(rng);
|
|
unsafe {
|
|
while ffi::secp256k1_ec_seckey_verify(secp.ctx, data.as_ptr()) == 0 {
|
|
data = random_32_bytes(rng);
|
|
}
|
|
}
|
|
SecretKey(data)
|
|
}
|
|
|
|
/// Converts a `SECRET_KEY_SIZE`-byte slice to a secret key
|
|
#[inline]
|
|
pub fn from_slice(secp: &Secp256k1, data: &[u8])
|
|
-> Result<SecretKey, Error> {
|
|
match data.len() {
|
|
constants::SECRET_KEY_SIZE => {
|
|
let mut ret = [0; constants::SECRET_KEY_SIZE];
|
|
unsafe {
|
|
if ffi::secp256k1_ec_seckey_verify(secp.ctx, data.as_ptr()) == 0 {
|
|
return Err(InvalidSecretKey);
|
|
}
|
|
copy_nonoverlapping(data.as_ptr(),
|
|
ret.as_mut_ptr(),
|
|
data.len());
|
|
}
|
|
Ok(SecretKey(ret))
|
|
}
|
|
_ => Err(InvalidSecretKey)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
/// Adds one secret key to another, modulo the curve order
|
|
pub fn add_assign(&mut self, secp: &Secp256k1, other: &SecretKey)
|
|
-> Result<(), Error> {
|
|
unsafe {
|
|
if ffi::secp256k1_ec_privkey_tweak_add(secp.ctx, self.as_mut_ptr(), other.as_ptr()) != 1 {
|
|
Err(InvalidSecretKey)
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl PublicKey {
|
|
/// Creates a new zeroed out public key
|
|
#[inline]
|
|
pub fn new() -> PublicKey {
|
|
PublicKey(ffi::PublicKey::new())
|
|
}
|
|
|
|
/// Determines whether a pubkey is valid
|
|
#[inline]
|
|
pub fn is_valid(&self) -> bool {
|
|
// The only invalid pubkey the API should be able to create is
|
|
// the zero one.
|
|
self.0[..].iter().any(|&x| x != 0)
|
|
}
|
|
|
|
/// Obtains a raw pointer suitable for use with FFI functions
|
|
#[inline]
|
|
pub fn as_ptr(&self) -> *const ffi::PublicKey {
|
|
&self.0 as *const _
|
|
}
|
|
|
|
/// Creates a new public key from a secret key.
|
|
#[inline]
|
|
pub fn from_secret_key(secp: &Secp256k1,
|
|
sk: &SecretKey)
|
|
-> Result<PublicKey, Error> {
|
|
if secp.caps == ContextFlag::VerifyOnly || secp.caps == ContextFlag::None {
|
|
return Err(IncapableContext);
|
|
}
|
|
let mut pk = unsafe { ffi::PublicKey::blank() };
|
|
unsafe {
|
|
// We can assume the return value because it's not possible to construct
|
|
// an invalid `SecretKey` without transmute trickery or something
|
|
let res = ffi::secp256k1_ec_pubkey_create(secp.ctx, &mut pk, sk.as_ptr());
|
|
debug_assert_eq!(res, 1);
|
|
}
|
|
Ok(PublicKey(pk))
|
|
}
|
|
|
|
/// Creates a public key directly from a slice
|
|
#[inline]
|
|
pub fn from_slice(secp: &Secp256k1, data: &[u8])
|
|
-> Result<PublicKey, Error> {
|
|
|
|
let mut pk = unsafe { ffi::PublicKey::blank() };
|
|
unsafe {
|
|
if ffi::secp256k1_ec_pubkey_parse(secp.ctx, &mut pk, data.as_ptr(),
|
|
data.len() as ::libc::size_t) == 1 {
|
|
Ok(PublicKey(pk))
|
|
} else {
|
|
Err(InvalidPublicKey)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
/// Serialize the key as a byte-encoded pair of values. In compressed form
|
|
/// the y-coordinate is represented by only a single bit, as x determines
|
|
/// it up to one bit.
|
|
pub fn serialize_vec(&self, secp: &Secp256k1, compressed: bool) -> ArrayVec<[u8; constants::PUBLIC_KEY_SIZE]> {
|
|
let mut ret = ArrayVec::new();
|
|
|
|
unsafe {
|
|
let mut ret_len = ret.len() as ::libc::size_t;
|
|
let compressed = if compressed { ffi::SECP256K1_SER_COMPRESSED } else { ffi::SECP256K1_SER_UNCOMPRESSED };
|
|
let err = ffi::secp256k1_ec_pubkey_serialize(secp.ctx, ret.as_ptr(),
|
|
&mut ret_len, self.as_ptr(),
|
|
compressed);
|
|
debug_assert_eq!(err, 1);
|
|
ret.set_len(ret_len as usize);
|
|
}
|
|
ret
|
|
}
|
|
|
|
#[inline]
|
|
/// Adds the pk corresponding to `other` to the pk `self` in place
|
|
pub fn add_exp_assign(&mut self, secp: &Secp256k1, other: &SecretKey)
|
|
-> Result<(), Error> {
|
|
if secp.caps == ContextFlag::SignOnly || secp.caps == ContextFlag::None {
|
|
return Err(IncapableContext);
|
|
}
|
|
unsafe {
|
|
if ffi::secp256k1_ec_pubkey_tweak_add(secp.ctx, &mut self.0 as *mut _,
|
|
other.as_ptr()) == 1 {
|
|
Ok(())
|
|
} else {
|
|
Err(InvalidSecretKey)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Decodable for PublicKey {
|
|
fn decode<D: Decoder>(d: &mut D) -> Result<PublicKey, D::Error> {
|
|
d.read_seq(|d, len| {
|
|
let s = Secp256k1::with_caps(::ContextFlag::None);
|
|
if len == constants::UNCOMPRESSED_PUBLIC_KEY_SIZE {
|
|
unsafe {
|
|
use std::mem;
|
|
let mut ret: [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();
|
|
for i in 0..len {
|
|
ret[i] = try!(d.read_seq_elt(i, |d| Decodable::decode(d)));
|
|
}
|
|
PublicKey::from_slice(&s, &ret).map_err(|_| d.error("invalid public key"))
|
|
}
|
|
} else if len == constants::COMPRESSED_PUBLIC_KEY_SIZE {
|
|
unsafe {
|
|
use std::mem;
|
|
let mut ret: [u8; constants::COMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();
|
|
for i in 0..len {
|
|
ret[i] = try!(d.read_seq_elt(i, |d| Decodable::decode(d)));
|
|
}
|
|
PublicKey::from_slice(&s, &ret).map_err(|_| d.error("invalid public key"))
|
|
}
|
|
} else {
|
|
Err(d.error("Invalid length"))
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Creates a new public key from a FFI public key
|
|
impl From<ffi::PublicKey> for PublicKey {
|
|
#[inline]
|
|
fn from(pk: ffi::PublicKey) -> PublicKey {
|
|
PublicKey(pk)
|
|
}
|
|
}
|
|
|
|
|
|
impl Encodable for PublicKey {
|
|
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
|
|
let secp = Secp256k1::with_caps(::ContextFlag::None);
|
|
self.serialize_vec(&secp, true).encode(s)
|
|
}
|
|
}
|
|
|
|
impl Deserialize for PublicKey {
|
|
fn deserialize<D>(d: &mut D) -> Result<PublicKey, D::Error>
|
|
where D: Deserializer
|
|
{
|
|
use serde::de;
|
|
struct Visitor {
|
|
marker: marker::PhantomData<PublicKey>,
|
|
}
|
|
impl de::Visitor for Visitor {
|
|
type Value = PublicKey;
|
|
|
|
#[inline]
|
|
fn visit_seq<V>(&mut self, mut v: V) -> Result<PublicKey, V::Error>
|
|
where V: de::SeqVisitor
|
|
{
|
|
debug_assert!(constants::UNCOMPRESSED_PUBLIC_KEY_SIZE >= constants::COMPRESSED_PUBLIC_KEY_SIZE);
|
|
|
|
let s = Secp256k1::with_caps(::ContextFlag::None);
|
|
unsafe {
|
|
use std::mem;
|
|
let mut ret: [u8; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE] = mem::uninitialized();
|
|
|
|
let mut read_len = 0;
|
|
while read_len < constants::UNCOMPRESSED_PUBLIC_KEY_SIZE {
|
|
let read_ch = match try!(v.visit()) {
|
|
Some(c) => c,
|
|
None => break
|
|
};
|
|
ret[read_len] = read_ch;
|
|
read_len += 1;
|
|
}
|
|
try!(v.end());
|
|
|
|
PublicKey::from_slice(&s, &ret[..read_len]).map_err(|e| de::Error::syntax(&e.to_string()))
|
|
}
|
|
}
|
|
}
|
|
|
|
// Begin actual function
|
|
d.visit(Visitor { marker: ::std::marker::PhantomData })
|
|
}
|
|
}
|
|
|
|
impl Serialize for PublicKey {
|
|
fn serialize<S>(&self, s: &mut S) -> Result<(), S::Error>
|
|
where S: Serializer
|
|
{
|
|
let secp = Secp256k1::with_caps(::ContextFlag::None);
|
|
(&self.serialize_vec(&secp, true)[..]).serialize(s)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::super::{Secp256k1, ContextFlag};
|
|
use super::super::Error::{InvalidPublicKey, InvalidSecretKey, IncapableContext};
|
|
use super::{PublicKey, SecretKey};
|
|
use super::super::constants;
|
|
|
|
use rand::{Rng, thread_rng};
|
|
|
|
#[test]
|
|
fn skey_from_slice() {
|
|
let s = Secp256k1::new();
|
|
let sk = SecretKey::from_slice(&s, &[1; 31]);
|
|
assert_eq!(sk, Err(InvalidSecretKey));
|
|
|
|
let sk = SecretKey::from_slice(&s, &[1; 32]);
|
|
assert!(sk.is_ok());
|
|
}
|
|
|
|
#[test]
|
|
fn pubkey_from_slice() {
|
|
let s = Secp256k1::new();
|
|
assert_eq!(PublicKey::from_slice(&s, &[]), Err(InvalidPublicKey));
|
|
assert_eq!(PublicKey::from_slice(&s, &[1, 2, 3]), Err(InvalidPublicKey));
|
|
|
|
let uncompressed = PublicKey::from_slice(&s, &[4, 54, 57, 149, 239, 162, 148, 175, 246, 254, 239, 75, 154, 152, 10, 82, 234, 224, 85, 220, 40, 100, 57, 121, 30, 162, 94, 156, 135, 67, 74, 49, 179, 57, 236, 53, 162, 124, 149, 144, 168, 77, 74, 30, 72, 211, 229, 110, 111, 55, 96, 193, 86, 227, 183, 152, 195, 155, 51, 247, 123, 113, 60, 228, 188]);
|
|
assert!(uncompressed.is_ok());
|
|
|
|
let compressed = PublicKey::from_slice(&s, &[3, 23, 183, 225, 206, 31, 159, 148, 195, 42, 67, 115, 146, 41, 248, 140, 11, 3, 51, 41, 111, 180, 110, 143, 114, 134, 88, 73, 198, 174, 52, 184, 78]);
|
|
assert!(compressed.is_ok());
|
|
}
|
|
|
|
#[test]
|
|
fn keypair_slice_round_trip() {
|
|
let s = Secp256k1::new();
|
|
|
|
let (sk1, pk1) = s.generate_keypair(&mut thread_rng()).unwrap();
|
|
assert_eq!(SecretKey::from_slice(&s, &sk1[..]), Ok(sk1));
|
|
assert_eq!(PublicKey::from_slice(&s, &pk1.serialize_vec(&s, true)[..]), Ok(pk1));
|
|
assert_eq!(PublicKey::from_slice(&s, &pk1.serialize_vec(&s, false)[..]), Ok(pk1));
|
|
}
|
|
|
|
#[test]
|
|
fn invalid_secret_key() {
|
|
let s = Secp256k1::new();
|
|
// Zero
|
|
assert_eq!(SecretKey::from_slice(&s, &[0; 32]), Err(InvalidSecretKey));
|
|
// -1
|
|
assert_eq!(SecretKey::from_slice(&s, &[0xff; 32]), Err(InvalidSecretKey));
|
|
// Top of range
|
|
assert!(SecretKey::from_slice(&s,
|
|
&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
|
|
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
|
|
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x40]).is_ok());
|
|
// One past top of range
|
|
assert!(SecretKey::from_slice(&s,
|
|
&[0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
|
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE,
|
|
0xBA, 0xAE, 0xDC, 0xE6, 0xAF, 0x48, 0xA0, 0x3B,
|
|
0xBF, 0xD2, 0x5E, 0x8C, 0xD0, 0x36, 0x41, 0x41]).is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn test_pubkey_from_slice_bad_context() {
|
|
let s = Secp256k1::without_caps();
|
|
let sk = SecretKey::new(&s, &mut thread_rng());
|
|
assert_eq!(PublicKey::from_secret_key(&s, &sk), Err(IncapableContext));
|
|
|
|
let s = Secp256k1::with_caps(ContextFlag::VerifyOnly);
|
|
assert_eq!(PublicKey::from_secret_key(&s, &sk), Err(IncapableContext));
|
|
|
|
let s = Secp256k1::with_caps(ContextFlag::SignOnly);
|
|
assert!(PublicKey::from_secret_key(&s, &sk).is_ok());
|
|
|
|
let s = Secp256k1::with_caps(ContextFlag::Full);
|
|
assert!(PublicKey::from_secret_key(&s, &sk).is_ok());
|
|
}
|
|
|
|
#[test]
|
|
fn test_add_exp_bad_context() {
|
|
let s = Secp256k1::with_caps(ContextFlag::Full);
|
|
let (sk, mut pk) = s.generate_keypair(&mut thread_rng()).unwrap();
|
|
|
|
assert!(pk.add_exp_assign(&s, &sk).is_ok());
|
|
|
|
let s = Secp256k1::with_caps(ContextFlag::VerifyOnly);
|
|
assert!(pk.add_exp_assign(&s, &sk).is_ok());
|
|
|
|
let s = Secp256k1::with_caps(ContextFlag::SignOnly);
|
|
assert_eq!(pk.add_exp_assign(&s, &sk), Err(IncapableContext));
|
|
|
|
let s = Secp256k1::with_caps(ContextFlag::None);
|
|
assert_eq!(pk.add_exp_assign(&s, &sk), Err(IncapableContext));
|
|
}
|
|
|
|
#[test]
|
|
fn test_bad_deserialize() {
|
|
use std::io::Cursor;
|
|
use serialize::{json, Decodable};
|
|
|
|
let zero31 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
|
|
let json31 = json::Json::from_reader(&mut Cursor::new(zero31)).unwrap();
|
|
let zero32 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
|
|
let json32 = json::Json::from_reader(&mut Cursor::new(zero32)).unwrap();
|
|
let zero65 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
|
|
let json65 = json::Json::from_reader(&mut Cursor::new(zero65)).unwrap();
|
|
let string = "\"my key\"".as_bytes();
|
|
let json = json::Json::from_reader(&mut Cursor::new(string)).unwrap();
|
|
|
|
// Invalid length
|
|
let mut decoder = json::Decoder::new(json31.clone());
|
|
assert!(<PublicKey as Decodable>::decode(&mut decoder).is_err());
|
|
let mut decoder = json::Decoder::new(json31.clone());
|
|
assert!(<SecretKey as Decodable>::decode(&mut decoder).is_err());
|
|
let mut decoder = json::Decoder::new(json32.clone());
|
|
assert!(<PublicKey as Decodable>::decode(&mut decoder).is_err());
|
|
let mut decoder = json::Decoder::new(json32.clone());
|
|
assert!(<SecretKey as Decodable>::decode(&mut decoder).is_ok());
|
|
let mut decoder = json::Decoder::new(json65.clone());
|
|
assert!(<PublicKey as Decodable>::decode(&mut decoder).is_err());
|
|
let mut decoder = json::Decoder::new(json65.clone());
|
|
assert!(<SecretKey as Decodable>::decode(&mut decoder).is_err());
|
|
|
|
// Syntax error
|
|
let mut decoder = json::Decoder::new(json.clone());
|
|
assert!(<PublicKey as Decodable>::decode(&mut decoder).is_err());
|
|
let mut decoder = json::Decoder::new(json.clone());
|
|
assert!(<SecretKey as Decodable>::decode(&mut decoder).is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn test_serialize() {
|
|
use std::io::Cursor;
|
|
use serialize::{json, Decodable, Encodable};
|
|
|
|
macro_rules! round_trip (
|
|
($var:ident) => ({
|
|
let start = $var;
|
|
let mut encoded = String::new();
|
|
{
|
|
let mut encoder = json::Encoder::new(&mut encoded);
|
|
start.encode(&mut encoder).unwrap();
|
|
}
|
|
let json = json::Json::from_reader(&mut Cursor::new(encoded.as_bytes())).unwrap();
|
|
let mut decoder = json::Decoder::new(json);
|
|
let decoded = Decodable::decode(&mut decoder);
|
|
assert_eq!(Ok(Some(start)), decoded);
|
|
})
|
|
);
|
|
|
|
let s = Secp256k1::new();
|
|
for _ in 0..500 {
|
|
let (sk, pk) = s.generate_keypair(&mut thread_rng()).unwrap();
|
|
round_trip!(sk);
|
|
round_trip!(pk);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_bad_serde_deserialize() {
|
|
use serde::Deserialize;
|
|
use json;
|
|
|
|
// Invalid length
|
|
let zero31 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
|
|
let mut json = json::de::Deserializer::new(zero31.iter().map(|c| Ok(*c)));
|
|
assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_err());
|
|
let mut json = json::de::Deserializer::new(zero31.iter().map(|c| Ok(*c)));
|
|
assert!(<SecretKey as Deserialize>::deserialize(&mut json).is_err());
|
|
|
|
let zero32 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
|
|
let mut json = json::de::Deserializer::new(zero32.iter().map(|c| Ok(*c)));
|
|
assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_err());
|
|
let mut json = json::de::Deserializer::new(zero32.iter().map(|c| Ok(*c)));
|
|
assert!(<SecretKey as Deserialize>::deserialize(&mut json).is_ok());
|
|
|
|
// All zeroes pk is invalid
|
|
let zero65 = "[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]".as_bytes();
|
|
let mut json = json::de::Deserializer::new(zero65.iter().map(|c| Ok(*c)));
|
|
assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_err());
|
|
let mut json = json::de::Deserializer::new(zero65.iter().map(|c| Ok(*c)));
|
|
assert!(<SecretKey as Deserialize>::deserialize(&mut json).is_err());
|
|
|
|
// Syntax error
|
|
let string = "\"my key\"".as_bytes();
|
|
let mut json = json::de::Deserializer::new(string.iter().map(|c| Ok(*c)));
|
|
assert!(<PublicKey as Deserialize>::deserialize(&mut json).is_err());
|
|
let mut json = json::de::Deserializer::new(string.iter().map(|c| Ok(*c)));
|
|
assert!(<SecretKey as Deserialize>::deserialize(&mut json).is_err());
|
|
}
|
|
|
|
|
|
#[test]
|
|
fn test_serialize_serde() {
|
|
use serde::{Serialize, Deserialize};
|
|
use json;
|
|
|
|
macro_rules! round_trip (
|
|
($var:ident) => ({
|
|
let start = $var;
|
|
let mut encoded = Vec::new();
|
|
{
|
|
let mut serializer = json::ser::Serializer::new(&mut encoded);
|
|
start.serialize(&mut serializer).unwrap();
|
|
}
|
|
let mut deserializer = json::de::Deserializer::new(encoded.iter().map(|c| Ok(*c)));
|
|
let decoded = Deserialize::deserialize(&mut deserializer);
|
|
assert_eq!(Some(start), decoded.ok());
|
|
})
|
|
);
|
|
|
|
let s = Secp256k1::new();
|
|
for _ in 0..500 {
|
|
let (sk, pk) = s.generate_keypair(&mut thread_rng()).unwrap();
|
|
round_trip!(sk);
|
|
round_trip!(pk);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_out_of_range() {
|
|
|
|
struct BadRng(u8);
|
|
impl Rng for BadRng {
|
|
fn next_u32(&mut self) -> u32 { unimplemented!() }
|
|
// This will set a secret key to a little over the
|
|
// group order, then decrement with repeated calls
|
|
// until it returns a valid key
|
|
fn fill_bytes(&mut self, data: &mut [u8]) {
|
|
let group_order: [u8; 32] = [
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
|
|
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
|
|
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
|
|
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41];
|
|
assert_eq!(data.len(), 32);
|
|
unsafe {
|
|
use std::intrinsics::copy_nonoverlapping;
|
|
copy_nonoverlapping(group_order.as_ptr(),
|
|
data.as_mut_ptr(),
|
|
32);
|
|
}
|
|
data[31] = self.0;
|
|
self.0 -= 1;
|
|
}
|
|
}
|
|
|
|
let s = Secp256k1::new();
|
|
s.generate_keypair(&mut BadRng(0xff)).unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn test_pubkey_from_bad_slice() {
|
|
let s = Secp256k1::new();
|
|
// Bad sizes
|
|
assert_eq!(PublicKey::from_slice(&s, &[0; constants::COMPRESSED_PUBLIC_KEY_SIZE - 1]),
|
|
Err(InvalidPublicKey));
|
|
assert_eq!(PublicKey::from_slice(&s, &[0; constants::COMPRESSED_PUBLIC_KEY_SIZE + 1]),
|
|
Err(InvalidPublicKey));
|
|
assert_eq!(PublicKey::from_slice(&s, &[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE - 1]),
|
|
Err(InvalidPublicKey));
|
|
assert_eq!(PublicKey::from_slice(&s, &[0; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE + 1]),
|
|
Err(InvalidPublicKey));
|
|
|
|
// Bad parse
|
|
assert_eq!(PublicKey::from_slice(&s, &[0xff; constants::UNCOMPRESSED_PUBLIC_KEY_SIZE]),
|
|
Err(InvalidPublicKey));
|
|
assert_eq!(PublicKey::from_slice(&s, &[0x55; constants::COMPRESSED_PUBLIC_KEY_SIZE]),
|
|
Err(InvalidPublicKey));
|
|
}
|
|
|
|
#[test]
|
|
fn test_debug_output() {
|
|
struct DumbRng(u32);
|
|
impl Rng for DumbRng {
|
|
fn next_u32(&mut self) -> u32 {
|
|
self.0 = self.0.wrapping_add(1);
|
|
self.0
|
|
}
|
|
}
|
|
|
|
let s = Secp256k1::new();
|
|
let (sk, _) = s.generate_keypair(&mut DumbRng(0)).unwrap();
|
|
|
|
assert_eq!(&format!("{:?}", sk),
|
|
"SecretKey(0200000001000000040000000300000006000000050000000800000007000000)");
|
|
}
|
|
|
|
#[test]
|
|
fn test_pubkey_serialize() {
|
|
struct DumbRng(u32);
|
|
impl Rng for DumbRng {
|
|
fn next_u32(&mut self) -> u32 {
|
|
self.0 = self.0.wrapping_add(1);
|
|
self.0
|
|
}
|
|
}
|
|
|
|
let s = Secp256k1::new();
|
|
let (_, pk1) = s.generate_keypair(&mut DumbRng(0)).unwrap();
|
|
assert_eq!(&pk1.serialize_vec(&s, false)[..],
|
|
&[4, 149, 16, 196, 140, 38, 92, 239, 179, 65, 59, 224, 230, 183, 91, 238, 240, 46, 186, 252, 175, 102, 52, 249, 98, 178, 123, 72, 50, 171, 196, 254, 236, 1, 189, 143, 242, 227, 16, 87, 247, 183, 162, 68, 237, 140, 92, 205, 151, 129, 166, 58, 111, 96, 123, 64, 180, 147, 51, 12, 209, 89, 236, 213, 206][..]);
|
|
assert_eq!(&pk1.serialize_vec(&s, true)[..],
|
|
&[2, 149, 16, 196, 140, 38, 92, 239, 179, 65, 59, 224, 230, 183, 91, 238, 240, 46, 186, 252, 175, 102, 52, 249, 98, 178, 123, 72, 50, 171, 196, 254, 236][..]);
|
|
}
|
|
|
|
#[test]
|
|
fn test_addition() {
|
|
let s = Secp256k1::new();
|
|
|
|
let (mut sk1, mut pk1) = s.generate_keypair(&mut thread_rng()).unwrap();
|
|
let (mut sk2, mut pk2) = s.generate_keypair(&mut thread_rng()).unwrap();
|
|
|
|
assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1);
|
|
assert!(sk1.add_assign(&s, &sk2).is_ok());
|
|
assert!(pk1.add_exp_assign(&s, &sk2).is_ok());
|
|
assert_eq!(PublicKey::from_secret_key(&s, &sk1).unwrap(), pk1);
|
|
|
|
assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2);
|
|
assert!(sk2.add_assign(&s, &sk1).is_ok());
|
|
assert!(pk2.add_exp_assign(&s, &sk1).is_ok());
|
|
assert_eq!(PublicKey::from_secret_key(&s, &sk2).unwrap(), pk2);
|
|
}
|
|
}
|
|
|
|
|