rust-secp256k1-unsafe-fast/src/lib.rs

570 lines
18 KiB
Rust

// Bitcoin secp256k1 bindings
// Written in 2014 by
// Dawid Ciężarkiewicz
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! # Secp256k1
//! Rust bindings for Pieter Wuille's secp256k1 library, which is used for
//! fast and accurate manipulation of ECDSA signatures on the secp256k1
//! curve. Such signatures are used extensively by the Bitcoin network
//! and its derivatives.
//!
#![crate_type = "lib"]
#![crate_type = "rlib"]
#![crate_type = "dylib"]
#![crate_name = "secp256k1"]
// Keep this until 1.0 I guess; it's needed for `black_box` at least
#![cfg_attr(test, feature(test))]
// Coding conventions
#![deny(non_upper_case_globals)]
#![deny(non_camel_case_types)]
#![deny(non_snake_case)]
#![deny(unused_mut)]
#![warn(missing_docs)]
extern crate rustc_serialize as serialize;
extern crate serde;
#[cfg(test)] extern crate test;
extern crate libc;
extern crate rand;
use std::intrinsics::copy_nonoverlapping;
use std::{cmp, fmt, ops, ptr};
use libc::c_int;
use rand::Rng;
#[macro_use]
mod macros;
pub mod constants;
pub mod ffi;
pub mod key;
/// A tag used for recovering the public key from a compact signature
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct RecoveryId(i32);
/// An ECDSA signature
#[derive(Copy)]
pub struct Signature(usize, [u8; constants::MAX_SIGNATURE_SIZE]);
impl Signature {
/// Converts the signature to a raw pointer suitable for use
/// with the FFI functions
#[inline]
pub fn as_ptr(&self) -> *const u8 {
let &Signature(_, ref data) = self;
data.as_ptr()
}
/// Converts the signature to a mutable raw pointer suitable for use
/// with the FFI functions
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut u8 {
let &mut Signature(_, ref mut data) = self;
data.as_mut_ptr()
}
/// Returns the length of the signature
#[inline]
pub fn len(&self) -> usize {
let &Signature(len, _) = self;
len
}
/// Converts a byte slice to a signature
#[inline]
pub fn from_slice(data: &[u8]) -> Result<Signature, Error> {
if data.len() <= constants::MAX_SIGNATURE_SIZE {
let mut ret = [0; constants::MAX_SIGNATURE_SIZE];
unsafe {
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
data.len());
}
Ok(Signature(data.len(), ret))
} else {
Err(Error::InvalidSignature)
}
}
}
impl fmt::Debug for Signature {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "Signature("));
for i in self[..].iter().cloned() {
try!(write!(f, "{:02x}", i));
}
write!(f, ")")
}
}
impl ops::Index<usize> for Signature {
type Output = u8;
#[inline]
fn index(&self, index: usize) -> &u8 {
assert!(index < self.0);
&self.1[index]
}
}
impl ops::Index<ops::Range<usize>> for Signature {
type Output = [u8];
#[inline]
fn index(&self, index: ops::Range<usize>) -> &[u8] {
assert!(index.end < self.0);
&self.1[index]
}
}
impl ops::Index<ops::RangeFrom<usize>> for Signature {
type Output = [u8];
#[inline]
fn index(&self, index: ops::RangeFrom<usize>) -> &[u8] {
&self.1[index.start..self.0]
}
}
impl ops::Index<ops::RangeFull> for Signature {
type Output = [u8];
#[inline]
fn index(&self, _: ops::RangeFull) -> &[u8] {
&self.1[0..self.0]
}
}
impl cmp::PartialEq for Signature {
#[inline]
fn eq(&self, other: &Signature) -> bool {
&self[..] == &other[..]
}
}
impl cmp::Eq for Signature { }
impl Clone for Signature {
#[inline]
fn clone(&self) -> Signature {
unsafe {
use std::mem;
let mut ret: Signature = mem::uninitialized();
copy_nonoverlapping(self.as_ptr(),
ret.as_mut_ptr(),
mem::size_of::<Signature>());
ret
}
}
}
/// A (hashed) message input to an ECDSA signature
pub struct Message([u8; constants::MESSAGE_SIZE]);
impl_array_newtype!(Message, u8, constants::MESSAGE_SIZE);
impl Message {
/// Converts a `MESSAGE_SIZE`-byte slice to a nonce
#[inline]
pub fn from_slice(data: &[u8]) -> Result<Message, Error> {
match data.len() {
constants::MESSAGE_SIZE => {
let mut ret = [0; constants::MESSAGE_SIZE];
unsafe {
copy_nonoverlapping(data.as_ptr(),
ret.as_mut_ptr(),
data.len());
}
Ok(Message(ret))
}
_ => Err(Error::InvalidMessage)
}
}
}
impl fmt::Debug for Message {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "Message("));
for i in self[..].iter().cloned() {
try!(write!(f, "{:02x}", i));
}
write!(f, ")")
}
}
/// An ECDSA error
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
pub enum Error {
/// Signature failed verification
IncorrectSignature,
/// Badly sized message
InvalidMessage,
/// Bad public key
InvalidPublicKey,
/// Bad signature
InvalidSignature,
/// Bad secret key
InvalidSecretKey,
/// Boolean-returning function returned the wrong boolean
Unknown
}
// Passthrough Debug to Display, since errors should be user-visible
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
fmt::Debug::fmt(self, f)
}
}
/// The secp256k1 engine, used to execute all signature operations
pub struct Secp256k1 {
ctx: ffi::Context
}
impl Clone for Secp256k1 {
fn clone(&self) -> Secp256k1 {
Secp256k1 {
ctx: unsafe { ffi::secp256k1_context_clone(self.ctx) }
}
}
}
impl PartialEq for Secp256k1 {
// Contexts will always be "equal" in a functional sense
fn eq(&self, _: &Secp256k1) -> bool { true }
}
impl Eq for Secp256k1 { }
impl fmt::Debug for Secp256k1 {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "Secp256k1 {{ secp256k1 context }}")
}
}
impl Drop for Secp256k1 {
fn drop(&mut self) {
unsafe { ffi::secp256k1_context_destroy(self.ctx); }
}
}
impl Secp256k1 {
/// Creates a new Secp256k1 context
pub fn new() -> Secp256k1 {
let ctx = unsafe {
ffi::secp256k1_context_create(ffi::SECP256K1_START_VERIFY |
ffi::SECP256K1_START_SIGN)
};
Secp256k1 { ctx: ctx }
}
/// Generates a random keypair. Convenience function for `key::SecretKey::new`
/// and `key::PublicKey::from_secret_key`; call those functions directly for
/// batch key generation.
#[inline]
pub fn generate_keypair<R: Rng>(&self, rng: &mut R, compressed: bool)
-> (key::SecretKey, key::PublicKey) {
let sk = key::SecretKey::new(self, rng);
let pk = key::PublicKey::from_secret_key(self, &sk, compressed);
(sk, pk)
}
/// Constructs a signature for `msg` using the secret key `sk` and nonce `nonce`
pub fn sign(&self, msg: &Message, sk: &key::SecretKey)
-> Signature {
let mut sig = [0; constants::MAX_SIGNATURE_SIZE];
let mut len = constants::MAX_SIGNATURE_SIZE as c_int;
unsafe {
// We can assume the return value because it's not possible to construct
// an invalid signature from a valid `Message` and `SecretKey`
assert_eq!(ffi::secp256k1_ecdsa_sign(self.ctx, msg.as_ptr(), sig.as_mut_ptr(),
&mut len, sk.as_ptr(),
ffi::secp256k1_nonce_function_rfc6979,
ptr::null()), 1);
// This assertation is probably too late :)
debug_assert!(len as usize <= constants::MAX_SIGNATURE_SIZE);
}
Signature(len as usize, sig)
}
/// Constructs a compact signature for `msg` using the secret key `sk`
pub fn sign_compact(&self, msg: &Message, sk: &key::SecretKey)
-> (Signature, RecoveryId) {
let mut sig = [0; constants::MAX_SIGNATURE_SIZE];
let mut recid = 0;
unsafe {
// We can assume the return value because it's not possible to construct
// an invalid signature from a valid `Message` and `SecretKey`
assert_eq!(ffi::secp256k1_ecdsa_sign_compact(self.ctx, msg.as_ptr(),
sig.as_mut_ptr(), sk.as_ptr(),
ffi::secp256k1_nonce_function_default,
ptr::null(), &mut recid), 1);
}
(Signature(constants::COMPACT_SIGNATURE_SIZE, sig), RecoveryId(recid))
}
/// Determines the public key for which `sig` is a valid signature for
/// `msg`. Returns through the out-pointer `pubkey`.
pub fn recover_compact(&self, msg: &Message, sig: &[u8],
compressed: bool, recid: RecoveryId)
-> Result<key::PublicKey, Error> {
let mut pk = key::PublicKey::new(compressed);
let RecoveryId(recid) = recid;
if sig.len() != constants::COMPACT_SIGNATURE_SIZE {
return Err(Error::InvalidSignature);
}
unsafe {
let mut len = 0;
if ffi::secp256k1_ecdsa_recover_compact(self.ctx, msg.as_ptr(),
sig.as_ptr(), pk.as_mut_ptr(), &mut len,
if compressed {1} else {0},
recid) != 1 {
return Err(Error::InvalidSignature);
}
debug_assert_eq!(len as usize, pk.len());
};
Ok(pk)
}
/// Checks that `sig` is a valid ECDSA signature for `msg` using the public
/// key `pubkey`. Returns `Ok(true)` on success. Note that this function cannot
/// be used for Bitcoin consensus checking since there may exist signatures
/// which OpenSSL would verify but not libsecp256k1, or vice-versa.
#[inline]
pub fn verify(&self, msg: &Message, sig: &Signature, pk: &key::PublicKey) -> Result<(), Error> {
self.verify_raw(msg, &sig[..], pk)
}
/// Verifies a signature described as a slice of bytes rather than opaque `Signature`
pub fn verify_raw(&self, msg: &Message, sig: &[u8], pk: &key::PublicKey) -> Result<(), Error> {
let res = unsafe {
ffi::secp256k1_ecdsa_verify(self.ctx, msg.as_ptr(),
sig.as_ptr(), sig.len() as c_int,
pk.as_ptr(), pk.len() as c_int)
};
match res {
1 => Ok(()),
0 => Err(Error::IncorrectSignature),
-1 => Err(Error::InvalidPublicKey),
-2 => Err(Error::InvalidSignature),
_ => unreachable!()
}
}
}
#[cfg(test)]
mod tests {
use rand::{Rng, thread_rng};
use test::{Bencher, black_box};
use key::{SecretKey, PublicKey};
use super::constants;
use super::{Secp256k1, Signature, Message, RecoveryId};
use super::Error::{InvalidMessage, InvalidPublicKey, IncorrectSignature, InvalidSignature};
#[test]
fn invalid_pubkey() {
let s = Secp256k1::new();
let sig = Signature::from_slice(&[0; 72]).unwrap();
let pk = PublicKey::new(true);
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
assert_eq!(s.verify(&msg, &sig, &pk), Err(InvalidPublicKey));
}
#[test]
fn valid_pubkey_uncompressed() {
let s = Secp256k1::new();
let (_, pk) = s.generate_keypair(&mut thread_rng(), false);
let sig = Signature::from_slice(&[0; 72]).unwrap();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
assert_eq!(s.verify(&msg, &sig, &pk), Err(InvalidSignature));
}
#[test]
fn valid_pubkey_compressed() {
let s = Secp256k1::new();
let (_, pk) = s.generate_keypair(&mut thread_rng(), true);
let sig = Signature::from_slice(&[0; 72]).unwrap();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
assert_eq!(s.verify(&msg, &sig, &pk), Err(InvalidSignature));
}
#[test]
fn sign() {
let s = Secp256k1::new();
let one = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];
let sk = SecretKey::from_slice(&s, &one).unwrap();
let msg = Message::from_slice(&one).unwrap();
let sig = s.sign(&msg, &sk);
assert_eq!(sig, Signature(70, [
0x30, 0x44, 0x02, 0x20, 0x66, 0x73, 0xff, 0xad,
0x21, 0x47, 0x74, 0x1f, 0x04, 0x77, 0x2b, 0x6f,
0x92, 0x1f, 0x0b, 0xa6, 0xaf, 0x0c, 0x1e, 0x77,
0xfc, 0x43, 0x9e, 0x65, 0xc3, 0x6d, 0xed, 0xf4,
0x09, 0x2e, 0x88, 0x98, 0x02, 0x20, 0x4c, 0x1a,
0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8, 0x80, 0x12,
0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f, 0xff, 0x20,
0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06, 0x8d, 0x12,
0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89, 0x00, 0x00]))
}
#[test]
fn sign_and_verify() {
let s = Secp256k1::new();
let mut msg = [0; 32];
for _ in 0..100 {
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, pk) = s.generate_keypair(&mut thread_rng(), false);
let sig = s.sign(&msg, &sk);
assert_eq!(s.verify(&msg, &sig, &pk), Ok(()));
}
}
#[test]
fn sign_and_verify_fail() {
let s = Secp256k1::new();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, pk) = s.generate_keypair(&mut thread_rng(), false);
let sig = s.sign(&msg, &sk);
let (sig_compact, recid) = s.sign_compact(&msg, &sk);
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
assert_eq!(s.verify(&msg, &sig, &pk), Err(IncorrectSignature));
let recovered_key = s.recover_compact(&msg, &sig_compact[..], false, recid).unwrap();
assert!(recovered_key != pk);
}
#[test]
fn sign_compact_with_recovery() {
let s = Secp256k1::new();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, pk) = s.generate_keypair(&mut thread_rng(), false);
let (sig, recid) = s.sign_compact(&msg, &sk);
assert_eq!(s.recover_compact(&msg, &sig[..], false, recid), Ok(pk));
}
#[test]
fn bad_recovery() {
let s = Secp256k1::new();
let msg = Message::from_slice(&[0x55; 32]).unwrap();
// Bad length
assert_eq!(s.recover_compact(&msg, &[1; 63], false, RecoveryId(0)), Err(InvalidSignature));
assert_eq!(s.recover_compact(&msg, &[1; 65], false, RecoveryId(0)), Err(InvalidSignature));
// Zero is not a valid sig
assert_eq!(s.recover_compact(&msg, &[0; 64], false, RecoveryId(0)), Err(InvalidSignature));
// ...but 111..111 is
assert!(s.recover_compact(&msg, &[1; 64], false, RecoveryId(0)).is_ok());
}
#[test]
fn test_bad_slice() {
assert_eq!(Signature::from_slice(&[0; constants::MAX_SIGNATURE_SIZE + 1]),
Err(InvalidSignature));
assert!(Signature::from_slice(&[0; constants::MAX_SIGNATURE_SIZE]).is_ok());
assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE - 1]),
Err(InvalidMessage));
assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE + 1]),
Err(InvalidMessage));
assert!(Signature::from_slice(&[0; constants::MESSAGE_SIZE]).is_ok());
}
#[test]
fn test_debug_output() {
let sig = Signature(0, [4; 72]);
assert_eq!(&format!("{:?}", sig), "Signature()");
let sig = Signature(10, [5; 72]);
assert_eq!(&format!("{:?}", sig), "Signature(05050505050505050505)");
let sig = Signature(72, [6; 72]);
assert_eq!(&format!("{:?}", sig), "Signature(060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606)");
let msg = Message([1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 255]);
assert_eq!(&format!("{:?}", msg), "Message(0102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1fff)");
}
#[bench]
pub fn generate_compressed(bh: &mut Bencher) {
struct CounterRng(u32);
impl Rng for CounterRng {
fn next_u32(&mut self) -> u32 { self.0 += 1; self.0 }
}
let s = Secp256k1::new();
let mut r = CounterRng(0);
bh.iter( || {
let (sk, pk) = s.generate_keypair(&mut r, true);
black_box(sk);
black_box(pk);
});
}
#[bench]
pub fn generate_uncompressed(bh: &mut Bencher) {
struct CounterRng(u32);
impl Rng for CounterRng {
fn next_u32(&mut self) -> u32 { self.0 += 1; self.0 }
}
let s = Secp256k1::new();
let mut r = CounterRng(0);
bh.iter( || {
let (sk, pk) = s.generate_keypair(&mut r, false);
black_box(sk);
black_box(pk);
});
}
}