767 lines
31 KiB
Rust
767 lines
31 KiB
Rust
// Bitcoin secp256k1 bindings
|
|
// Written in 2014 by
|
|
// Dawid Ciężarkiewicz
|
|
// Andrew Poelstra
|
|
//
|
|
// To the extent possible under law, the author(s) have dedicated all
|
|
// copyright and related and neighboring rights to this software to
|
|
// the public domain worldwide. This software is distributed without
|
|
// any warranty.
|
|
//
|
|
// You should have received a copy of the CC0 Public Domain Dedication
|
|
// along with this software.
|
|
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
|
|
//
|
|
|
|
//! # FFI bindings
|
|
//! Direct bindings to the underlying C library functions. These should
|
|
//! not be needed for most users.
|
|
use core::{mem, hash, slice, ptr};
|
|
use types::*;
|
|
|
|
/// Flag for context to enable no precomputation
|
|
pub const SECP256K1_START_NONE: c_uint = 1;
|
|
/// Flag for context to enable verification precomputation
|
|
pub const SECP256K1_START_VERIFY: c_uint = 1 | (1 << 8);
|
|
/// Flag for context to enable signing precomputation
|
|
pub const SECP256K1_START_SIGN: c_uint = 1 | (1 << 9);
|
|
/// Flag for keys to indicate uncompressed serialization format
|
|
pub const SECP256K1_SER_UNCOMPRESSED: c_uint = (1 << 1);
|
|
/// Flag for keys to indicate compressed serialization format
|
|
pub const SECP256K1_SER_COMPRESSED: c_uint = (1 << 1) | (1 << 8);
|
|
|
|
/// A nonce generation function. Ordinary users of the library
|
|
/// never need to see this type; only if you need to control
|
|
/// nonce generation do you need to use it. I have deliberately
|
|
/// made this hard to do: you have to write your own wrapper
|
|
/// around the FFI functions to use it. And it's an unsafe type.
|
|
/// Nonces are generated deterministically by RFC6979 by
|
|
/// default; there should be no need to ever change this.
|
|
pub type NonceFn = unsafe extern "C" fn(nonce32: *mut c_uchar,
|
|
msg32: *const c_uchar,
|
|
key32: *const c_uchar,
|
|
algo16: *const c_uchar,
|
|
attempt: c_uint,
|
|
data: *const c_void);
|
|
|
|
/// Hash function to use to post-process an ECDH point to get
|
|
/// a shared secret.
|
|
pub type EcdhHashFn = unsafe extern "C" fn(
|
|
output: *mut c_uchar,
|
|
x: *const c_uchar,
|
|
y: *const c_uchar,
|
|
data: *const c_void,
|
|
);
|
|
|
|
/// A Secp256k1 context, containing various precomputed values and such
|
|
/// needed to do elliptic curve computations. If you create one of these
|
|
/// with `secp256k1_context_create` you MUST destroy it with
|
|
/// `secp256k1_context_destroy`, or else you will have a memory leak.
|
|
#[derive(Clone, Debug)]
|
|
#[repr(C)] pub struct Context(c_int);
|
|
|
|
#[cfg(feature = "fuzztarget")]
|
|
impl Context {
|
|
pub fn flags(&self) -> u32 {
|
|
self.0 as u32
|
|
}
|
|
}
|
|
|
|
/// Library-internal representation of a Secp256k1 public key
|
|
#[repr(C)]
|
|
pub struct PublicKey([c_uchar; 64]);
|
|
impl_array_newtype!(PublicKey, c_uchar, 64);
|
|
impl_raw_debug!(PublicKey);
|
|
|
|
impl PublicKey {
|
|
/// Create a new (zeroed) public key usable for the FFI interface
|
|
pub fn new() -> PublicKey { PublicKey([0; 64]) }
|
|
/// Create a new (uninitialized) public key usable for the FFI interface
|
|
#[deprecated(since = "0.15.3", note = "Please use the new function instead")]
|
|
pub unsafe fn blank() -> PublicKey { PublicKey::new() }
|
|
}
|
|
|
|
impl Default for PublicKey {
|
|
fn default() -> Self {
|
|
PublicKey::new()
|
|
}
|
|
}
|
|
|
|
impl hash::Hash for PublicKey {
|
|
fn hash<H: hash::Hasher>(&self, state: &mut H) {
|
|
state.write(&self.0)
|
|
}
|
|
}
|
|
|
|
/// Library-internal representation of a Secp256k1 signature
|
|
#[repr(C)]
|
|
pub struct Signature([c_uchar; 64]);
|
|
impl_array_newtype!(Signature, c_uchar, 64);
|
|
impl_raw_debug!(Signature);
|
|
|
|
impl Signature {
|
|
/// Create a new (zeroed) signature usable for the FFI interface
|
|
pub fn new() -> Signature { Signature([0; 64]) }
|
|
/// Create a new (uninitialized) signature usable for the FFI interface
|
|
#[deprecated(since = "0.15.3", note = "Please use the new function instead")]
|
|
pub unsafe fn blank() -> Signature { Signature::new() }
|
|
}
|
|
|
|
impl Default for Signature {
|
|
fn default() -> Self {
|
|
Signature::new()
|
|
}
|
|
}
|
|
|
|
/// Library-internal representation of an ECDH shared secret
|
|
#[repr(C)]
|
|
pub struct SharedSecret([c_uchar; 32]);
|
|
impl_array_newtype!(SharedSecret, c_uchar, 32);
|
|
impl_raw_debug!(SharedSecret);
|
|
|
|
impl SharedSecret {
|
|
/// Create a new (zeroed) signature usable for the FFI interface
|
|
pub fn new() -> SharedSecret { SharedSecret([0; 32]) }
|
|
/// Create a new (uninitialized) signature usable for the FFI interface
|
|
#[deprecated(since = "0.15.3", note = "Please use the new function instead")]
|
|
pub unsafe fn blank() -> SharedSecret { SharedSecret::new() }
|
|
}
|
|
|
|
impl Default for SharedSecret {
|
|
fn default() -> Self {
|
|
SharedSecret::new()
|
|
}
|
|
}
|
|
|
|
#[cfg(not(feature = "fuzztarget"))]
|
|
extern "C" {
|
|
/// Default ECDH hash function
|
|
pub static secp256k1_ecdh_hash_function_default: EcdhHashFn;
|
|
|
|
pub static secp256k1_nonce_function_rfc6979: NonceFn;
|
|
|
|
pub static secp256k1_nonce_function_default: NonceFn;
|
|
|
|
pub static secp256k1_context_no_precomp: *const Context;
|
|
|
|
// Contexts
|
|
pub fn secp256k1_context_preallocated_size(flags: c_uint) -> usize;
|
|
|
|
pub fn secp256k1_context_preallocated_create(prealloc: *mut c_void, flags: c_uint) -> *mut Context;
|
|
|
|
pub fn secp256k1_context_preallocated_destroy(cx: *mut Context);
|
|
|
|
pub fn secp256k1_context_preallocated_clone_size(cx: *const Context) -> usize;
|
|
|
|
pub fn secp256k1_context_preallocated_clone(cx: *const Context, prealloc: *mut c_void) -> *mut Context;
|
|
|
|
pub fn secp256k1_context_randomize(cx: *mut Context,
|
|
seed32: *const c_uchar)
|
|
-> c_int;
|
|
|
|
// Pubkeys
|
|
pub fn secp256k1_ec_pubkey_parse(cx: *const Context, pk: *mut PublicKey,
|
|
input: *const c_uchar, in_len: usize)
|
|
-> c_int;
|
|
|
|
pub fn secp256k1_ec_pubkey_serialize(cx: *const Context, output: *mut c_uchar,
|
|
out_len: *mut usize, pk: *const PublicKey,
|
|
compressed: c_uint)
|
|
-> c_int;
|
|
|
|
// Signatures
|
|
pub fn secp256k1_ecdsa_signature_parse_der(cx: *const Context, sig: *mut Signature,
|
|
input: *const c_uchar, in_len: usize)
|
|
-> c_int;
|
|
|
|
pub fn secp256k1_ecdsa_signature_parse_compact(cx: *const Context, sig: *mut Signature,
|
|
input64: *const c_uchar)
|
|
-> c_int;
|
|
|
|
pub fn ecdsa_signature_parse_der_lax(cx: *const Context, sig: *mut Signature,
|
|
input: *const c_uchar, in_len: usize)
|
|
-> c_int;
|
|
|
|
pub fn secp256k1_ecdsa_signature_serialize_der(cx: *const Context, output: *mut c_uchar,
|
|
out_len: *mut usize, sig: *const Signature)
|
|
-> c_int;
|
|
|
|
pub fn secp256k1_ecdsa_signature_serialize_compact(cx: *const Context, output64: *const c_uchar,
|
|
sig: *const Signature)
|
|
-> c_int;
|
|
|
|
pub fn secp256k1_ecdsa_signature_normalize(cx: *const Context, out_sig: *mut Signature,
|
|
in_sig: *const Signature)
|
|
-> c_int;
|
|
|
|
// ECDSA
|
|
pub fn secp256k1_ecdsa_verify(cx: *const Context,
|
|
sig: *const Signature,
|
|
msg32: *const c_uchar,
|
|
pk: *const PublicKey)
|
|
-> c_int;
|
|
|
|
pub fn secp256k1_ecdsa_sign(cx: *const Context,
|
|
sig: *mut Signature,
|
|
msg32: *const c_uchar,
|
|
sk: *const c_uchar,
|
|
noncefn: NonceFn,
|
|
noncedata: *const c_void)
|
|
-> c_int;
|
|
|
|
// EC
|
|
pub fn secp256k1_ec_seckey_verify(cx: *const Context,
|
|
sk: *const c_uchar) -> c_int;
|
|
|
|
pub fn secp256k1_ec_pubkey_create(cx: *const Context, pk: *mut PublicKey,
|
|
sk: *const c_uchar) -> c_int;
|
|
|
|
//TODO secp256k1_ec_privkey_export
|
|
//TODO secp256k1_ec_privkey_import
|
|
|
|
pub fn secp256k1_ec_privkey_tweak_add(cx: *const Context,
|
|
sk: *mut c_uchar,
|
|
tweak: *const c_uchar)
|
|
-> c_int;
|
|
|
|
pub fn secp256k1_ec_pubkey_tweak_add(cx: *const Context,
|
|
pk: *mut PublicKey,
|
|
tweak: *const c_uchar)
|
|
-> c_int;
|
|
|
|
pub fn secp256k1_ec_privkey_tweak_mul(cx: *const Context,
|
|
sk: *mut c_uchar,
|
|
tweak: *const c_uchar)
|
|
-> c_int;
|
|
|
|
pub fn secp256k1_ec_pubkey_tweak_mul(cx: *const Context,
|
|
pk: *mut PublicKey,
|
|
tweak: *const c_uchar)
|
|
-> c_int;
|
|
|
|
pub fn secp256k1_ec_pubkey_combine(cx: *const Context,
|
|
out: *mut PublicKey,
|
|
ins: *const *const PublicKey,
|
|
n: c_int)
|
|
-> c_int;
|
|
|
|
pub fn secp256k1_ecdh(
|
|
cx: *const Context,
|
|
output: *mut SharedSecret,
|
|
pubkey: *const PublicKey,
|
|
privkey: *const c_uchar,
|
|
hashfp: EcdhHashFn,
|
|
data: *mut c_void,
|
|
) -> c_int;
|
|
}
|
|
|
|
|
|
#[cfg(feature = "std")]
|
|
#[no_mangle]
|
|
/// A reimplementation of the C function `secp256k1_context_create` in rust.
|
|
///
|
|
/// This function allocates memory, the pointer should be deallocated using `secp256k1_context_destroy`
|
|
/// A failure to do so will result in a memory leak.
|
|
///
|
|
/// This will create a secp256k1 raw context.
|
|
// Returns: a newly created context object.
|
|
// In: flags: which parts of the context to initialize.
|
|
pub unsafe extern "C" fn secp256k1_context_create(flags: c_uint) -> *mut Context {
|
|
assert!(mem::align_of::<usize>() >= mem::align_of::<u8>());
|
|
assert_eq!(mem::size_of::<usize>(), mem::size_of::<&usize>());
|
|
|
|
let word_size = mem::size_of::<usize>();
|
|
let n_words = (secp256k1_context_preallocated_size(flags) + word_size - 1) / word_size;
|
|
|
|
let buf = vec![0usize; n_words + 1].into_boxed_slice();
|
|
let ptr = Box::into_raw(buf) as *mut usize;
|
|
::core::ptr::write(ptr, n_words);
|
|
let ptr: *mut usize = ptr.offset(1);
|
|
|
|
secp256k1_context_preallocated_create(ptr as *mut c_void, flags)
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
#[no_mangle]
|
|
/// A reimplementation of the C function `secp256k1_context_destroy` in rust.
|
|
///
|
|
/// This function destroys and deallcates the context created by `secp256k1_context_create`.
|
|
///
|
|
/// The pointer shouldn't be used after passing to this function, consider it as passing it to `free()`.
|
|
///
|
|
pub unsafe extern "C" fn secp256k1_context_destroy(ctx: *mut Context) {
|
|
secp256k1_context_preallocated_destroy(ctx);
|
|
let ctx: *mut usize = ctx as *mut usize;
|
|
|
|
let n_words_ptr: *mut usize = ctx.offset(-1);
|
|
let n_words: usize = ::core::ptr::read(n_words_ptr);
|
|
let slice: &mut [usize] = slice::from_raw_parts_mut(n_words_ptr , n_words+1);
|
|
let _ = Box::from_raw(slice as *mut [usize]);
|
|
}
|
|
|
|
|
|
#[no_mangle]
|
|
/// **This function is an override for the C function, this is the an edited version of the original description:**
|
|
///
|
|
/// A callback function to be called when an illegal argument is passed to
|
|
/// an API call. It will only trigger for violations that are mentioned
|
|
/// explicitly in the header. **This will cause a panic**.
|
|
///
|
|
/// The philosophy is that these shouldn't be dealt with through a
|
|
/// specific return value, as calling code should not have branches to deal with
|
|
/// the case that this code itself is broken.
|
|
///
|
|
/// On the other hand, during debug stage, one would want to be informed about
|
|
/// such mistakes, and the default (crashing) may be inadvisable.
|
|
/// When this callback is triggered, the API function called is guaranteed not
|
|
/// to cause a crash, though its return value and output arguments are
|
|
/// undefined.
|
|
///
|
|
/// See also secp256k1_default_error_callback_fn.
|
|
///
|
|
pub unsafe extern "C" fn secp256k1_default_illegal_callback_fn(message: *const c_char, _data: *mut c_void) {
|
|
use core::str;
|
|
let msg_slice = slice::from_raw_parts(message as *const u8, strlen(message));
|
|
let msg = str::from_utf8_unchecked(msg_slice);
|
|
panic!("[libsecp256k1] illegal argument. {}", msg);
|
|
}
|
|
|
|
#[no_mangle]
|
|
/// **This function is an override for the C function, this is the an edited version of the original description:**
|
|
///
|
|
/// A callback function to be called when an internal consistency check
|
|
/// fails. **This will cause a panic**.
|
|
///
|
|
/// This can only trigger in case of a hardware failure, miscompilation,
|
|
/// memory corruption, serious bug in the library, or other error would can
|
|
/// otherwise result in undefined behaviour. It will not trigger due to mere
|
|
/// incorrect usage of the API (see secp256k1_default_illegal_callback_fn
|
|
/// for that). After this callback returns, anything may happen, including
|
|
/// crashing.
|
|
///
|
|
/// See also secp256k1_default_illegal_callback_fn.
|
|
///
|
|
pub unsafe extern "C" fn secp256k1_default_error_callback_fn(message: *const c_char, _data: *mut c_void) {
|
|
use core::str;
|
|
let msg_slice = slice::from_raw_parts(message as *const u8, strlen(message));
|
|
let msg = str::from_utf8_unchecked(msg_slice);
|
|
panic!("[libsecp256k1] internal consistency check failed {}", msg);
|
|
}
|
|
|
|
|
|
unsafe fn strlen(mut str_ptr: *const c_char) -> usize {
|
|
let mut ctr = 0;
|
|
while *str_ptr != '\0' as c_char {
|
|
ctr += 1;
|
|
str_ptr = str_ptr.offset(1);
|
|
}
|
|
ctr
|
|
}
|
|
|
|
|
|
/// A trait for producing pointers that will always be valid in C. (assuming NULL pointer is a valid no-op)
|
|
/// Rust doesn't promise what pointers does it give to ZST (https://doc.rust-lang.org/nomicon/exotic-sizes.html#zero-sized-types-zsts)
|
|
/// In case the type is empty this trait will give a NULL pointer, which should be handled in C.
|
|
///
|
|
pub(crate) trait CPtr {
|
|
type Target;
|
|
fn as_c_ptr(&self) -> *const Self::Target;
|
|
fn as_mut_c_ptr(&mut self) -> *mut Self::Target;
|
|
}
|
|
|
|
impl<T> CPtr for [T] {
|
|
type Target = T;
|
|
fn as_c_ptr(&self) -> *const Self::Target {
|
|
if self.is_empty() {
|
|
ptr::null()
|
|
} else {
|
|
self.as_ptr()
|
|
}
|
|
}
|
|
|
|
fn as_mut_c_ptr(&mut self) -> *mut Self::Target {
|
|
if self.is_empty() {
|
|
ptr::null::<Self::Target>() as *mut _
|
|
} else {
|
|
self.as_mut_ptr()
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
#[cfg(feature = "fuzztarget")]
|
|
mod fuzz_dummy {
|
|
extern crate std;
|
|
use types::*;
|
|
use ffi::*;
|
|
use self::std::{ptr, mem};
|
|
use self::std::boxed::Box;
|
|
|
|
extern "C" {
|
|
pub static secp256k1_ecdh_hash_function_default: EcdhHashFn;
|
|
pub static secp256k1_nonce_function_rfc6979: NonceFn;
|
|
pub static secp256k1_context_no_precomp: *const Context;
|
|
}
|
|
|
|
// Contexts
|
|
/// Creates a dummy context, tracking flags to ensure proper calling semantics
|
|
pub unsafe fn secp256k1_context_preallocated_create(_ptr: *mut c_void, flags: c_uint) -> *mut Context {
|
|
let b = Box::new(Context(flags as i32));
|
|
Box::into_raw(b)
|
|
}
|
|
|
|
/// Return dummy size of context struct.
|
|
pub unsafe fn secp256k1_context_preallocated_size(_flags: c_uint) -> usize {
|
|
mem::size_of::<Context>()
|
|
}
|
|
|
|
/// Return dummy size of context struct.
|
|
pub unsafe fn secp256k1_context_preallocated_clone_size(cx: *mut Context) -> usize {
|
|
mem::size_of::<Context>()
|
|
}
|
|
|
|
/// Copies a dummy context
|
|
pub unsafe fn secp256k1_context_preallocated_clone(cx: *const Context, prealloc: *mut c_void) -> *mut Context {
|
|
let ret = prealloc as *mut Context;
|
|
*ret = (*cx).clone();
|
|
ret
|
|
}
|
|
|
|
/// "Destroys" a dummy context
|
|
pub unsafe fn secp256k1_context_preallocated_destroy(cx: *mut Context) {
|
|
(*cx).0 = 0;
|
|
}
|
|
|
|
/// Asserts that cx is properly initialized
|
|
pub unsafe fn secp256k1_context_randomize(cx: *mut Context,
|
|
_seed32: *const c_uchar)
|
|
-> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
1
|
|
}
|
|
|
|
// TODO secp256k1_context_set_illegal_callback
|
|
// TODO secp256k1_context_set_error_callback
|
|
// (Actually, I don't really want these exposed; if either of these
|
|
// are ever triggered it indicates a bug in rust-secp256k1, since
|
|
// one goal is to use Rust's type system to eliminate all possible
|
|
// bad inputs.)
|
|
|
|
// Pubkeys
|
|
/// Parse 33/65 byte pubkey into PublicKey, losing compressed information
|
|
pub unsafe fn secp256k1_ec_pubkey_parse(cx: *const Context, pk: *mut PublicKey,
|
|
input: *const c_uchar, in_len: usize)
|
|
-> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
match in_len {
|
|
33 => {
|
|
if (*input.offset(1) > 0x7f && *input != 2) || (*input.offset(1) <= 0x7f && *input != 3) {
|
|
0
|
|
} else {
|
|
ptr::copy(input.offset(1), (*pk).0[0..32].as_mut_ptr(), 32);
|
|
ptr::copy(input.offset(1), (*pk).0[32..64].as_mut_ptr(), 32);
|
|
test_pk_validate(cx, pk)
|
|
}
|
|
},
|
|
65 => {
|
|
if *input != 4 && *input != 6 && *input != 7 {
|
|
0
|
|
} else {
|
|
ptr::copy(input.offset(1), (*pk).0.as_mut_ptr(), 64);
|
|
test_pk_validate(cx, pk)
|
|
}
|
|
},
|
|
_ => 0
|
|
}
|
|
}
|
|
|
|
/// Serialize PublicKey back to 33/65 byte pubkey
|
|
pub unsafe fn secp256k1_ec_pubkey_serialize(cx: *const Context, output: *mut c_uchar,
|
|
out_len: *mut usize, pk: *const PublicKey,
|
|
compressed: c_uint)
|
|
-> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
if test_pk_validate(cx, pk) != 1 { return 0; }
|
|
if compressed == SECP256K1_SER_COMPRESSED {
|
|
assert_eq!(*out_len, 33);
|
|
if (*pk).0[0] > 0x7f {
|
|
*output = 2;
|
|
} else {
|
|
*output = 3;
|
|
}
|
|
ptr::copy((*pk).0.as_ptr(), output.offset(1), 32);
|
|
} else if compressed == SECP256K1_SER_UNCOMPRESSED {
|
|
assert_eq!(*out_len, 65);
|
|
*output = 4;
|
|
ptr::copy((*pk).0.as_ptr(), output.offset(1), 64);
|
|
} else {
|
|
panic!("Bad flags");
|
|
}
|
|
1
|
|
}
|
|
|
|
// Signatures
|
|
pub unsafe fn secp256k1_ecdsa_signature_parse_der(_cx: *const Context, _sig: *mut Signature,
|
|
_input: *const c_uchar, _in_len: usize)
|
|
-> c_int {
|
|
unimplemented!();
|
|
}
|
|
|
|
/// Copies input64 to sig, checking the pubkey part is valid
|
|
pub unsafe fn secp256k1_ecdsa_signature_parse_compact(cx: *const Context, sig: *mut Signature,
|
|
input64: *const c_uchar)
|
|
-> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
if secp256k1_ec_seckey_verify(cx, input64.offset(32)) != 1 { return 0; } // sig should be msg32||sk
|
|
ptr::copy(input64, (*sig).0[..].as_mut_ptr(), 64);
|
|
1
|
|
}
|
|
|
|
pub unsafe fn ecdsa_signature_parse_der_lax(_cx: *const Context, _sig: *mut Signature,
|
|
_input: *const c_uchar, _in_len: usize)
|
|
-> c_int {
|
|
unimplemented!();
|
|
}
|
|
|
|
/// Copies up to 72 bytes into output from sig
|
|
pub unsafe fn secp256k1_ecdsa_signature_serialize_der(cx: *const Context, output: *mut c_uchar,
|
|
out_len: *mut usize, sig: *const Signature)
|
|
-> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
|
|
let mut len_r = 33;
|
|
if *(*sig).0.as_ptr().offset(0) < 0x80 {
|
|
len_r -= 1;
|
|
}
|
|
let mut len_s = 33;
|
|
if *(*sig).0.as_ptr().offset(32) < 0x80 {
|
|
len_s -= 1;
|
|
}
|
|
|
|
assert!(*out_len >= (6 + len_s + len_r) as usize);
|
|
|
|
*output.offset(0) = 0x30;
|
|
*output.offset(1) = 4 + len_r + len_s;
|
|
*output.offset(2) = 0x02;
|
|
*output.offset(3) = len_r;
|
|
if len_r == 33 {
|
|
*output.offset(4) = 0;
|
|
ptr::copy((*sig).0[..].as_ptr(), output.offset(5), 32);
|
|
} else {
|
|
ptr::copy((*sig).0[..].as_ptr(), output.offset(4), 32);
|
|
}
|
|
*output.offset(4 + len_r as isize) = 0x02;
|
|
*output.offset(5 + len_r as isize) = len_s;
|
|
if len_s == 33 {
|
|
*output.offset(6 + len_r as isize) = 0;
|
|
ptr::copy((*sig).0[..].as_ptr().offset(32), output.offset(7 + len_r as isize), 32);
|
|
} else {
|
|
ptr::copy((*sig).0[..].as_ptr().offset(32), output.offset(6 + len_r as isize), 32);
|
|
}
|
|
1
|
|
}
|
|
|
|
/// Copies sig to output64
|
|
pub unsafe fn secp256k1_ecdsa_signature_serialize_compact(cx: *const Context, output64: *mut c_uchar,
|
|
sig: *const Signature)
|
|
-> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
ptr::copy((*sig).0[..].as_ptr(), output64, 64);
|
|
1
|
|
}
|
|
|
|
pub unsafe fn secp256k1_ecdsa_signature_normalize(_cx: *const Context, _out_sig: *mut Signature,
|
|
_in_sig: *const Signature)
|
|
-> c_int {
|
|
unimplemented!();
|
|
}
|
|
|
|
// ECDSA
|
|
/// Verifies that sig is msg32||pk[0..32]
|
|
pub unsafe fn secp256k1_ecdsa_verify(cx: *const Context,
|
|
sig: *const Signature,
|
|
msg32: *const c_uchar,
|
|
pk: *const PublicKey)
|
|
-> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
assert!((*cx).0 as u32 & SECP256K1_START_VERIFY == SECP256K1_START_VERIFY);
|
|
if test_pk_validate(cx, pk) != 1 { return 0; }
|
|
for i in 0..32 {
|
|
if (*sig).0[i] != *msg32.offset(i as isize) {
|
|
return 0;
|
|
}
|
|
}
|
|
if (*sig).0[32..64] != (*pk).0[0..32] {
|
|
0
|
|
} else {
|
|
1
|
|
}
|
|
}
|
|
|
|
/// Sets sig to msg32||sk
|
|
pub unsafe fn secp256k1_ecdsa_sign(cx: *const Context,
|
|
sig: *mut Signature,
|
|
msg32: *const c_uchar,
|
|
sk: *const c_uchar,
|
|
_noncefn: NonceFn,
|
|
_noncedata: *const c_void)
|
|
-> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
assert!((*cx).0 as u32 & SECP256K1_START_SIGN == SECP256K1_START_SIGN);
|
|
if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; }
|
|
ptr::copy(msg32, (*sig).0[0..32].as_mut_ptr(), 32);
|
|
ptr::copy(sk, (*sig).0[32..64].as_mut_ptr(), 32);
|
|
1
|
|
}
|
|
|
|
// EC
|
|
/// Checks that pk != 0xffff...ffff and pk[0..32] == pk[32..64]
|
|
pub unsafe fn test_pk_validate(cx: *const Context,
|
|
pk: *const PublicKey) -> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
if (*pk).0[0..32] != (*pk).0[32..64] || secp256k1_ec_seckey_verify(cx, (*pk).0[0..32].as_ptr()) == 0 {
|
|
0
|
|
} else {
|
|
1
|
|
}
|
|
}
|
|
|
|
/// Checks that sk != 0xffff...ffff
|
|
pub unsafe fn secp256k1_ec_seckey_verify(cx: *const Context,
|
|
sk: *const c_uchar) -> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
let mut res = 0;
|
|
for i in 0..32 {
|
|
if *sk.offset(i as isize) != 0xff { res = 1 };
|
|
}
|
|
res
|
|
}
|
|
|
|
/// Sets pk to sk||sk
|
|
pub unsafe fn secp256k1_ec_pubkey_create(cx: *const Context, pk: *mut PublicKey,
|
|
sk: *const c_uchar) -> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; }
|
|
ptr::copy(sk, (*pk).0[0..32].as_mut_ptr(), 32);
|
|
ptr::copy(sk, (*pk).0[32..64].as_mut_ptr(), 32);
|
|
1
|
|
}
|
|
|
|
//TODO secp256k1_ec_privkey_export
|
|
//TODO secp256k1_ec_privkey_import
|
|
|
|
/// Copies the first 16 bytes of tweak into the last 16 bytes of sk
|
|
pub unsafe fn secp256k1_ec_privkey_tweak_add(cx: *const Context,
|
|
sk: *mut c_uchar,
|
|
tweak: *const c_uchar)
|
|
-> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; }
|
|
ptr::copy(tweak.offset(16), sk.offset(16), 16);
|
|
*sk.offset(24) = 0x7f; // Ensure sk remains valid no matter what tweak was
|
|
1
|
|
}
|
|
|
|
/// The PublicKey equivalent of secp256k1_ec_privkey_tweak_add
|
|
pub unsafe fn secp256k1_ec_pubkey_tweak_add(cx: *const Context,
|
|
pk: *mut PublicKey,
|
|
tweak: *const c_uchar)
|
|
-> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
if test_pk_validate(cx, pk) != 1 { return 0; }
|
|
ptr::copy(tweak.offset(16), (*pk).0[16..32].as_mut_ptr(), 16);
|
|
ptr::copy(tweak.offset(16), (*pk).0[16+32..64].as_mut_ptr(), 16);
|
|
(*pk).0[24] = 0x7f; // Ensure pk remains valid no matter what tweak was
|
|
(*pk).0[24+32] = 0x7f; // Ensure pk remains valid no matter what tweak was
|
|
1
|
|
}
|
|
|
|
/// Copies the last 16 bytes of tweak into the last 16 bytes of sk
|
|
pub unsafe fn secp256k1_ec_privkey_tweak_mul(cx: *const Context,
|
|
sk: *mut c_uchar,
|
|
tweak: *const c_uchar)
|
|
-> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
if secp256k1_ec_seckey_verify(cx, sk) != 1 { return 0; }
|
|
ptr::copy(tweak.offset(16), sk.offset(16), 16);
|
|
*sk.offset(24) = 0x00; // Ensure sk remains valid no matter what tweak was
|
|
1
|
|
}
|
|
|
|
/// The PublicKey equivalent of secp256k1_ec_privkey_tweak_mul
|
|
pub unsafe fn secp256k1_ec_pubkey_tweak_mul(cx: *const Context,
|
|
pk: *mut PublicKey,
|
|
tweak: *const c_uchar)
|
|
-> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
if test_pk_validate(cx, pk) != 1 { return 0; }
|
|
ptr::copy(tweak.offset(16), (*pk).0[16..32].as_mut_ptr(), 16);
|
|
ptr::copy(tweak.offset(16), (*pk).0[16+32..64].as_mut_ptr(), 16);
|
|
(*pk).0[24] = 0x00; // Ensure pk remains valid no matter what tweak was
|
|
(*pk).0[24+32] = 0x00; // Ensure pk remains valid no matter what tweak was
|
|
1
|
|
}
|
|
|
|
pub unsafe fn secp256k1_ec_pubkey_combine(cx: *const Context,
|
|
out: *mut PublicKey,
|
|
ins: *const *const PublicKey,
|
|
n: c_int)
|
|
-> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
assert!(n <= 32 && n >= 0); //TODO: Remove this restriction?
|
|
for i in 0..n {
|
|
if test_pk_validate(cx, *ins.offset(i as isize)) != 1 { return 0; }
|
|
(*out).0[(i*32/n) as usize..((i+1)*32/n) as usize].copy_from_slice(&(**ins.offset(i as isize)).0[(i*32/n) as usize..((i+1)*32/n) as usize]);
|
|
}
|
|
ptr::copy((*out).0[0..32].as_ptr(), (*out).0[32..64].as_mut_ptr(), 32);
|
|
(*out).0[24] = 0x7f; // pk should always be valid
|
|
(*out).0[24+32] = 0x7f; // pk should always be valid
|
|
test_pk_validate(cx, out)
|
|
}
|
|
|
|
/// Sets out to point[0..16]||scalar[0..16]
|
|
pub unsafe fn secp256k1_ecdh(
|
|
cx: *const Context,
|
|
out: *mut SharedSecret,
|
|
point: *const PublicKey,
|
|
scalar: *const c_uchar,
|
|
_hashfp: EcdhHashFn,
|
|
_data: *mut c_void,
|
|
) -> c_int {
|
|
assert!(!cx.is_null() && (*cx).0 as u32 & !(SECP256K1_START_NONE | SECP256K1_START_VERIFY | SECP256K1_START_SIGN) == 0);
|
|
if secp256k1_ec_seckey_verify(cx, scalar) != 1 { return 0; }
|
|
|
|
let mut scalar_prefix = [0; 16];
|
|
ptr::copy(scalar, scalar_prefix[..].as_mut_ptr(), 16);
|
|
|
|
if (*point).0[0..16] > scalar_prefix[0..16] {
|
|
(*out).0[0..16].copy_from_slice(&(*point).0[0..16]);
|
|
ptr::copy(scalar, (*out).0[16..32].as_mut_ptr(), 16);
|
|
} else {
|
|
ptr::copy(scalar, (*out).0[0..16].as_mut_ptr(), 16);
|
|
(*out).0[16..32].copy_from_slice(&(*point).0[0..16]);
|
|
}
|
|
(*out).0[16] = 0x00; // result should always be a valid secret key
|
|
1
|
|
}
|
|
}
|
|
#[cfg(feature = "fuzztarget")]
|
|
pub use self::fuzz_dummy::*;
|
|
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::ffi::CString;
|
|
use super::strlen;
|
|
|
|
#[test]
|
|
fn test_strlen() {
|
|
let orig = "test strlen \t \n";
|
|
let test = CString::new(orig).unwrap();
|
|
|
|
assert_eq!(orig.len(), unsafe {strlen(test.as_ptr())});
|
|
}
|
|
}
|