
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Review-Report Polychain Laptop Security 09.-10.2020
Cure53, Dr.-Ing. M. Heiderich, M. Wege, L. Merino

Index
Introduction

Scope

Identified Vulnerabilities

POL-01-006 WP1: git checkout <hash> does not ensure integrity (Medium)

POL-01-007 WP1: Wireless USB device attack (Medium)

POL-01-008 WP1: Emulated keyboard USB device attack (Medium)

Miscellaneous Issues

POL-01-001 WP3: Attack surface in compromised USB devices (Medium)

POL-01-002 WP3: Insufficient Docker seccomp sandboxing (Low)

POL-01-003 WP3: Redundant CVE information in automatic audit report (Info)

POL-01-004 WP1: Build container allows expired package release signing (Low)

POL-01-005 WP3: One-sided single-device root of trust verification (Low)

POL-01-009 WP3: Mandatory Access Control mechanism missing (Low)

POL-01-010 WP3: User-privilege separation in build environment missing (Low)

POL-01-011 WP3: Reducing attack surface of Airgap OS kernel driver (High)

POL-01-012 WP3: Re-evaluate lax IOMMU configuration for Heads (Low)

POL-01-013 WP3: Mitigating physical power analysis (Info)

POL-01-014 WP3: Removal of internal lithium battery (Info)

POL-01-015 WP1: Missing security hardening flags in buildroot configuration (Low)

POL-01-016 WP1: Adding support for RAM encryption (Info)

POL-01-017 WP1: Airgap OS kernel lacks hardening flags (Medium)

POL-01-018 WP1: Updating Airgap OS Linux kernel to 5.8.y (Low)

Conclusions

Cure53, Berlin · 11/03/20 1/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“The emergence of bitcoin and subsequent blockchain technologies has generated a
new digital asset class in which scarcity is based on mathematical properties. Through
cryptographic verification and game-theoretic equilibrium, blockchain-based digital
assets can be created, issued, and transmitted using software. Polychain is an
investment firm committed to exceptional returns for investors through actively managed
portfolios of these blockchain assets.”

From https://polychain.capital/

This report describes a rather unusual assignment tackling security of the specialized
device developed by Polychain LP. Carried out by Cure53 in September and October
2020, this assignment focused on the very specialized secure laptop setup.

To give some context, the project had a very clear focus in that Polychain LP sought to
find out whether the sources, configurations and surrounding aspects of their laptop
device and its setup are secure enough in the context of being used for security-
demanding operations. In other words, the laptop devices would be deployed for high-
risk processes, such as transaction signing and similar. Before the assessments began,
Cure53 was thoroughly briefed about expectations, use-cases planned for the laptops,
the running software, as well as possible threats and threat actors’ capabilities. A long
Q&A session was held prior to the quote being issued, so as to make sure that all
involved parties are clear on the objectives and procedures for this assessment.

In terms of resources, the Cure53 team assembled for this task consisted of several
hand-picked consultants who spent a total of twenty days conducting this work. It should
be clarified that the team was given a budget to order special hardware needed for this
project, namely the “Librem 15 v4” laptops from Purism, SPC. All hands-on testing was
executed on those laptops, while standard code auditing took place on the consultants’
setup as usual. Besides hardware, the team could leverage access to several code
repositories hosting secure boot-loader code. Auditing said code and relevant
dependencies was one of the main tasks in this project.

For better structuring, the project was then split into three separate work packages
(WPs), namely:

• WP1: Security Tests & Code Audits against “Heads” & “Airgap” Sources
• WP2: Security Tests & Code Audits against relevant project dependencies
• WP3: Security Assessments against build- and release-system as well as

system- & hardware-specific controls present on reference laptop “Librem 15 v4”.

Cure53, Berlin · 11/03/20 2/19

https://cure53.de/
https://polychain.capital/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Given the extensive preparatory phase, the project could start on time and mostly
progressed well. Communications during this test took place via the Matrix messenger
protocol of the Element application. A dedicated channel was created and populated
with all involved personnel from Polychain and Cure53. The discussions and exchanges
were quite intense and extensive. They were very helpful because, at the beginning of
the project, a lot of time had to be spent to successfully complete installations of the
software in scope on the tested hardware. The task necessitated substantial patching
until a satisfying state was reached and the actual testing became possible.

It needs to be emphasized that the Polychain team was essential for facilitating good
progress of this Cure53 examination. They were especially forthcoming in the early
phase of the project. Once the initial hurdles were successfully tackled together,
additional Cure53 testers joined the project and started working on the scope, from then
on moving forward without noteworthy hold-ups. To reiterate, the long and thorough
preparation phase and the mutual work on accomplishing a working setup cannot be
disregarded in relation to findings.

As for the results, the project yielded eighteen discoveries. The vast majority of them -
namely fifteen - should be considered as general weaknesses and miscellaneous issues
that largely deal with hardening recommendations and have low or negligible threat
capacities. There is one exception, however, as exposure of the attack surface within a
kernel driver received a High-severity score. All three spotted security vulnerabilities
were rated as Medium. Ahead of conclusions, it can be said that this represents a rather
positive outcome with regard to the security picture of the tested and audited software
and hardware combo.

The report will now shed some light on scope and test setup. Findings will be ordered
first by groups of vulnerabilities and weaknesses, and then chronologically within the
categories. Each finding will be accompanied by a technical description, a PoC where
possible, as well as mitigation or fix advice. After that, the report will close with a
conclusion, in which the Cure53 team will elaborate on the general impressions gained
over the course of this test and audit. In this section, a dedicated attempt will be made at
identifying where bug patterns worth looking into are located. Tailored hardening advice
is also incorporated to the final section in order to facilitate further amelioration of the
security standing of the Polychain laptop devices and the surrounding compound.

Cure53, Berlin · 11/03/20 3/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Security Reviews & Assessments against Polychain Laptop Setup

◦ WP1: Security Tests & Code Audits against “Heads” & “Airgap” Sources
▪ Access to the auditable sources granted; inspection and thorough audit of the

source for issues potentially leading to vulnerabilities.
▪ Core focus will be directed to issues leading to system compromise via user-

controlled data, rogue hardware, faulty driver software or any other attack vector
that manages to delegate potentially harmful user-input to any form of risky sink
or internal device storage.

◦ WP2: Security Tests & Code Audits against relevant project dependencies
▪ The list of dependencies inspected; security audits against all parts of the

dependencies that might contribute to the weakening or exploitation of the
software or the hardware in scope for this audit (items mentioned in WP1 as well
as the reference hardware)

◦ WP3: Security Assessments against build- and release-system as well as system- &
hardware-specific controls present on reference laptop “Librem 15 v4”
▪ A review of the build pipeline, code version system, deployment, roll-out and

other aspects of the utilized build and release systems in scope.
▪ Further, an inspection of the reference hardware will be performed, checking said

Librem 15 laptops for possible weaknesses relating to exposed hardware ports
and connectors, pre-installed drivers, possible physical weaknesses and other
means for an attacker to gain illegitimate control over the reliability and security
controls offered by the solution in scope.

Cure53, Berlin · 11/03/20 4/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. POL-01-001) for the purpose of facilitating any
future follow-up correspondence.

POL-01-006 WP1: git checkout <hash> does not ensure integrity (Medium)
It was found that several scripts (such as scripts/fetch and config/container/Dockerfile)
use git repositories, combining git clone with git checkout <commit-id> to set the
repository contents to a well-known state. It has been observed that git checkout
semantics are ambiguous and allow either checking out a given commit ID or a branch
name, giving priority to verifying a branch when its name matches an already present
commit ID.

This enables a source code supply-chain attack, where a malicious repository
administrator might create an arbitrary number of branches in their repositories. Those
could be named after well-known commit IDs to deliver modified source files with
malicious behavior. A user cloning a repository and checking out a commit ID afterwards
would receive the malicious copy of the source files instead of the well-known and
expected ones. Additionally, the attack might succeed unnoticed in the absence of
additional code integrity checks.

It has been observed that GitHub rejects “branch or tag names consisting of 40 hex
characters” and all the repositories used in the audited Dockerfile are hosted on GitHub,
making the attack not possible at the moment. Nevertheless, it is recommended not to
rely on the GitHub mitigation and deploy additional checks.

Commands to reproduce:
$ cat setup.sh
nice-setup-command
$ git rev-parse HEAD
2ef5bba9853fc675d4ca0835c93adc49852a120c
$ echo 'super-evil-command' > setup.sh
$ git add setup.sh
$ git commit -m'nobody will notice this'
[master b40cd22] nobody will notice this
 1 file changed, 1 insertion(+), 1 deletion(-)
$ git branch 2ef5bba9853fc675d4ca0835c93adc49852a120c
$ git checkout 2ef5bba9853fc675d4ca0835c93adc49852a120c
warning: refname '2ef5bba9853fc675d4ca0835c93adc49852a120c' is ambiguous.

Cure53, Berlin · 11/03/20 5/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Git normally never creates a ref that ends with 40 hex characters
because it will be ignored when you just specify 40-hex. These refs
may be created by mistake. For example,

 git switch -c $br $(git rev-parse ...)

where "$br" is somehow empty and a 40-hex ref is created. Please
examine these refs and maybe delete them. Turn this message off by
running "git config advice.objectNameWarning false"
Switched to branch '2ef5bba9853fc675d4ca0835c93adc49852a120c'
$ echo $?
0
$ git rev-parse HEAD
b40cd22be259f46f57ff6e6369518b83f9ef3884
$ cat setup.sh
Super-evil-command

As observed in the log, a branch was named after a known commit ID, and the git
checkout <commit-ID> operation has switched to the malicious branch instead of the
actual commit.

After checking out a particular commit by commit ID, a mitigation should take the form of
a check that the right commit was landed. This should be done by performing a git rev-
parse HEAD and matching the returned commit ID with the expected one.

POL-01-007 WP1: Wireless USB device attack (Medium)

It was observed that the usage of an external USB WiFi dongle potentially opens the
door to remote attacks. Depending on other USB characteristics, an attached device
may allow bidirectional RF communication between the laptop and the outside world to
defeat the Airgap properties. The current AirgapOS buildroot kernel has a full set of
device drivers including USB wireless devices, so it would likely be possible to establish
actual IP network communications with the laptop.

It is recommended that, in order to eliminate the risk of malicious and rogue USB
devices being plugged into and used by the Airgap system, the USB driver support in the
Linux kernel should be completely removed. Additionally, the maintainers are
encouraged to remove networking drivers from the Airgap build.

The client has acknowledged this finding and the underlying issue of exfiltrating data via
USB devices regardless of the physical transmission or storage properties. It has been
indicated that this particular aspect will be resolved soon. Their main countermeasure is
dual custody for those devices, as well as treating them as somewhat compromised in
the threat model.

Cure53, Berlin · 11/03/20 6/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

POL-01-008 WP1: Emulated keyboard USB device attack (Medium)
It was found that, similar to POL-01-007, any attached USB device can be enumerated
as an additional Human Interface Device (HID). This opens the door to a range of well-
known emulated keyboard attacks that work by injecting keystrokes in the Airgap laptop.
One example could involve inserting additional command line parameters or commands
when interacting with a shell.

Notably, legitimate devices like the Yubikey series 5 devices use a similar HID
enumeration functionality to automatically type certain keys upon request in their default
configuration.

The HID Keyboard interface passes output from the YubiKey to the host system
as keystrokes from a virtual keyboard, and can use the HID Keyboard channel to
communicate back to the YubiKey.

It is recommended to take measures to severely restrict or completely remove HID
support in the host system for USB devices which are inserted during the key ceremony.
According to a discussion with the client, the built-in laptop keyboard of the target Librem
hardware is not connected via USB HID and no legitimate HID devices are required after
boot. Therefore, one solution could be to remove or block the relevant HID Linux kernel
driver to prevent usage. Alternatively, legitimate HID devices can be accepted
individually after insertion.

Cure53, Berlin · 11/03/20 7/19

https://cure53.de/
https://developers.yubico.com/Developer_Program/Guides/YubiKey_Hardware.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

POL-01-001 WP3: Attack surface in compromised USB devices (Medium)
It was observed that the usage of external USB devices such as the Nitrokey (for trusted
boot verification) and USB-based GPG smartcard devices (for key ceremony operations)
represent a significant attack vector towards the trusted boot system, operating system
and userland software.

Compromised USB devices, which are introduced to the key ceremony by either a
malicious insider or a supply chain attack, provide an opportunity to trigger software
problems in a wide range of subsystems unless extensive measures are taken to
prevent this. While no serious problems in the analyzed software (such as the nitrokey-
hotp-verification tool) have been found, it is recommended to treat the physical USB
access as one of the main attack vectors.

It is recommended to undertake additional efforts to:

● Reduce the array of software reachable via USB
● Harden the essential software which is functionally required for USB interactions
● Require manual approval before new USB devices are enumerated post-boot
● Detect physical changes of essential USB devices via tamper-evidence

It is further recommended to look into the question of making the Nitrokey more
trustworthy and tamper-evident. Previous vulnerabilities affecting similar Nitrokey
hardware variants suggest that partial cloning of an original device after destructive
physical access should be taken into account when deciding on the verification steps.
Depending on the attack method, such a tamper check would need to detect the
presence of additional circuitry or modified firmware, which is unfortunately somewhat
difficult to achieve during a key ceremony. See POL-01-005 for additional
recommendations.

Cure53, Berlin · 11/03/20 8/19

https://cure53.de/
https://github.com/Nitrokey/nitrokey-hotp-verification
https://github.com/Nitrokey/nitrokey-hotp-verification
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

POL-01-002 WP3: Insufficient Docker seccomp sandboxing (Low)
It was found that the Docker containers for the reproducible build verification steps are
started with --security-opt seccomp=unconfined which effectively removes seccomp
sandboxing from the host kernel.

Complete removal of seccomp limits is not advised. It is recommended to isolate the
required permissions and instead use a custom seccomp profile, if the default one is not
found permissive enough for the required build operations.

POL-01-003 WP3: Redundant CVE information in automatic audit report (Info)
During the analysis of the audit step within the build environment, it was observed that
over half of the listed CVEs in container_package_cves.txt were identical duplicates.
This behavior is caused by the debsecan report generation program.

It is recommended to evaluate the built-in filter parameters of debsecan, such as --only-
fixed along with some post-processing on the output listing. This will help to reduce
manual work required to analyze the CVE reports.

POL-01-004 WP1: Build container allows expired package release signing (Low)
It was found that the Airgap build container, as configured in config/container/Dockerfile,
globally disables the Acquire::Check-Valid-Until APT flag, thus permitting replay attacks
against the otherwise expired APT archive signatures. In combination with the fact that
plain HTTP connections are used to connect to the repository mirrors, this enables a
whole range of downgrade and APT attacks via mirror administration and network MitM.

Affected Files:
apt.conf
Acquire::Check-Valid-Until "false";

sources.list
deb http://deb.debian.org/debian buster main
deb http://snapshot.debian.org/archive/debian/20200910T000000Z buster main
deb http://security.debian.org/debian-security buster/updates main
deb http://snapshot.debian.org/archive/debian-security/20200910T000000Z
buster/updates main
deb http://deb.debian.org/debian buster-updates main
deb http://snapshot.debian.org/archive/debian/20200910T000000Z buster-updates
main

It is assumed the aforementioned flag has been disabled to keep snapshot mirrors
working under extended circumstances. Thus, it is recommended to apply the Check-
Valid-Until option to any sources.list entries requiring it. This should be done together

Cure53, Berlin · 11/03/20 9/19

https://cure53.de/
https://docs.docker.com/engine/security/seccomp/
https://docs.docker.com/engine/security/seccomp/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

with introducing an additional mechanism which preserves integrity of the downloaded
packages (e.g., signed hashes per package or similar means). It is additionally highly
recommended to upgrade the mirror connections to HTTPS.

The client acknowledged that the current deployment is intentional and aimed at keeping
apt archive snapshots functional. It is, however, advised to implement at least some sort
of release key validity restrictions. One approach would be to only allow keys that were
actually still valid on the snapshot date. Another approach would be to add a custom
verification step via direct hash comparisons, though this depends heavily on
implementation details. See airgap/scripts/update-packages for dynamic apt source
configuration.

POL-01-005 WP3: One-sided single-device root of trust verification (Low)
It was observed that the HOTP verification mechanism allows a verification of the laptop-
provided boot state via the Nitrokey USB key, which is a powerful protection against
attacks on the BIOS Root-of-Trust. To our knowledge, however, there is currently no
designated key ceremony mechanism in place to cryptographically verify the authenticity
of the Nitrokey or allow the redundant usage of multiple Nitrokey devices for extended
Root-of-Trust verification.

A malicious insider could, therefore, replace the Nitrokey device with a functional clone
that accepts a different set of HOTP codes as “verified”. In an extreme form, this clone
may simply accept all HTOP codes as “verified”, regardless of the actual laptop boot
security state. Combined with other attacks, this may eventually signify full circumvention
of the hardware-assisted root of trust verification.

It is recommended to apply the as many of the following countermeasures as possible:

• Make the paired Nitrokey device harder to replace covertly during the ceremony
by attaching it to a larger physical object.

• Allow visual detection of a replaced device by adding custom seals or markers
that are difficult to clone. Inspect them early during the ceremony.

• Use additional cryptographic protocols of the Nitrokey, such as OpenGPG
support, to verify authenticity of the device.

• Use the Heads’ TPMTOTP verification mechanism to establish a second
verification channel on another trusted verification device. Special care should be
taken that this second device conforms to the existing Airgap requirements.

The proposed countermeasures have already been discussed extensively with the client.

Cure53, Berlin · 11/03/20 10/19

https://cure53.de/
https://trmm.net/Tpmtotp
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

POL-01-009 WP3: Mandatory Access Control mechanism missing (Low)
It was found that the analyzed version of the Airgap buildroot system is not utilizing any
sort of Mandatory Access Control (MAC) mechanism, such as SELinux1 or AppArmor2.
These are normally used to restrict capabilities and permissions of programs running
inside the Airgap system and, thus, achieve a strict isolation and reduction of attack
surface One of the benefits of using AppArmor over SELinux is that AppArmor controls
access to programs rather than to users via Linux kernel-loaded profiles.

Besides applying either SELinux or AppArmor, an additional layer of security could be
achieved by using seccomp3 filtering, effectively limiting the number of system calls an
application is allowed to invoke. It is recommended to utilize SELinux / AppArmor as well
as seccomp filtering in order to reduce the potential attack surface and properly sandbox
applications running inside the Airgap system.

POL-01-010 WP3: User-privilege separation in build environment missing (Low)
It was observed that the audited version of the Airgap build system contains the
following Docker configuration in config/container/Dockerfile:

Create build user with sudo privs
RUN useradd -G plugdev,sudo -ms /bin/bash build \

&& chown -R build:build /home/build \
&& echo '%sudo ALL=(ALL) NOPASSWD:ALL' >> /etc/sudoers

This essentially grants the default build user-account full root permissions within the
container. Malicious code running at build time due to some compromised build
dependency could leverage the missing privilege separation towards a container
escape.

It is, therefore, recommended to implement stronger sudo restrictions or completely
remove sudo permissions from the build user, if possible. The unconstrained sudo
functionality described above was confirmed by the client and flagged for removal in the
latest revision of Airgap.

1 https://wiki.centos.org/HowTos/SELinux
2 https://wiki.ubuntu.com/AppArmor
3 https://man7.org/linux/man-pages/man2/seccomp.2.html

Cure53, Berlin · 11/03/20 11/19

https://cure53.de/
https://man7.org/linux/man-pages/man2/seccomp.2.html
https://wiki.ubuntu.com/AppArmor
https://wiki.centos.org/HowTos/SELinux
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

POL-01-011 WP3: Reducing attack surface of Airgap OS kernel driver (High)
It was found that the analyzed version of the Airgap buildroot system contains a generic
Linux build configuration with a wide variety of Linux device drivers, e.g. networking
drivers, among others. Consequently, the system has a large attack surface with regard
to drivers that may be loaded, depending on external device enumeration or made
available to malicious Linux userland software. The following screenshot provides a list
of loaded kernel drivers as modules.

Fig.: lsmod output on Airgap OS

It has to be noted that many additional drivers are located inside the Airgap build and
could potentially be loaded by the Airgap system. The above list contains all loaded
kernel modules, including the ones which are dynamically loaded, meaning not only the
drivers which are built statically into the kernel image.

It is recommended to evaluate stronger restrictions for the kernel build profile, for
example using items based on the Heads configuration for Librem devices. Besides
security improvements, this should also largely accelerate the build process for the main
system.

This liberal configuration of the available modules for the current setup has been
acknowledged by the client. Apparently, a much more restricted version was already
available with previous releases of Airgap but was temporarily relaxed for functional
reasons. A maximally restricted version is being worked on by the client at present.

Cure53, Berlin · 11/03/20 12/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

POL-01-012 WP3: Re-evaluate lax IOMMU configuration for Heads (Low)
It was observed that the audited version of the Airgap system configures Heads to boot
with a reduced IO memory management unit (IOMMU) safety state via
intel_iommu=igfx_off.

build/coreboot-4.12/librem15v4/.config
CONFIG_LINUX_COMMAND_LINE="intel_iommu=igfx_off quiet loglevel=3"

This allows the graphics’ subsystem to perform insecure device memory accesses
during boot. It is recommended to evaluate if a relaxed memory access configuration is
still required, even though Cure53 is unaware of any direct security-related
consequences. It has to be noted that the main Linux starts without the igfx_off flag.

The described relaxation of memory access restrictions was apparently necessary to
work around some functional graphics issues in the past and is already being re-
evaluated by the client.

POL-01-013 WP3: Mitigating physical power analysis (Info)
It was found that power analysis attacks via high-frequency observations of the laptop
power consumption represent a risk for the confidentiality of the cryptographic
operations on the Airgap laptop. Special electronic circuitry in the power supply path or
with connection to essential voltage rails may covertly sample, process, record or
transmit such trace data. In the worst-case scenario, this may allow the eventual
reconstruction of cryptographic keys or similar cryptographic secrets by an adversarial
third-party.

A particularly interesting place to hide electronic observation equipment during the key
ceremony could be the standard AC-DC external laptop power supply. It is difficult to
inspect non-destructively, inconspicuously and interchangeably. It also provides
extensive options in terms of power budget and physical volume for the power analysis
equipment when compared to other implant locations within cables, laptop subsystems
or USB devices.

Besides power analysis, the power supply could also contain other surveillance
equipment. It is therefore not recommended to leave the power supply plugged in or in
close proximity to the Airgap laptop during essential cryptographic operations.
Additionally, electrical connection to the AC power grid may allow some emissions to be
traceable from a wider distance, even with a power supply that has not been tampered
with. Due to concerns about the trustworthiness of the regular internal laptop battery in
high-assurance setups (see POL-01-014), it is recommended to consider a custom

Cure53, Berlin · 11/03/20 13/19

https://cure53.de/
https://shop.puri.sm/shop/power-adapter/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

battery-based low-voltage DC supply, which is able to power the laptop via the external
DC jack for the duration of the key ceremony.

The battery design could be based on:

• A replaceable lithium battery cells that can be safely investigated individually
• A low-efficiency, low-noise voltage regulator without high frequency operations
• The omission of programmable or otherwise complex electronic components
• Extensive RC/LC power supply filtering stages

Ideally, this battery should exhibit at least acceptable runtime characteristics and overall
reliability while making any modifications difficult to hide.

POL-01-014 WP3: Removal of internal lithium battery (Info)
It was observed that modern laptop batteries include complex management and
monitoring functionality via an embedded microcontroller, which is typically connected
via SMBus. The required firmware and hardware are usually not well-documented or in
any way verifiable. Other laptop designs with strong transparency requirements, such as
Novena, have opted for a custom battery controller solution to avoid this limitation. To
our knowledge, the targeted Librem 15v4 laptop uses a battery controller that is
manufactured by a third-party and not fully controlled or open:

Device: /org/freedesktop/UPower/devices/battery_BAT
 native-path: BAT
 vendor: TPS
 model: S10
 power supply: yes
[...]
 has history: yes
 has statistics: yes

This internal subsystem runs custom code, has access to (limited) power measurements
and may present a hidden persistent storage device towards the main system via
SMBus interaction. The Airgap laptop security design mandates the removal of all
internally persistent storage devices to prevent code or data that persists across reboots.

It is advised to avoid this risk by physically removing the internal battery from the laptop
for high-assurance use-cases and supplying power via another power source from the
external DC jack that has no data connection. Note that POL-01-013 should be taken
into account when selecting a suitable external power supply.

Cure53, Berlin · 11/03/20 14/19

https://cure53.de/
https://www.kosagi.com/w/index.php?title=Novena_Main_Page#Battery_board
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

POL-01-015 WP1: Missing security hardening flags in buildroot config. (Low)
The analyzed version of the Airgap buildroot system’s default configuration has been
reviewed according to security best practices. Cure53 identified that the buildroot
configuration lacks various security hardening flags / features.

The following list of configuration options are missing or not configured properly:

• BR2_RELRO_FULL

• BR2_FORTIFY_SOURCE_2 (Fortify Source needs a glibc toolchain and optimization)
• BR2_SSP_ALL (Stack Smashing Protection needs a toolchain with SSP)

It is recommended to consider hardening the buildroot's default configuration as an
important step in elevating the general security posture of Airgap. Elinux.org4 is an
excellent online reference, describing possible hardening options. The client has already
been made aware of these flags ahead of time and requested to document them here as
a reference for future additions to the Airgap system.

POL-01-016 WP1: Adding support for RAM encryption (Info)
Modern Intel chipsets come with hardware extensions, named Total Memory Encryption
(TME)5, providing the capability to encrypt the entirety of the physical memory of a
system with a single encryption key generated by the CPU on every boot of the system.
Multi-Key Total Memory Encryption (MKTME) builds on top of TME and adds support for
multiple encryption keys. While TME provides robust mitigations against single-read
physical attacks, such as physically removing a DIMM and inspecting its contents,
MKTME offers further mitigations, as described within the proposed patch for adding
MKTME to the Linux kernel6.

Enabling TME / MKTME requires CPU support as well as changes within coreboot/
Heads. In particular, the compile time option named “INTEL_TME”7 must be set. Adding
support for MKTME to the Linux kernel is still an ongoing process and several patches
have already been proposed. It is, nevertheless, recommended to consider these, even
though no reference implementations of TME / MKTME within one of the well-
established Linux distributions existed at the time of writing. Still, it would be beneficial
to eventually add RAM encryption as an additional feature in Airgap, maybe optionally
allowing Airgap users to selectively enable this additional layer of security.

4 https://elinux.org/Buildroot:SecurityHardening
5 https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-...pec.pdf
6 https://lwn.net/ml/linux-kernel/20190731150813.26289-1-kirill.shutemov@linux.intel.com/
7 https://coreboot.org/status/kconfig-options.html

Cure53, Berlin · 11/03/20 15/19

https://cure53.de/
https://coreboot.org/status/kconfig-options.html
https://lwn.net/ml/linux-kernel/20190731150813.26289-1-kirill.shutemov@linux.intel.com/
https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf
https://elinux.org/Buildroot:SecurityHardening
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The subject of RAM encryption has already been discussed with the client and it was
requested for this item to be added to the report for future research. This is connected to
the pending release of Airgap OS to the public, as there may be other users and
applications with different constraints and scenarios that potentially require such
advanced memory encryption features.

POL-01-017 WP1: Airgap OS kernel lacks hardening flags (Medium)
The current Airgap OS Linux Kernel version is 5.7.198. While reviewing the kernel
configuration of the Airgap OS Linux kernel, it was noticed that the configuration lacks
various security-related configuration options. An excellent utility assisting determination
of the hardening state of a running kernel configuration is kconfig-hardened-check9. It is
recommended to use this utility to check the kernel configuration file
build/buildroot/output/build/linux-5.7.19/.config inside the Airgap build.

Besides the recommended kernel hardening options raised by kconfig-hardened-check,
kernel Control-Flow-Integrity (CFI) protection is another useful mitigation which makes
the exploitation of vulnerabilities with the Linux kernel more difficult. It has to be noted
though that enabling CFI for the Linux kernel requires compilation of the kernel using
clang10 instead of GCC.

It was furthermore noticed that the running kernel has various debugging options
enabled. It is recommended to disable debug kernel configuration options for released
builds:

• CONFIG_DEBUG_KERNEL=n
• CONFIG_STACKTRACE=n
• CONFIG_DEBUG_BUGVERBOSE=n
• CONFIG_DEBUG_KERNEL=n

Revising the kernel configuration according to best practices is advised. It would be
beneficial to apply hardening options concurrently to disabling debug options for all
release builds, so as to enhance rigidity of the Airgap OS Linux kernel.

8 For Airgap version 1.0.0rc13
9 https://github.com/a13xp0p0v/kconfig-hardened-check
10 https://outflux.net/blog/archives/2019/11/20/experimenting-with-clang-cfi-on-upstream-linux/

Cure53, Berlin · 11/03/20 16/19

https://cure53.de/
https://outflux.net/blog/archives/2019/11/20/experimenting-with-clang-cfi-on-upstream-linux/
https://github.com/a13xp0p0v/kconfig-hardened-check
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

POL-01-018 WP1: Updating Airgap OS Linux kernel to 5.8.y (Low)
It was observed that the Linux Kernel version 5.7.19, used in and compiled for the
current version of Airgap OS, has already reached End-of-Life and will no longer receive
any updates or potentially critical security fixes.

As communicated by Greg Kroah-Hartman11:

Note, this is the LAST 5.7.y kernel to be released (5.7.19). This release series is
now end-of-life, please move to 5.8.y at this point in time.
[…]
All users of the 5.7 kernel series must upgrade.

It is recommended to update the Airgap OS Linux kernel to a maintained version12 in
order to keep receiving important updates and security fixes.

11 http://lkml.iu.edu/hypermail/linux/kernel/2008.3/05171.html
12 https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Cure53, Berlin · 11/03/20 17/19

https://cure53.de/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
http://lkml.iu.edu/hypermail/linux/kernel/2008.3/05171.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
As noted in the Introduction, the overall outcomes of this assessment point to an already
good security standing of the examined Polychain laptop devices, the investigated
software as well as periphery. After an extensive examination in autumn 2020, Cure53
can confirm that most security risks have been accounted for in compliance with the
threat model adopted by Polychain. While the prevalence of weaknesses over
vulnerabilities is praiseworthy, it is important to note that all eighteen findings should be
carefully reviewed and, ideally, mitigated.

It is, further, crucial to comment on the testing process itself, as it can give valuable
insights into planning future work. Specifically, early on in the extensive project
preparation phase, it became apparent that the build system was not as portable
between host systems as initially hoped for. It took a certain amount of effort by both the
client and the Cure53 team to arrive at a point of testability. With combined efforts, such
state was reached ahead of the actual auditing commencement and the individual
system analysis could start and move forward without further delay.

In Cure53’s expert opinion, the Polychain team has taken measures to isolate the build
process from local system dependencies seriously. Having said that, it quickly had to be
admitted that the reproducible build step was not yet production-ready. It took time well
into the last phase of this assessment for the builds to be fully operational, i.e.
successfully and reproducibly verifies across all employed platforms. In particular,
depending on certain aspects of local tool dependencies proved to be cumbersome and
tedious to debug.

Quite clearly, special effort was made with regard to building Airgap OS in a reproducible
and auditable way, which helps building trust within the system. Albeit carefully thought
through, the system complexity still exposes a wide attack surface which might pose a
substantial risk. A reduced and hardened kernel will help in mitigating the risk, while
additional physical measures might be needed against rogue USB devices and other
malicious actors.

A strong focus on removing not needed devices from the computer helps reduce the
chances of adversarial interactions, while concurrently eliminating the attack surface and
reducing the risk of supply chain attacks and/or simplifying the threat model.
Nevertheless, there are additional measures that could be taken in relation to risk
mitigation, for instance the recommended removal of the laptop’s internal battery to
eliminate its microcontroller. This is because externally plugged-in devices still present a
risk which may require physical barriers.

Cure53, Berlin · 11/03/20 18/19

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It should be underlined that a malicious power supply would potentially be able to
perform side-channel or fault injection attacks, presenting a clear opportunity for setup
hardening. At the same time, USB devices expected to be attached may inadvertently be
replaced by devices that have been tampered with during the ceremony, a risk which
can be mitigated by additional physical measures.

The security of the Airgap OS system is already in a decent state and it is evident that
the customer has invested time and resources into hardening, thus evading many
potential attack vectors. Nevertheless, areas for further improvement exist and can be
seen in regard to the USB interface, which potentially puts the Airgap system at risk, as
well as the Airgap OS kernel that needs to be reduced and more hardened towards
security.

At a meta-level, the Airgap OS should incorporate counter-measures against the
following two crucial attack vectors. First, there is a need to introduce a protection
against Peripheral Access, blocking all external media, in particular USB, from
connecting to the Airgap system. Second, Polychain should reduce software
dependencies and minimize external dependencies to a smallest possible set in order to
reduce the potential risk of using outdated and vulnerable software as well as supply
chain attacks.

The extensive online discussions with the client during this assessment have shown that
there are still numerous areas where Airgap OS can benefit from amelioration. This does
not change the fact that the general security posture of the complex is already quite
good in light of this autumn 2020 assessment’s findings. The Polychain team has to be
commended for the extensively thought-through approach of tackling the given Root-of-
Trust problem space and the extensive use of verifiable open source components to
achieve ambitious security goals. While the current security premise might be described
as unexpectedly good for such a large and complex approach, it has to be clearly stated
that further reduction in complexity and attack surface would benefit the project.

Cure53 would like to thank Lance Vick and Rob Witoff from the Polychain team for their
excellent project coordination, support and assistance, both before and during this
assignment.

Cure53, Berlin · 11/03/20 19/19

https://cure53.de/
mailto:mario@cure53.de

	Review-Report Polychain Laptop Security 09.-10.2020
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	POL-01-006 WP1: git checkout <hash> does not ensure integrity (Medium)
	POL-01-008 WP1: Emulated keyboard USB device attack (Medium)

	Miscellaneous Issues
	POL-01-001 WP3: Attack surface in compromised USB devices (Medium)
	POL-01-002 WP3: Insufficient Docker seccomp sandboxing (Low)
	POL-01-003 WP3: Redundant CVE information in automatic audit report (Info)
	POL-01-004 WP1: Build container allows expired package release signing (Low)
	POL-01-005 WP3: One-sided single-device root of trust verification (Low)
	POL-01-009 WP3: Mandatory Access Control mechanism missing (Low)
	POL-01-010 WP3: User-privilege separation in build environment missing (Low)
	POL-01-011 WP3: Reducing attack surface of Airgap OS kernel driver (High)
	POL-01-012 WP3: Re-evaluate lax IOMMU configuration for Heads (Low)
	POL-01-013 WP3: Mitigating physical power analysis (Info)
	POL-01-014 WP3: Removal of internal lithium battery (Info)
	POL-01-015 WP1: Missing security hardening flags in buildroot config. (Low)
	POL-01-016 WP1: Adding support for RAM encryption (Info)
	POL-01-017 WP1: Airgap OS kernel lacks hardening flags (Medium)
	POL-01-018 WP1: Updating Airgap OS Linux kernel to 5.8.y (Low)

	Conclusions

