added share serialisation and created Share struct

This commit is contained in:
zer0x64 2020-01-21 13:51:24 -05:00
parent 5344dda94b
commit 58e735d17e
3 changed files with 89 additions and 34 deletions

View File

@ -2,14 +2,14 @@
//!
//! Usage example:
//! ```
//! use sharks::Sharks;
//! use sharks::{ Sharks, Share };
//!
//! // Set a minimum threshold of 10 shares
//! let sharks = Sharks(10);
//! // Obtain an iterator over the shares for secret [1, 2, 3, 4]
//! let dealer = sharks.dealer(&[1, 2, 3, 4]);
//! // Get 10 shares
//! let shares = dealer.take(10).collect();
//! let shares: Vec<Share> = dealer.take(10).collect();
//! // Recover the original secret!
//! let secret = sharks.recover(&shares).unwrap();
//! assert_eq!(secret, vec![1, 2, 3, 4]);
@ -17,23 +17,23 @@
mod field;
mod math;
use std::collections::HashMap;
mod share;
use field::GF256;
pub use share::Share;
/// Tuple struct which implements methods to generate shares and recover secrets over a 256 bits Galois Field.
/// Its only parameter is the minimum shares threshold.
///
/// Usage example:
/// ```
/// # use sharks::Sharks;
/// # use sharks::{ Sharks, Share };
/// // Set a minimum threshold of 10 shares
/// let sharks = Sharks(10);
/// // Obtain an iterator over the shares for secret [1, 2, 3, 4]
/// let dealer = sharks.dealer(&[1, 2, 3, 4]);
/// // Get 10 shares
/// let shares = dealer.take(10).collect();
/// let shares: Vec<Share> = dealer.take(10).collect();
/// // Recover the original secret!
/// let secret = sharks.recover(&shares).unwrap();
/// assert_eq!(secret, vec![1, 2, 3, 4]);
@ -46,14 +46,13 @@ impl Sharks {
///
/// Example:
/// ```
/// # use std::collections::HashMap;
/// # use sharks::Sharks;
/// # use sharks::{ Sharks, Share };
/// # let sharks = Sharks(3);
/// // Obtain an iterator over the shares for secret [1, 2]
/// let dealer = sharks.dealer(&[1, 2]);
/// // Get 3 shares
/// let shares: HashMap<_, _> = dealer.take(3).collect();
pub fn dealer(&self, secret: &[u8]) -> impl Iterator<Item = (GF256, Vec<GF256>)> {
/// let shares: Vec<Share> = dealer.take(3).collect();
pub fn dealer(&self, secret: &[u8]) -> impl Iterator<Item = Share> {
let mut polys = Vec::with_capacity(secret.len());
for chunk in secret {
@ -69,19 +68,19 @@ impl Sharks {
///
/// Example:
/// ```
/// # use sharks::Sharks;
/// # use sharks::{ Sharks, Share };
/// # let sharks = Sharks(3);
/// # let mut shares = sharks.dealer(&[1]).take(3).collect();
/// // Revover original secret from shares
/// # let mut shares: Vec<Share> = sharks.dealer(&[1]).take(3).collect();
/// // Recover original secret from shares
/// let mut secret = sharks.recover(&shares);
/// // Secret correctly recovered
/// assert!(secret.is_ok());
/// // Remove shares for demonstrastion purposes
/// // Remove shares for demonstration purposes
/// shares.clear();
/// secret = sharks.recover(&shares);
/// // Not enough shares to recover secret
/// assert!(secret.is_err());
pub fn recover(&self, shares: &HashMap<GF256, Vec<GF256>>) -> Result<Vec<u8>, &str> {
pub fn recover(&self, shares: &[Share]) -> Result<Vec<u8>, &str> {
if shares.len() < self.0 as usize {
Err("Not enough shares to recover original secret")
} else {
@ -92,13 +91,13 @@ impl Sharks {
#[cfg(test)]
mod tests {
use super::{Sharks, GF256};
use super::{Share, Sharks};
#[test]
fn test_insufficient_shares_err() {
let sharks = Sharks(255);
let dealer = sharks.dealer(&[1]);
let shares = dealer.take(254).collect();
let shares: Vec<Share> = dealer.take(254).collect();
let secret = sharks.recover(&shares);
assert!(secret.is_err());
}
@ -107,7 +106,7 @@ mod tests {
fn test_integration_works() {
let sharks = Sharks(255);
let dealer = sharks.dealer(&[1, 2, 3, 4]);
let shares: std::collections::HashMap<GF256, Vec<GF256>> = dealer.take(255).collect();
let shares: Vec<Share> = dealer.take(255).collect();
let secret = sharks.recover(&shares).unwrap();
assert_eq!(secret, vec![1, 2, 3, 4]);
}

View File

@ -1,29 +1,28 @@
// A module which contains necessary algorithms to compute Shamir's shares and recover secrets
use std::collections::HashMap;
use rand::distributions::{Distribution, Uniform};
use super::field::GF256;
use super::share::Share;
// Finds the [root of the Lagrange polynomial](https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing#Computationally_efficient_approach).
// The expected `shares` argument format is the same as the output by the `get_evaluator´ function.
// Where each (key, value) pair corresponds to one share, where the key is the `x` and the value is a vector of `y`,
// where each element corresponds to one of the secret's byte chunks.
pub fn interpolate(shares: &HashMap<GF256, Vec<GF256>>) -> Vec<u8> {
let n_chunks = shares.values().take(1).collect::<Vec<&Vec<GF256>>>()[0].len();
pub fn interpolate(shares: &[Share]) -> Vec<u8> {
let n_chunks = shares[0].y.len();
(0..n_chunks)
.map(|s| {
shares
.iter()
.map(|(x_i, y_i)| {
.map(|s_i| {
shares
.keys()
.filter(|x_j| *x_j != x_i)
.map(|x_j| *x_j / (*x_j - *x_i))
.iter()
.filter(|s_j| s_j.x != s_i.x)
.map(|s_j| s_j.x / (s_j.x - s_i.x))
.product::<GF256>()
* y_i[s]
* s_i.y[s]
})
.sum::<GF256>()
.0
@ -51,21 +50,21 @@ pub fn random_polynomial(s: GF256, k: u8) -> Vec<GF256> {
// Each item of the iterator is a tuple `(x, [f_1(x), f_2(x)..])` where eaxh `f_i` is the result for the ith polynomial.
// Each polynomial corresponds to one byte chunk of the original secret.
// The iterator will start at `x = 1` and end at `x = 255`.
pub fn get_evaluator(polys: Vec<Vec<GF256>>) -> impl Iterator<Item = (GF256, Vec<GF256>)> {
pub fn get_evaluator(polys: Vec<Vec<GF256>>) -> impl Iterator<Item = Share> {
(1..=u8::max_value()).map(GF256).map(move |x| {
(
(Share {
x,
polys
y: polys
.iter()
.map(|p| p.iter().fold(GF256(0), |acc, c| acc * x + *c))
.collect(),
)
})
})
}
#[cfg(test)]
mod tests {
use super::{get_evaluator, interpolate, random_polynomial, GF256};
use super::{get_evaluator, interpolate, random_polynomial, Share, GF256};
#[test]
fn random_polynomial_works() {
@ -77,7 +76,7 @@ mod tests {
#[test]
fn evaluator_works() {
let iter = get_evaluator(vec![vec![GF256(3), GF256(2), GF256(5)]]);
let values: Vec<_> = iter.take(2).collect();
let values: Vec<_> = iter.take(2).map(|s| (s.x, s.y)).collect();
assert_eq!(
values,
vec![(GF256(1), vec![GF256(4)]), (GF256(2), vec![GF256(13)])]
@ -88,7 +87,7 @@ mod tests {
fn interpolate_works() {
let poly = random_polynomial(GF256(185), 10);
let iter = get_evaluator(vec![poly]);
let shares = iter.take(10).collect();
let shares: Vec<Share> = iter.take(10).collect();
let root = interpolate(&shares);
assert_eq!(root, vec![185]);
}

57
src/share.rs Normal file
View File

@ -0,0 +1,57 @@
use crate::GF256;
/// A share used for to reconstruct the secret. Can be serialized to and from a byte array for transmission.
///
/// Example:
/// ```
/// # use std::borrow::Borrow;
/// # fn send_to_printer(_: Vec<u8>) { }
/// # fn ask_shares() -> Vec<Vec<u8>> { vec![] }
///
/// # use sharks::{ Sharks, Share };
/// let sharks = Sharks(3);
/// // Obtain an iterator over the shares for secret [1, 2]
/// let dealer = sharks.dealer(&[1, 2, 3]);
///
/// # let mut shares: Vec<Vec<u8>> = Vec::with_capacity(5);
/// // Get 5 shares and print paper keys
/// for s in dealer.take(5) {
/// println!("test");
/// # shares.push(s.clone().into());
/// send_to_printer(s.into());
/// };
///
/// # let shares = vec![shares[0].clone(), shares[2].clone(), shares[4].clone()];
///
/// // Get 3 shares from users and get secret
/// let shares_serialized: Vec<Vec<u8>> = ask_shares();
/// # let shares_serialized = shares;
///
/// let shares: Vec<Share> = shares_serialized.iter().map(|s| s.as_slice().into()).collect();
///
/// let secret = sharks.recover(&shares).expect("we should have at leats 3 shares");
///
/// assert_eq!(secret, vec![1, 2, 3]);
#[derive(Debug, Clone)]
pub struct Share {
pub x: GF256,
pub y: Vec<GF256>,
}
impl From<Share> for Vec<u8> {
fn from(s: Share) -> Vec<u8> {
let mut serialized: Vec<u8> = Vec::with_capacity(s.y.len() + 1);
serialized.push(s.x.0);
serialized.append(&mut s.y.iter().map(|p| p.0).collect());
serialized
}
}
impl From<&[u8]> for Share {
fn from(s: &[u8]) -> Share {
let x = GF256(s[0]);
let y = s[1..].iter().map(|p| GF256(*p)).collect();
Share { x, y }
}
}