blahaj/src/lib.rs

215 lines
6.8 KiB
Rust

//! Fast, small and secure [Shamir's Secret Sharing](https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing) library crate
//!
//! Usage example (std):
//! ```
//! use sharks::{ Sharks, Share };
//!
//! // Set a minimum threshold of 10 shares
//! let sharks = Sharks(10);
//! // Obtain an iterator over the shares for secret [1, 2, 3, 4]
//! # #[cfg(feature = "std")]
//! # {
//! let dealer = sharks.dealer(&[1, 2, 3, 4]);
//! // Get 10 shares
//! let shares: Vec<Share> = dealer.take(10).collect();
//! // Recover the original secret!
//! let secret = sharks.recover(shares.as_slice()).unwrap();
//! assert_eq!(secret, vec![1, 2, 3, 4]);
//! # }
//! ```
//!
//! Usage example (no std):
//! ```
//! use sharks::{ Sharks, Share };
//! use rand_chacha::rand_core::SeedableRng;
//!
//! // Set a minimum threshold of 10 shares
//! let sharks = Sharks(10);
//! // Obtain an iterator over the shares for secret [1, 2, 3, 4]
//! let mut rng = rand_chacha::ChaCha8Rng::from_seed([0x90; 32]);
//! let dealer = sharks.dealer_rng(&[1, 2, 3, 4], &mut rng);
//! // Get 10 shares
//! let shares: Vec<Share> = dealer.take(10).collect();
//! // Recover the original secret!
//! let secret = sharks.recover(shares.as_slice()).unwrap();
//! assert_eq!(secret, vec![1, 2, 3, 4]);
//! ```
#![no_std]
mod field;
mod math;
mod share;
extern crate alloc;
use alloc::vec::Vec;
use hashbrown::HashSet;
use field::GF256;
pub use share::Share;
/// Tuple struct which implements methods to generate shares and recover secrets over a 256 bits Galois Field.
/// Its only parameter is the minimum shares threshold.
///
/// Usage example:
/// ```
/// # use sharks::{ Sharks, Share };
/// // Set a minimum threshold of 10 shares
/// let sharks = Sharks(10);
/// // Obtain an iterator over the shares for secret [1, 2, 3, 4]
/// # #[cfg(feature = "std")]
/// # {
/// let dealer = sharks.dealer(&[1, 2, 3, 4]);
/// // Get 10 shares
/// let shares: Vec<Share> = dealer.take(10).collect();
/// // Recover the original secret!
/// let secret = sharks.recover(shares.as_slice()).unwrap();
/// assert_eq!(secret, vec![1, 2, 3, 4]);
/// # }
/// ```
pub struct Sharks(pub u8);
impl Sharks {
/// This method is useful when `std` is not available. For typical usage
/// see the `dealer` method.
///
/// Given a `secret` byte slice, returns an `Iterator` along new shares.
/// The maximum number of shares that can be generated is 256.
/// A random number generator has to be provided.
///
/// Example:
/// ```
/// # use sharks::{ Sharks, Share };
/// # use rand_chacha::rand_core::SeedableRng;
/// # let sharks = Sharks(3);
/// // Obtain an iterator over the shares for secret [1, 2]
/// let mut rng = rand_chacha::ChaCha8Rng::from_seed([0x90; 32]);
/// let dealer = sharks.dealer_rng(&[1, 2], &mut rng);
/// // Get 3 shares
/// let shares: Vec<Share> = dealer.take(3).collect();
pub fn dealer_rng<R: rand::Rng>(
&self,
secret: &[u8],
rng: &mut R,
) -> impl Iterator<Item = Share> {
let mut polys = Vec::with_capacity(secret.len());
for chunk in secret {
polys.push(math::random_polynomial(GF256(*chunk), self.0, rng))
}
math::get_evaluator(polys)
}
/// Given a `secret` byte slice, returns an `Iterator` along new shares.
/// The maximum number of shares that can be generated is 256.
///
/// Example:
/// ```
/// # use sharks::{ Sharks, Share };
/// # let sharks = Sharks(3);
/// // Obtain an iterator over the shares for secret [1, 2]
/// let dealer = sharks.dealer(&[1, 2]);
/// // Get 3 shares
/// let shares: Vec<Share> = dealer.take(3).collect();
#[cfg(feature = "std")]
pub fn dealer(&self, secret: &[u8]) -> impl Iterator<Item = Share> {
let mut rng = rand::thread_rng();
self.dealer_rng(secret, &mut rng)
}
/// Given an iterable collection of shares, recovers the original secret.
/// If the number of distinct shares is less than the minimum threshold an `Err` is returned,
/// otherwise an `Ok` containing the secret.
///
/// Example:
/// ```
/// # use sharks::{ Sharks, Share };
/// # use rand_chacha::rand_core::SeedableRng;
/// # let sharks = Sharks(3);
/// # let mut rng = rand_chacha::ChaCha8Rng::from_seed([0x90; 32]);
/// # let mut shares: Vec<Share> = sharks.dealer_rng(&[1], &mut rng).take(3).collect();
/// // Recover original secret from shares
/// let mut secret = sharks.recover(&shares);
/// // Secret correctly recovered
/// assert!(secret.is_ok());
/// // Remove shares for demonstration purposes
/// shares.clear();
/// secret = sharks.recover(&shares);
/// // Not enough shares to recover secret
/// assert!(secret.is_err());
pub fn recover<'a, T>(&self, shares: T) -> Result<Vec<u8>, &str>
where
T: IntoIterator<Item = &'a Share>,
T::IntoIter: Iterator<Item = &'a Share>,
{
let (keys, shares) = shares
.into_iter()
.map(|s| {
(
s.x.0,
Share {
x: s.x,
y: s.y.clone(),
},
)
})
.unzip::<u8, Share, HashSet<u8>, Vec<Share>>();
if keys.len() < self.0 as usize {
Err("Not enough shares to recover original secret")
} else {
Ok(math::interpolate(shares.as_slice()))
}
}
}
#[cfg(test)]
mod tests {
use super::{Share, Sharks};
use alloc::{vec, vec::Vec};
impl Sharks {
#[cfg(not(feature = "std"))]
fn make_shares(&self, secret: &[u8]) -> impl Iterator<Item = Share> {
use rand_chacha::{rand_core::SeedableRng, ChaCha8Rng};
let mut rng = ChaCha8Rng::from_seed([0x90; 32]);
self.dealer_rng(secret, &mut rng)
}
#[cfg(feature = "std")]
fn make_shares(&self, secret: &[u8]) -> impl Iterator<Item = Share> {
self.dealer(secret)
}
}
#[test]
fn test_insufficient_shares_err() {
let sharks = Sharks(255);
let shares: Vec<Share> = sharks.make_shares(&[1]).take(254).collect();
let secret = sharks.recover(&shares);
assert!(secret.is_err());
}
#[test]
fn test_duplicate_shares_err() {
let sharks = Sharks(255);
let mut shares: Vec<Share> = sharks.make_shares(&[1]).take(255).collect();
shares[1] = Share {
x: shares[0].x,
y: shares[0].y.clone(),
};
let secret = sharks.recover(&shares);
assert!(secret.is_err());
}
#[test]
fn test_integration_works() {
let sharks = Sharks(255);
let shares: Vec<Share> = sharks.make_shares(&[1, 2, 3, 4]).take(255).collect();
let secret = sharks.recover(&shares).unwrap();
assert_eq!(secret, vec![1, 2, 3, 4]);
}
}