
Keyfork Security Assessment

Distrust
Version 1.0 – June 4, 2024

©2024 – NCC Group

Prepared by NCC Group Security Services, Inc. for Distrust. Portions of this document and the templates
used in its production are the property of NCC Group and cannot be copied (in full or in part) without
NCC Group’s permission.

While precautions have been taken in the preparation of this document, NCC Group the publisher, and
the author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of the
information contained herein. Use of NCC Group’s services does not guarantee the security of a system,
or that computer intrusions will not occur.

Prepared By
Parnian Alimi
Elena Bakos Lang
Kevin Henry

Prepared For
Ryan Heywood

Lance Vick

1 Executive Summary
Synopsis
In April 2024, Distrust engaged NCC Group’s Cryptography Services team to perform a
cryptographic security assessment of keyfork, described as “an opinionated and modular
toolchain for generating and managing a wide range of cryptographic keys offline and on
smartcards from a shared BIP-0039 mnemonic phrase”. The tool is intended to be run on an
air-gapped system and allows a user to split or recover a cryptographic key using Shamir
Secret Sharing, with shares imported and exported using mechanisms such as mnemonics
or QR codes. These shares can be managed by one or more users, with a defined threshold
of shares required to recover the original secret. The review was performed by 3 consultants
over 2 calendar weeks with a total effort of 20 person-days. A retest was conducted in May
2024, which resulted in all findings and notes being marked Fixed.

Scope
The review targeted the keyfork repository at https://git.distrust.co/public/keyfork. The
formal target is tagged release keyfork-v0.1.0 , however the review also included commits
up to the current (at the time of review) main branch at commit 089021a as they did not
meaningfully impact the scope. The review was further guided by the security model
documented in security.md. Distrust also indicated that memory-related (e.g., zeroization)
and timing-related attacks were not a concern due to the trusted nature of the hardware
and its environment, and as such were not investigated. Retesting did not include any new
functionality added that was not in direct response to a finding or note in this report.

Limitations
Overall good coverage of the in-scope code was achieved. However, the reviewed version
of the library has some core features currently left as todo!() items in the CLI, including
OpenPGP discover() and provision() functions, handling of shards not using OpenPGP
(e.g., P256), and mnemonics using entropy from sources other than the system (e.g., cards,
dice).

Key Findings
The assessment uncovered a number of low impact findings along with notes and comments
captured in the section Engagement Notes. These include:

Finding "Encrypting Shards for Transport Leaks Secret Length" and some related notes in
the Engagement Notes summarize an information leak and potential optimizations for
shard encryption during transport.

Finding "Non-Standard BIP-0032 Derivation" identifies both missing and extraneous
checks that are mandated by BIP-0032, but which only pose problems with negligible
probability.

Finding "Manipulating System Time Allows Unlimited QR Scanning Retries" proposes a
small change to prevent certain clock-based attacks from circumventing a timeout
mechanism.

After retesting, NCC Group found that Distrust had addressed all findings and notes in this
report, with each now marked as Fixed.

Strategic Recommendations
Consider catching and handling errors gracefully in all cases instead of defaulting to
panics, thereby allowing more appropriate feedback to be provided to the user when
error occurs.

Ensure that any todo!() macros and annotations are addressed or reflected in the
documentation such that a user of the library is not misled.

•

•

•

•

•

2 / 26 – Executive Summary Client Confidential

https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://git.distrust.co/public/keyfork
https://git.distrust.co/public/keyfork
https://git.distrust.co/public/keyfork
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0
https://git.distrust.co/public/keyfork/src/commit/089021a3028689ba693f6b95e554e6067793ff2f
https://git.distrust.co/public/keyfork/src/commit/089021a3028689ba693f6b95e554e6067793ff2f
https://git.distrust.co/public/keyfork/src/commit/089021a3028689ba693f6b95e554e6067793ff2f
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/docs/src/security.md
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/docs/src/security.md
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/provision/mod.rs#L79
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/provision/mod.rs#L79
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/provision/mod.rs#L79
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/provision/mod.rs#L79
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/provision/mod.rs#L79
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/shard.rs#L168-L170
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/mnemonic.rs#L108-L110
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/mnemonic.rs#L108-L110
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

2 Dashboard
Target Data Engagement Data
Name Keyfork Type Cryptographic Security

Assessment

Type Standalone Application Method Code-assisted

Platforms Rust Dates 2024-04-01 to 2024-04-12

Environment Local Consultants 3

Level of Effort 20 person-days

Targets
Keyfork https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0

“an opinionated and modular toolchain for generating and managing a wide range
of cryptographic keys offline and on smartcards from a shared BIP-0039
mnemonic phrase”

Finding Breakdown
Critical issues 0

High issues 0

Medium issues 0

Low issues 5

Informational issues 1

Total issues 6

Category Breakdown
Cryptography 4

Data Validation 1

Patching 1

Component Breakdown
keyfork 2

keyfork-derive-util 1

keyfork-qrcode 1

keyfork-shard 1

keyforkd 1

 Critical High Medium Low Informational

3 / 26 – Dashboard Client Confidential

https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0

3 Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the
severity of the risk, application’s exposure and user population, technical difficulty of
exploitation, and other factors.

Title Status ID Risk

Encrypting Shards for Transport Leaks Secret Length Fixed UGV Low

Non-Hardened Derivation at Top Level of Hierarchical
Wallet

Fixed 9YA Low

Manipulating System Time Allows Unlimited QR
Scanning Retries

Fixed KJG Low

Incorrect Path Used In Hierarchical Key Derivation Fixed PLK Low

Non-Standard BIP-0032 Derivation Fixed 6FU Low

Vulnerable and Outdated Dependencies Fixed V94 Info

4 / 26 – Table of Findings Client Confidential

4 Finding Details

Encrypting Shards for Transport Leaks Secret
Length
Overall Risk Low

Impact Low

Exploitability Low

Finding ID NCC-E010467-UGV

Component keyfork-shard

Category Cryptography

Status Fixed

Impact
Padding and length fields are not part of the encrypted/authenticated payload. An attacker
may arbitrarily modify padding bytes without detection and may cause confusion by
triggering unexpected errors on the receiving end.

Description
The function decrypt_one_shard_for_transport() decrypts a shard, establishes a Diffie-
Hellman-derived key with the recipient, and then encrypts the shard using AES-GCM and
the derived key such that the shard can be sent to the recipient. The encrypted payload is
padded to 64 bytes such that it may be represented as a standard mnemonic. This
represents both an upper bound and the target length for the encoded payload:

Figure 1: keyfork-shard/src/lib.rs

The to-be-encrypted payload consists of the following information:

1 byte version

1 byte threshold

33 byte Share (1 byte for the x coordinate, 32 bytes for its evaluation).

When including the authentication tag after encryption, this represents an expected total of
51 bytes. To prepare the final output, the out_bytes vector is initialized such that the last
byte contains the length of the encrypted payload, and the first bytes are populated with
the encrypted payload. This vector is then padded using the following:

Low

24

25

•

•

•

287

288

289

290

291

292

293

294

295

// 256 bit share encrypted is 49 bytes, couple more bytes before we reach max size

const ENC_LEN: u8 = 4 * 16;

out_bytes[..payload_bytes.len()].clone_from_slice(&payload_bytes);

// NOTE: This previously used a single repeated value as the padding byte, but

resulted in

// difficulty when entering in prompts manually, as one's place could be lost due

to

// repeated keywords. This is resolved below by having sequentially increasing

numbers up to

// but not including the last byte.

#[allow(clippy::cast_possible_truncation)]

for (i, byte) in (out_bytes[payload_bytes.len()..(ENC_LEN as usize - 1)])

.iter_mut()

5 / 26 – Finding Details Client Confidential

https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork-shard/src/lib.rs#L24-L25
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork-shard/src/lib.rs#L24-L25

Figure 2: keyfork-shard/src/lib.rs

Thus, the final 64-byte message consists of:

35+16 = 51 byte encrypted payload

12 byte padding

1 byte length of encrypted payload.

The key observation here is that the padding and length fields are not included in the
authenticated ciphertext and are therefore not confidential nor guaranteed to be authentic.
This does not appear to introduce any meaningful attack, but it does result in potentially
unwanted or unintuitive behavior:

The padding is malleable. An attacker may alter the padding without affecting the
correctness of decryption.

The length field can be modified, which can cause the program to panic due to out of
bounds errors rather than decryption errors.

It is understood that the above messages are assumed to be tamperproof, and that under
the expected use cases the size of a secret share is a fixed constant. However, small
modifications to the approach would constrain the above behavior and hide the length of
the secret if it is ever changed from the current value of 32 bytes.

Instead of padding the ciphertext to 63 bytes (plus 1 length byte), one could instead pad the
plaintext to 47 bytes (plus 1 length byte). This would result in an AES-GCM ciphertext that is
exactly ENC_LEN (64 bytes), such that the length field is encrypted and any modification to
the encoded ciphertext will always result in a decryption failure, instead of other
deserialization errors. Such an approach could be viewed as being strictly stronger than the
existing approach, and does not introduce any overhead.

Alternatively, it appears as though the expected padding length is precisely the length of
the AES-GCM nonce. One could instead prepend the nonce to the ciphertext, as is
commonly done, and achieve a ciphertext that is exactly the desired length. The
Engagement Notes section provides additional commentary on the usage of nonces within
this process.

Recommendation
Consider padding the plaintext bytes to ENC_LEN - TAG_SIZE bytes such that the padding
and length bytes are included in the authenticated ciphertext.

Location
keyfork-shard/src/lib.rs

Retest Results
2024-05-06 – Fixed
Commit 6fa434e updated the encryption process to pad the plaintext up to a pre-defined
fixed length of 36 bytes. Subsequently, commit 1a036a0 revised some code comments and
error messages to provide additional clarity.

The revised approach will pad a plaintext value of up to 32 bytes with a value representing
the length of the version | threshold | index | secret bytes input. The chosen length of

296

297

298

299

•

•

•

•

•

.enumerate()

{

*byte = (i % u8::MAX as usize) as u8;

}

6 / 26 – Finding Details Client Confidential

https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork-shard/src/lib.rs#L287-L299
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork-shard/src/lib.rs#L287-L299
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork-shard/src/lib.rs
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork-shard/src/lib.rs
https://git.distrust.co/public/keyfork/commit/6fa434e89c4231d3ce209fefbdb8aeae0246b512
https://git.distrust.co/public/keyfork/commit/6fa434e89c4231d3ce209fefbdb8aeae0246b512
https://git.distrust.co/public/keyfork/commit/1a036a0b5fd4860491ee134f27ea35e34379c4bc
https://git.distrust.co/public/keyfork/commit/1a036a0b5fd4860491ee134f27ea35e34379c4bc

36 bytes ensures that there is always at least one byte available to store the length. This
change results in a 52-byte AES-GCM ciphertext for which any modification will be
detectable. As such, this finding is considered Fixed.

7 / 26 – Finding Details Client Confidential

Non-Hardened Derivation at Top Level of
Hierarchical Wallet
Overall Risk Low

Impact High

Exploitability Low

Finding ID NCC-E010467-9YA

Component keyforkd

Category Cryptography

Status Fixed

Impact
If non-hardened derivation is used, an attacker may be able to recover the “general” or
“master” key for a hierarchical wallet stored in keyforkd.

Description
The keyforkd backend can be used to derive hierarchical wallet keys from a master secret,
according to the process defined in the BIP-0032 standard. This derivation function accepts
a wide range of inputs, with only minimal validation:

Figure 3: docs/src/bin/keyforkd.md

This validation is implemented in the call() function:

Figure 4: daemon/keyforkd/src/service.rs

However, note that this validation does not restrict the first two levels to use hardened
derivation. The use of non-hardened derivation can in some cases lead to the recovery of
higher-level private keys in a hierarchical wallet1. In particular, knowledge of a private child
key and of the public parent key can be used by a potential adversary to recover the private
parent key.

Indeed, given an extended private parent key , the corresponding public parent

key is given by , where is the standard generator for the

secp256k1 curve. The non-hardened child keys for index can then be computed as follows:

Compute = HMAC-SHA512(Key= , Data =) = HMAC-

SHA512(Key= , Data =)

Low

11

12

13

14

15

16

63

64

65

66

67

68

69

70

(k , c)par par

K =par (k ⋅par G, c)par G

i

• i ∥iL R cpar 0x00∥k ⋅par G∥i
cpar 0x00∥K ∥ipar

By default, the only validation provided for the request is to ensure the

request contains two indices. By requiring this, `keyforkd` can ensure the

master key is not leaked, and "general" keys (such as `m/44'`, see [BIP-0044])

are not leaked. In the future, `keyforkd` could implement GUI or TTY approval

for users to approve the path requested by the client, such as `m/44'/0'` being

"Bitcoin", or `m/7366512'` being "OpenPGP".

fn call(&mut self, req: Request) -> Self::Future {

let seed = self.seed.clone();

match req {

Request::Derivation(req) => Box::pin(async move {

let len = req.path().len();

if len < 2 {

return Err(DerivationError::InvalidDerivationLength(len).into());

}

1. https://medium.com/@blainemalone01/hd-wallets-why-hardened-derivation-
matters-89efcdc71671

8 / 26 – Finding Details Client Confidential

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/docs/src/bin/keyforkd.md
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/daemon/keyforkd/src/service.rs#L63-L70
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/daemon/keyforkd/src/service.rs#L63-L70
https://medium.com/@blainemalone01/hd-wallets-why-hardened-derivation-matters-89efcdc71671
https://medium.com/@blainemalone01/hd-wallets-why-hardened-derivation-matters-89efcdc71671

The extended private child key is then

The extended public child key is then

An adversary that learns the extended parent public key and the extended private child key
can thus re-compute = HMAC-SHA512(Key= , Data =), and recover

.

As such, if non-hardened derivation is used at the first two levels, an adversary may be able
to recover one of the “general” keys or the “master” key, by recovering a less-protected
private child key and a public key corresponding to the “general” key or the “master” key.
Mandating hardened derivation at the first two levels of the hierarchical wallet, as is done in
other hierarchical wallet standards such as BIP-0044, would prevent this attack, and would
provide stronger security guarantees for the “general” and “master” keys of the wallet.

Recommendation
Determine whether the system anticipates use-cases that require non-hardened derivation
at the top two levels of the hierarchical wallet. If such use-cases are not expected, consider
requiring two levels of hardened derivation for all key derivation requests in keyforkd.

Location
daemon/keyforkd/src/service.rs

Retest Results
2024-05-03 – Fixed
Commit 40551a5 added a check to ensure the first two levels of derivation are hardened,
along with tests to validate this behavior. As such, this finding is considered Fixed.

• (k , c) =i i (i +L kpar mod n, i)R
• (K , c) =i i (k ⋅i G, i)R

i ∥iL R cpar 0x00∥K ∥ipar

k =par k −i iL mod n = (i +L k) −par iL mod n

9 / 26 – Finding Details Client Confidential

https://github.com/bitcoin/bips/blob/master/bip-0044.mediawiki
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/daemon/keyforkd/src/service.rs#L63-L70
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/daemon/keyforkd/src/service.rs#L63-L70
https://git.distrust.co/public/keyfork/commit/40551a5c26f7731c3095655c0da222b2641eef37
https://git.distrust.co/public/keyfork/commit/40551a5c26f7731c3095655c0da222b2641eef37

Manipulating System Time Allows Unlimited
QR Scanning Retries
Overall Risk Low

Impact Medium

Exploitability Medium

Finding ID NCC-E010467-KJG

Component keyfork-qrcode

Category Data Validation

Status Fixed

Impact
An on-path attacker that is able to manipulate system time can disable the QR scanner’s
timeout mechanism.

Description
The keyfork-qrcode crate’s scan_camera() implementations (enabled by
decode-backend-rqrr or decode-backend-zbar features) rely on Rust’s SystemTime crate to
enforce a timeout on the time that is spent scanning camera images for a valid QR code:

Figure 5: qrcode/keyfork-qrcode/src/lib.rs

The duration_since() API will fail when the second call to the SystemTime’s now() yields an
earlier time than start . In this case, the unwrap_or() call defaults to 0, which makes the
loop condition true. Anomalies such as adjusting the system time backwards accidentally or
by an on-path attacker will disable the timeout mechanism temporarily or permanently. This
will give an attacker unlimited retries.

Recommendation
The SystemTime documentation recommends using Instant to measure elapsed time
without the risk of failure.

Alternatively, a default larger than timeout can be used to exit the loop in case of a
SystemTime failure.

Location
qrcode/keyfork-qrcode/src/lib.rs

Retest Results
2024-05-03 – Fixed
Commit fa125e7 implements the recommended change of using Instant over SystemTime .
As such, this finding is considered Fixed.

Low

113

114

115

116

117

118

119

120

121

let start = SystemTime::now();

while SystemTime::now()

.duration_since(start)

.unwrap_or(Duration::from_secs(0))

< timeout

{

...

}

10 / 26 – Finding Details Client Confidential

https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/qrcode/keyfork-qrcode/src/lib.rs#L113-L131
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/qrcode/keyfork-qrcode/src/lib.rs#L113-L131
https://doc.rust-lang.org/std/time/struct.SystemTime.html#method.duration_since
https://doc.rust-lang.org/std/time/struct.SystemTime.html#method.duration_since
https://doc.rust-lang.org/std/time/struct.SystemTime.html#method.duration_since
https://doc.rust-lang.org/std/time/struct.Instant.html
https://doc.rust-lang.org/std/time/struct.Instant.html
https://doc.rust-lang.org/std/time/struct.Instant.html
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/qrcode/keyfork-qrcode/src/lib.rs#L115
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/qrcode/keyfork-qrcode/src/lib.rs#L115
https://git.distrust.co/public/keyfork/commit/fa125e7cbe98e8e3f30180fb855f6be22054e70a
https://git.distrust.co/public/keyfork/commit/fa125e7cbe98e8e3f30180fb855f6be22054e70a

Incorrect Path Used In Hierarchical Key
Derivation
Overall Risk Low

Impact Low

Exploitability High

Finding ID NCC-E010467-PLK

Component keyfork

Category Cryptography

Status Fixed

Impact
The keyfork crate will generate a key using a path different from the one expected by users,
which may lead to confusion or misplaced funds.

Description
The keyfork crate describes a process to generate a 256-bit seed, derive OpenPGP keys
using the seed, provision smart cards using the derived keys, and export a Shard file. As
part of this process, a subkey is derived from the master entropy using the BIP-0032
hierarchical wallet derivation methods:

Figure 6: docs/src/bin/keyfork/wizard/index.md

This portion of the derivation is implemented in the derive_key() function in the keyfork
crate, excerpted below:

Figure 7: keyfork/src/cli/wizard.rs

However, note that the actual path used for the derivation will be m / pgp' / pgp' / index' ,
not m / pgp' / shrd' / index' as expected. This may lead to users of the library to use
keys located at a different index than they were expecting, potentially leading to confusion
or misplaced funds.

Recommendation
Update the derive_key() function to use the derivation path described in the
documentation.

Low

27

28

29

30

31

32

36

37

38

39

40

41

42

43

44

45

46

47

3. The seed is then derived using BIP-0032 along the path `m / pgp' / shrd' /

index'`, where the values "pgp" and "shrd" converted to bytes and cast to a

32 bit integer, and the "index" is a numeric iterator `0..max`. BIP-0032

uses HmacSha512 with the "chain code" of the previous depth, the private-key

bytes of the current extended private key, and the index, to derive a new

extended private key and a new chain code.

let mut pgp_u32 = [0u8; 4];

pgp_u32[1..].copy_from_slice(&"pgp".bytes().collect::<Vec<u8>>());

let chain = DerivationIndex::new(u32::from_be_bytes(pgp_u32), true)?;

let mut shrd_u32 = [0u8; 4];

shrd_u32[..].copy_from_slice(&"shrd".bytes().collect::<Vec<u8>>());

let account = DerivationIndex::new(u32::from_be_bytes(pgp_u32), true)?;

let subkey = DerivationIndex::new(u32::from(index), true)?;

let path = DerivationPath::default()

.chain_push(chain)

.chain_push(account)

.chain_push(subkey);

let xprv = XPrv::new(seed).derive_path(&path)?;

11 / 26 – Finding Details Client Confidential

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/docs/src/bin/keyfork/wizard/index.md
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/docs/src/bin/keyfork/wizard/index.md
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/wizard.rs#L36-L47
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/wizard.rs#L36-L47

Location
keyfork/src/cli/wizard.rs

Retest Results
2024-05-03 – Fixed
Commit cdf4015 updated the derivation to use the correct parameter. As such, this finding is
considered Fixed.

•

12 / 26 – Finding Details Client Confidential

https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/wizard.rs#L36-L47
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/wizard.rs#L36-L47
https://git.distrust.co/public/keyfork/commit/cdf401515f4429887e9248de056ee4eae5041cfb
https://git.distrust.co/public/keyfork/commit/cdf401515f4429887e9248de056ee4eae5041cfb

Non-Standard BIP-0032 Derivation
Overall Risk Low

Impact Low

Exploitability None

Finding ID NCC-E010467-6FU

Component keyfork-derive-util

Category Cryptography

Status Fixed

Impact
Deviating from the BIP-0032 standard during hierarchical key derivation may result in
insecure keys, or incompatible behavior with other libraries implementing BIP-0032.

Description
The BIP-0032 standard defines methods for deriving a collection of secp256k1 private and
public key pairs as part of a hierarchical deterministic wallet based on a single master
secret. In particular, this standard defines a method for deriving a master key from a
mnemonic seed by generating two 32-byte sequences, and from the mnemonic seed,
and interpreting them as the master secret key and master chain code respectively. This
method documents the following invalid sequence values:

In case is or , the master key is invalid.

However, in the implementation of this functionality in the new() function for the
ExtendedPrivateKey class, the range of the private_key variable, corresponding to the
sequence , is not checked:

Figure 8: derive/keyfork-derive-util/src/extended_key/private_key.rs

Note that this function is also used within the keyfork-derive-util crate by the ed25519
master key generation as per the SLIP-0010 standard, which does not have any invalid
sequence values. This function is thus correctly implemented for that use-case.

Low

IL IR

parse (I)256 L 0 parse (I) ≥256 L n

IL

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

pub fn new(seed: impl as_private_key::AsPrivateKey) -> Self {

Self::new_internal(seed.as_private_key())

}

fn new_internal(seed: &[u8]) -> Self {

let hash = HmacSha512::new_from_slice(&K::key().bytes().collect::<Vec<_>>())

.expect(bug!("HmacSha512 InvalidLength should be infallible"))

.chain_update(seed)

.finalize()

.into_bytes();

let (private_key, chain_code) = hash.split_at(KEY_SIZE / 8);

Self::new_from_parts(

private_key

.try_into()

.expect(bug!("KEY_SIZE / 8 did not give a 32 byte slice")),

0,

// Checked: chain_code is always the same length, hash is static size

chain_code.try_into().expect(bug!("Invalid chain code length")),

)

}

13 / 26 – Finding Details Client Confidential

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/extended_key/private_key.rs#L170-L190
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/extended_key/private_key.rs#L170-L190
https://github.com/satoshilabs/slips/blob/master/slip-0010.md

As a related issue, the BIP-0032 standard also defines a method for deriving child private
keys from parent private keys. As part of this process, two 32-byte sequences, and
are computed from the parent key, which are then used to compute the child key. The
following invalid sequence values are documented for this method:

In case or , the resulting key is invalid, and one should

proceed with the next value for i. (Note: this has probability lower than 1 in .)

These checks are implemented for the curve secp256k1 in the function derive_child() :

Figure 9: derive/keyfork-derive-util/src/private_key.rs

However, the function derive_child() additionally rejects the input , which is a
valid input according to BIP-0032. A similar issue occurs in the derive_child()
implementation for the derivation of public child keys from public parent keys in derive/
keyfork-derive-util/src/public_key.rs.

Note that all of these events occur with negligible probability and will likely never be
encountered in practice.

Recommendation
Ensure that invalid values are properly handled in BIP-0032 compatible hierarchical key
derivation functions.

Location
derive/keyfork-derive-util/src/extended_key/private_key.rs

derive/keyfork-derive-util/src/private_key.rs

derive/keyfork-derive-util/src/public_key.rs

Retest Results
2024-05-06 – Fixed
Commit 1de466c adds a check that throws an error if the private key is equal to the zero-
vector but introduces a potential timing side channel. Commit de4e98a revises this check to
run in constant time, thereby mitigating the side channel attack.

The above commits also refactored derive_child() such that will be correctly
accepted. As such, this finding is considered Fixed.

IL IR

parse (I) ≥256 L n k =i 0
2127

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

I ==L 0

•

•

•

I ==L 0

fn derive_child(&self, other: &PrivateKeyBytes) -> Result<Self, Self::Err> {

if other.iter().all(|n| n == &0) {

return Err(PrivateKeyError::NonZero);

}

let other = *other;

// Checked: See above nonzero check

let scalar = Option::<NonZeroScalar>::from(NonZeroScalar::from_repr(other.into()))

.expect(bug!("Should have been able to get a NonZeroScalar"));

let derived_scalar = self.to_nonzero_scalar().as_ref() + scalar.as_ref();

Ok(

Option::<NonZeroScalar>::from(NonZeroScalar::new(derived_scalar))

.map(Into::into)

.expect(bug!("Should be able to make Key")),

)

}

14 / 26 – Finding Details Client Confidential

https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/private_key.rs#L132-L148
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/private_key.rs#L132-L148
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/public_key.rs#L108-L110
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/public_key.rs#L108-L110
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/public_key.rs#L108-L110
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/public_key.rs#L108-L110
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/extended_key/private_key.rs#L170-L190
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/extended_key/private_key.rs#L170-L190
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/private_key.rs#L132-L148
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/private_key.rs#L132-L148
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/public_key.rs#L108-L110
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/public_key.rs#L108-L110
https://git.distrust.co/public/keyfork/commit/1de466cad0a1ff814c22c7c4b39a14fc3ccbc333
https://git.distrust.co/public/keyfork/commit/1de466cad0a1ff814c22c7c4b39a14fc3ccbc333
https://git.distrust.co/public/keyfork/commit/de4e98ae07aa6dfcc3c692b044d8b0a1bd3d2e29
https://git.distrust.co/public/keyfork/commit/de4e98ae07aa6dfcc3c692b044d8b0a1bd3d2e29

Vulnerable and Outdated Dependencies
Overall Risk Informational

Impact None

Exploitability None

Finding ID NCC-E010467-V94

Component keyfork

Category Patching

Status Fixed

Impact
Stale dependencies or dependencies with public RUSTSEC advisories may introduce or
represent vulnerabilities within an application. Even if RUSTSEC advisories do not apply,
failure to respond to advisories may affect the perceived security posture of an application
or organization.

Description
This finding is purely informational. No affecting vulnerabilities within the dependency tree
were identified.

Rust provides several utilities for managing dependencies, such as cargo audit , cargo
outdated , and cargo deny . This informational finding briefly summarizes the output of these
tools on the reviewed code.

cargo audit results in 3 vulnerable dependencies and 2 warnings. Two of these
vulnerabilities are for the same crate, which has been reviewed and added as an exception
in deny.toml. The remaining vulnerability was posted after the v0.1.0 release targeted in
this review.

mio 0.8.10 : Tokens for named pipes may be delivered after deregistration
(RUSTSEC-2024-0019)

This vulnerability is specific to Windows and does not affect keyfork.

rsa 0.8.2 , rsa 0.9.6 : Marvin Attack: potential key recovery through timing sidechannels
(RUSTSEC-2023-0071)

The RSA algorithm is included due to smart card dependencies but is not used within
keyfork. Therefore, this vulnerability does not affect keyfork.

yaml-rust 0.4.5 (Unmaintained) and iana-time-zone 0.1.59 (yanked).

It appears as though RUSTSEC advisories are actively monitored and reviewed, and the only
unaddressed vulnerable dependency was published after the release of the reviewed code.
It is recommended to update dependencies or add RUSTSEC-2024-0019 to the ignore list
with justification.

cargo outdated returned several crates with minor revisions, but all direct dependencies
were found to be at an otherwise current major revision.

Recommendation
Ensure dependencies are updated and that RUSTSEC-2024-0019 is added to the ignore list,
if still applicable, before the next release of keyfork.

Location
deny.toml

Info

•

◦

•

◦

•

15 / 26 – Finding Details Client Confidential

https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/deny.toml
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/deny.toml
https://rustsec.org/advisories/RUSTSEC-2024-0019
https://rustsec.org/advisories/RUSTSEC-2023-0071
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/deny.toml
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/deny.toml

Retest Results
2024-05-03 – Fixed
Commit 68f07f6 updated the affected package versions such that the recent cargo audit
hits are cleared. As such, this finding is considered Fixed.

16 / 26 – Finding Details Client Confidential

https://git.distrust.co/public/keyfork/commit/68f07f6f0279676a2725e07a24e1946de5013b33
https://git.distrust.co/public/keyfork/commit/68f07f6f0279676a2725e07a24e1946de5013b33

5 Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group
identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk,
application’s exposure and user population, technical difficulty of exploitation, and other
factors. The risk rating is NCC Group’s recommended prioritization for addressing findings.
Every organization has a different risk sensitivity, so to some extent these recommendations
are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target
system or systems. It takes into account the impact of the finding, the difficulty of
exploitation, and any other relevant factors.

Rating Description

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily
accessible threat of large-scale breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a
small portion of the application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for
application improvement, functional issues with the application, or
conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or
systems. It takes into account potential losses of confidentiality, integrity and availability, as
well as potential reputational losses.

Rating Description

High Attackers can read or modify all data in a system, execute arbitrary code on
the system, or escalate their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny
access to that system, or gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly
degrade system performance. May have a negative public perception of
security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into
account the level of access required, availability of exploitation information, requirements
relating to social engineering, race conditions, brute forcing, etc, and other impediments to
exploitation.

Rating Description

High Attackers can unilaterally exploit the finding without special permissions or
significant roadblocks.

17 / 26 – Finding Field Definitions Client Confidential

Rating Description

Medium Attackers would need to leverage a third party, gain non-public information,
exploit a race condition, already have privileged access, or otherwise
overcome moderate hurdles in order to exploit the finding.

Low Exploitation requires implausible social engineering, a difficult race condition,
guessing difficult-to-guess data, or is otherwise unlikely.

Category
NCC Group categorizes findings based on the security area to which those findings belong.
This can help organizations identify gaps in secure development, deployment, patching, etc.

Category Name Description

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or
software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

18 / 26 – Finding Field Definitions Client Confidential

6 Engagement Notes
This section consists of notes and observations from the review that did not warrant
standalone security findings, or that are not security related, but may nevertheless be of
interest to the team at Distrust.

Inconsistent Test Infrastructure Visibility
The test structure TestPrivateKey has its visibility reduced by the #[doc(hidden)] directive,
which omits the TestPrivateKey structure from the documentation. However, it is
extensively used in documentation, for instance in the keyforkd client documentation in
daemon/keyforkd-client/src/lib.rs, which may limit the usefulness of the #[doc(hidden)]
attribute. Additionally, the public enum element DerivationAlgorithm.Internal is exclusively
used for tests and is also marked as #[doc(hidden)] . As it is still exposed to the public, and
only hidden from the documentation, it may be clearer to rename this element to
InternalTestAlgorithm to align with the nomenclature used for the rest of the test-only
functionalities.

Retest Results
Commit 2bca0a1 renamed the Internal element to TestAlgorithm , as recommended. As
such, this note is considered Fixed.

Incorrect Documentation
The HardenedIndex error is returned if a hardened derivation index is provided in the
parent public key to child public key derivation. However, the comment describing it
states that /// BIP-0032 does not support deriving public keys from hardened private
keys , which is inaccurate, as public keys can be derived from hardened private keys via
the standard derivation method for secp256k1 public keys. It may be more accurate to
note that BIP-0032 does not support hardened public child key derivation from public
parent keys.

The derive_child() functions defined in derive/keyfork-derive-util/src/private_key.rs and
derive/keyfork-derive-util/src/public_key.rs document the following error conditions:

Figure 10: derive/keyfork-derive-util/src/private_key.rs

However, note that an error is actually returned if an all-zero other is provided, as
documented in the comment /// For the given algorithm, the private key must be
nonzero describing the corresponding NonZero error.

Retest Results
Commit 2bca0a1 corrected the comments identified above. As such, this note is considered
Fixed.

Potentially Inconsistent Guidance on RNG Generation
It was observed that the main() function in the keyfork-entropy crate returns an error on
input > 256 bits:

•

•

85

86

87

88

89

90

13

14

15

16

17

/// # Errors

///

/// An error may be returned if:

/// * A nonzero `other` is provided.

/// * An error specific to the given algorithm was encountered.

fn derive_child(&self, other: &PrivateKeyBytes) -> Result<Self, Self::Err>;

assert!(

bit_size <= 256,

"Maximum supported bit size is 256, got: {bit_size}"

);

19 / 26 – Engagement Notes Client Confidential

https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/daemon/keyforkd-client/src/lib.rs#L51
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/daemon/keyforkd-client/src/lib.rs#L51
https://git.distrust.co/public/keyfork/commit/2bca0a1580652183663b16e7ff28e0e0e8e530a5
https://git.distrust.co/public/keyfork/commit/2bca0a1580652183663b16e7ff28e0e0e8e530a5
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/private_key.rs#L85-L90
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/private_key.rs#L85-L90
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/public_key.rs#L42-L47
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-util/src/public_key.rs#L42-L47
https://git.distrust.co/public/keyfork/src/commit/752138bd352e00d5727b20b3f66ad368ebfe9d38/crates/derive/keyfork-derive-util/src/private_key.rs#L85-L90
https://git.distrust.co/public/keyfork/commit/2bca0a1580652183663b16e7ff28e0e0e8e530a5
https://git.distrust.co/public/keyfork/commit/2bca0a1580652183663b16e7ff28e0e0e8e530a5

Figure 11: util/keyfork-entropy/src/main.rs

Similarly, it was observed that the internal documentation examples call the same
underlying function with 64 bytes (512 bits) as the sample parameter:

Figure 12: util/keyfork-entropy/src/lib.rs

There is no error or unsafe behavior exhibited here, but it could be seen as misleading for
the example use case of this function to not match the public interface of key-fork-entropy.
In general, the generate_entropy_of_size() function will safely return OS-provided entropy
for sizes larger than 32 or 64 bytes. The main() function is presumably meant to cap the
size of the entropy to the expected current use case of keyfork. However, if this assumption
is true, it is not clear why values smaller than 32 bytes are supported as well.

Retest Results
Commit 5438f4e updated the main() function to accept a value of 128, 256, or 512 bits,
which is consistent with the identified use cases and documentation. As such, this note is
considered Fixed.

Lack of Input Validation Leads to Unexpected Behavior
The decrypt_one_shard_for_transport() function, in keyfork-shard crate, uses the recipient’s
public key with the Diffie-Hellman protocol to generate an AES-GCM key, which encrypts
the decrypted shard. The function attempts to read the recipient’s public key from a QR
code and in case of failure gracefully falls back to reading it as mnemonics via command
prompt. It is assumed that the QR code is a valid encoding of a 12 bytes nonce followed by a
32 bytes public key. A shorter QR code will result in a panic when the decoded_data slice is
parsed with ranges:

18

19

20

21

22

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

203

204

205

206

207

208

let entropy = keyfork_entropy::generate_entropy_of_size(bit_size / 8)?;

println!("{}", smex::encode(entropy));

Ok(())

}

/// Read system entropy of a given size.

///

/// # Errors

/// An error may be returned if an error occurred while reading from the random source.

///

/// # Examples

/// ```rust,no_run

/// # fn main() -> Result<(), Box<dyn std::error::Error>> {

/// # std::env::set_var("SHOOT_SELF_IN_FOOT", "1");

/// let entropy = keyfork_entropy::generate_entropy_of_size(64)?;

/// assert_eq!(entropy.len(), 64);

/// # Ok(())

/// # }

/// ```

pub fn generate_entropy_of_size(byte_count: usize) -> Result<Vec<u8>, std::io::Error> {

prompt

.lock()

.expect(bug!(POISONED_MUTEX))

.prompt_message(PromptMessage::Text(QRCODE_PROMPT.to_string()))?;

if let Ok(Some(hex)) =

keyfork_qrcode::scan_camera(std::time::Duration::from_secs(30), 0)

20 / 26 – Engagement Notes Client Confidential

https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/util/keyfork-entropy/src/main.rs#L13-L16
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/util/keyfork-entropy/src/main.rs#L13-L16
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/util/keyfork-entropy/src/lib.rs#L84-L98
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/util/keyfork-entropy/src/lib.rs#L84-L98
https://git.distrust.co/public/keyfork/commit/5438f4e11122eceda4aea713218bc490c47653e1
https://git.distrust.co/public/keyfork/commit/5438f4e11122eceda4aea713218bc490c47653e1
https://doc.rust-lang.org/std/slice/fn.range.html

Figure 13: keyfork-shard/src/lib.rs

In case of a corrupt QR code, the intent seems to have been to fallback to reading from the
command prompt, however lack of validation will result in a panic. Since the decrypt_one_sha
rd_for_transport() is used as part of a tool, the workaround is to not use the corrupt QR
code in the next attempt. As such this observation is left as a note. Similarly, the
remote_decrypt() function, in keyfork-shard crate, exhibits the same lack of input validation
on line 477.

Retest Results
Commit 0fe5301 updated the error handling around failed QR code scans to make the
causes of failure more explicit. Furthermore, the identified nonce-parsing panic was
removed due to changes in the protocol, as detailed below. As such, this note is considered
Fixed.

Comments on Nonce Generation and Usage
Keyfork supports mnemonic- or QR-based transportation of encrypted shards. This is
triggered by the Receiver of such a shard in the function remote_decrypt() and handled by
the Sender in function decrypt_one_shard_for_transport() . The process is summarized as:

Receiver generates an x25519 ephemeral secret key and nonce.

Receiver encodes the public key and nonce as a mnemonic / QR code for transport.

Sender receives and decodes the public key and nonce.

Sender generates an x25519 ephemeral secret key.

Sender uses ECDH and HKDF to derive an AES key.

Sender re-encrypts shard using newly derived AES key and received nonce.

Sender pads the resulting ciphertext and encodes as a mnemonic / QR code.

Sender encodes public key as a mnemonic / QR code for transport.

Receiver receives and decodes the ciphertext and public key.

Receiver uses ECDH and HKDF to derive the AES key.

Receiver unpads and decrypts received ciphertext using derived key and stored nonce.

The above protocol differs from most conventional protocols in that the Receiver is
responsible for generating the nonce and communicating it to the encrypting party, rather
than the nonce being generated by the encrypting party. This does not compromise the
security of AES-GCM, as nonces are considered public information. However, it can be seen
as increasing the attack surface of the protocol, as malicious modification of the nonce in
transit to the encrypting party could result in accidental nonce reuse. However, it should be
emphasized that in keyfork’s implemented use case, each ephemeral key is only used for a
single encryption. A malicious party that can influence the nonce in transit should not be
able to influence the Sender’s ECDH key derivation, making the chance of nonce-reuse
negligible. Furthermore, keyfork assumes that QR codes or mnemonics in transit are
tamperproof.

209

210

211

212

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

{

let decoded_data = smex::decode(&hex)?;

nonce_data = Some(decoded_data[..12] .try_into().map_err(|_| InvalidData)?);

pubkey_data = Some(decoded_data[12..] .try_into().map_err(|_| InvalidData)?)

21 / 26 – Engagement Notes Client Confidential

https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork-shard/src/lib.rs#L203-L212
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork-shard/src/lib.rs#L203-L212
https://git.distrust.co/public/keyfork/commit/0fe530135242ebd06583b64c8356b06bd38b4ad6
https://git.distrust.co/public/keyfork/commit/0fe530135242ebd06583b64c8356b06bd38b4ad6

Although the current approach to nonce management should be safe under the current
threat model, it should be noted that alternate approaches are possible, which may be seen
as restricting the attack surface further:

The Receiver could generate the nonce at random and transmit it alongside the
ciphertext. This matches the usual usage of AES-GCM, where a nonce is freshly
generated at random by the encrypting party at the time of encryption. Furthermore, the
encrypted response is padded to 64 bytes, and under the current parameter set could
accommodate the nonce simply by replacing some of the padding bytes with the nonce.
In practice, the nonce is usually prepended to the ciphertext, as it is a fixed length and
easily parsed in that manner.

The Sender and Receiver could leverage HKDF to derive a deterministic nonce based on
the shared key. In short, an additional 12 bytes for the nonce can be derived from HKDF
after the key and used as the nonce. In this manner the nonce does not need to be
transmitted at all, which slightly simplifies the process. There are two practical
approaches that could be considered:

Expand a total of 32+12 = 44 bytes in a single call to hkdf.expand() and use disjoint
slices of the result as the key and the nonce.

Leverage the info parameter to make two different calls to hkdf.expand() for the key
and the nonce. The info parameter must be a distinct value for each call, and is
typically chosen to be a descriptor, such as info = b"key bytes" and info = b"nonce
bytes" .

It remains imperative that a given key + nonce pair are never reused. Therefore, the
above recommendations must be reconsidered if this key is ever used for more than a
single encryption operation.

Retest Results
Commit 9394500 implements the second recommendation above where the sender and
receiver each derive the nonce deterministically using HKDF:

Figure 14: keyfork-shard/src/lib.rs

The above changes are aligned with the recommendations, and the resulting key and nonce
are only ever used once for encryption. As such, this note is considered Fixed.

Public Key Validation
It was observed that the ECDH key derivation used during transport encryption (described
in the previous section) does not consider maliciously generated public keys, and there is no
validation that a provided public key is not the identity element. The x25519_dalek crate

1.

2.

a.

b.

251

252

253

254

255

256

257

let mut shared_key_data = [0u8; 256 / 8];

hkdf.expand(b"key", &mut shared_key_data)?;

let shared_key = Aes256Gcm::new_from_slice(&shared_key_data)?;

let mut nonce_data = [0u8; 12];

hkdf.expand(b"nonce", &mut nonce_data)?;

let nonce = Nonce::<U12>::from_slice(&nonce_data);

22 / 26 – Engagement Notes Client Confidential

https://git.distrust.co/public/keyfork/commit/9394500f2f77eda33568d05e79e0ec10495146db
https://git.distrust.co/public/keyfork/commit/9394500f2f77eda33568d05e79e0ec10495146db
https://git.distrust.co/public/keyfork/commit/9394500f2f77eda33568d05e79e0ec10495146db#diff-058ed560f6cfc221585d6a4dc66169493ebc0e67
https://git.distrust.co/public/keyfork/commit/9394500f2f77eda33568d05e79e0ec10495146db#diff-058ed560f6cfc221585d6a4dc66169493ebc0e67

provides the following function that can be used to ensure a received public key contributed
to the ECDH derivation:

Figure 15: x25519_dalek/x25519.rs

The Receiver is implicitly trusted, which means their input to the ECDH process should
always be contributory. In transit, the public key is assumed to be tamperproof. The Sender
has knowledge of the shard, and malicious behavior on their part can always leak the secret.
Therefore, it is only with negligible probability that honest shares could be non-contributory,
thereby leading to a leak of the derived AES key. In practice, this risk can effectively be
ignored.

Nevertheless, it could be seen as a defense-in-depth measure to explicitly validate received
public keys to ensure they are not the identity point and are therefore providing a
contribution to the ECDH derivation.

Retest Results
Commit c0b19e2 updated the ECDH process to fail if was_contributory() returns false. As
such, this note is considered Fixed.

Potential Integer Overflow in User Prompt
Keyfork supports placing each individual shard onto multiple smart cards, presumably for the
purposes of backup/redundancy. The prompt displayed to a user chooses to translate from
the internal 0-based index to a 1-based index system:

Figure 16: keyfork/src/cli/wizard.rs

However, because index and i are both u8 values, if either is equal to u8::MAX (255) then
an overflow will occur. In a debug build, this will cause the program to panic. In a release
build, this will cause the value wrap back around to 0. This may be unintuitive or unexpected
by the user but does not represent a security issue in practice. However, one could ensure
the outputs of these operations are represented as a larger type to ensure the user prompts
are consistent, such as using i as u16 + 1 and index as u16 + 1 .

Retest Results
Commit 289cec3 adds the recommended cast to u16 . As such, this note is considered
Fixed.

323

324

325

326

133

134

135

136

137

#[must_use]

pub fn was_contributory(&self) -> bool {

!self.0.is_identity()

}

pm.prompt_message(Message::Text(format!(

"Please remove all keys and insert key #{} for user #{}",

i + 1,

index + 1,

)))?;

23 / 26 – Engagement Notes Client Confidential

https://docs.rs/x25519-dalek/2.0.1/src/x25519_dalek/x25519.rs.html#290-327
https://docs.rs/x25519-dalek/2.0.1/src/x25519_dalek/x25519.rs.html#290-327
https://git.distrust.co/public/keyfork/commit/c0b19e2457c992478b79b1724aea16cd6ee4f5bf
https://git.distrust.co/public/keyfork/commit/c0b19e2457c992478b79b1724aea16cd6ee4f5bf
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/wizard.rs#L133-L137
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/wizard.rs#L133-L137
https://git.distrust.co/public/keyfork/commit/289cec36efb012649fce64aa88463f6913420551
https://git.distrust.co/public/keyfork/commit/289cec36efb012649fce64aa88463f6913420551

Inaccurate Code Comment
The default PGP certificate expiration is one day, but this can be overridden by an
environment variable.

Figure 17: derive/keyfork-derive-openpgp/src/lib.rs

Therefore, the comment here is only correct when the environment variable is not set or is
set to exactly one day. A similar comment appears elsewhere:

Figure 18: keyfork/src/cli/derive.rs

These comments could be updated to specify this as a default time, or to reference the
environment variable as an override.

Retest Results
Commit f0e5ae9 revised the documentation to reference the KEYFORK_OPENPGP_EXPIRE
environment variable. As such, this note is considered Fixed.

Error Handling During Mnemonic Generation
The keyfork-mnemonic-util crate implements the mnemonic sentence generation approach
defined in BIP-0039. Additionally, this crate provides custom methods to extend this
functionality to a much wider range of entropy values:

Figure 19: util/keyfork-mnemonic-util/src/lib.rs

An example of an incorrect use of this functionality is provided further in the documentation:

112

113

114

115

116

19

20

21

22

23

24

25

26

27

28

29

30

292

293

309

310

311

312

313

314

315

316

// Set certificate expiration to one day

let mut keypair = primary_key.clone().into_keypair()?;

let signatures =

cert.set_expiration_time(&policy, None, &mut keypair, Some(expiration_date))?;

let cert = cert.insert_packets(signatures)?;

pub enum DeriveSubcommands {

/// Derive an OpenPGP Transferable Secret Key (private key). The key is encoded using

OpenPGP

/// ASCII Armor, a format usable by most programs using OpenPGP.

///

/// The key is generated with a 24-hour expiration time. The operation to set the

expiration

/// time to a higher value is left to the user to ensure the key is usable by the user.

#[command(name = "openpgp")]

OpenPGP {

/// Default User ID for the certificate, using the OpenPGP User ID format.

user_id: String,

},

}

/// Create a Mnemonic using an arbitrary length of given data. The length does not

need to

/// conform to BIP-0039 standards, but should be a multiple of 32 bits or 4 bytes.

/// If given an invalid length, undefined behavior may follow, or code may panic.

///

/// ```rust,should_panic

/// use keyfork_mnemonic_util::Mnemonic;

/// use std::str::FromStr;

///

/// // NOTE: Data is of invalid length, 31

/// let data = b"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA";

24 / 26 – Engagement Notes Client Confidential

https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-openpgp/src/lib.rs#L112-L116
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/derive/keyfork-derive-openpgp/src/lib.rs#L112-L116
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/derive.rs#L20-L25
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/keyfork/src/cli/derive.rs#L20-L25
https://git.distrust.co/public/keyfork/commit/f0e5ae9a8b1892e01cf488ba0f9ab97e4e23f50f
https://git.distrust.co/public/keyfork/commit/f0e5ae9a8b1892e01cf488ba0f9ab97e4e23f50f
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/util/keyfork-mnemonic-util/src/lib.rs#L292-L293

Figure 20: util/keyfork-mnemonic-util/src/lib.rs

However, as shown in this example, malformed data will not be detected during mnemonic
generation, and will simply result in a mnemonic with a malformed checksum. In particular,
the mnemonic_text variable will be generated successfully, and only parsing it using
from_str() will return an InvalidChecksum error, which results in a panic during the attempt
to unwrap() .

As users of this library may not attempt to parse a newly generated mnemonic immediately
after creation, consider detecting invalid entropy lengths during mnemonic generation and
returning an error instead of an invalid mnemonic.

Retest Results
Commit 6a265ad added AssertValidMnemonicSize::<N>::OK_CHUNKS() to validate that the
mnemonic length is a multiple of 32 bits for mnemonics created via from_nonstandard_bytes(
) and added explicit checks for the same in from_raw_bytes() , along with tests to ensure
that this is enforced. As such, this note is considered Fixed.

Undocumented Upper Limit For Custom Mnemonic Implementation
The mnemonic sentence generation for non-standard entropy values is implemented in the
words() function:

Figure 21: util/keyfork-mnemonic-util/src/lib.rs

However, calling this function on entropy that is longer than 1024 bytes (8192 bits) will
cause a panic on line 412, as the function will attempt to include a checksum that is longer
than the 256 bits of the SHA-256 hash. Consider either documenting and ensuring that the
data provided is shorter than this limit, or designing an alternate checksum approach if the
checksum length is above 256 bits.

317

318

319

320

321

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

/// let mnemonic = unsafe { Mnemonic::from_raw_bytes(data.as_slice()) };

/// let mnemonic_text = mnemonic.to_string();

/// // NOTE: panic happens here

/// let new_mnemonic = Mnemonic::from_str(&mnemonic_text).unwrap();

/// ```

/// Encode the mnemonic into a list of integers 11 bits in length, matching the length

of a

/// BIP-0039 wordlist.

pub fn words(&self) -> Vec<usize> {

let bit_count = self.data.len() * 8;

println!("{:?}", bit_count);

let mut bits = vec![false; bit_count + bit_count / 32];

for byte_index in 0..bit_count / 8 {

for bit_index in 0..8 {

bits[byte_index * 8 + bit_index] =

(self.data[byte_index] & (1 << (7 - bit_index))) > 0;

}

}

let mut hasher = Sha256::new();

hasher.update(&self.data);

let hash = hasher.finalize().to_vec();

for check_bit in 0..bit_count / 32 {

bits[bit_count + check_bit] = (hash[check_bit / 8] & (1 << (7 - (check_bit % 8))

)) > 0;

}

25 / 26 – Engagement Notes Client Confidential

https://git.distrust.co/public/keyfork/src/commit/752138bd352e00d5727b20b3f66ad368ebfe9d38/crates/util/keyfork-mnemonic-util/src/lib.rs#L309-L321
https://git.distrust.co/public/keyfork/commit/6a265ad203d36f77e7c62887c5f52c62daa3026f
https://git.distrust.co/public/keyfork/commit/6a265ad203d36f77e7c62887c5f52c62daa3026f
https://git.distrust.co/public/keyfork/src/tag/keyfork-v0.1.0/crates/util/keyfork-mnemonic-util/src/lib.rs#L395-L413

Retest Results
Commit 6a265ad added AssertValidMnemonicSize::<N>::OK_SIZE() to validate that the
mnemonic length is less than or equal to 1024 bytes for mnemonics created via
from_nonstandard_bytes() and added explicit checks for the same in from_raw_bytes() ,
along with tests to ensure that this is enforced. As such, this note is considered Fixed.

26 / 26 – Engagement Notes Client Confidential

https://git.distrust.co/public/keyfork/commit/6a265ad203d36f77e7c62887c5f52c62daa3026f
https://git.distrust.co/public/keyfork/commit/6a265ad203d36f77e7c62887c5f52c62daa3026f

	Title Page
	Executive Summary
	Synopsis
	Scope
	Limitations
	Key Findings
	Strategic Recommendations

	Dashboard
	Table of Findings
	Finding Details
	Encrypting Shards for Transport Leaks Secret Length
	Non-Hardened Derivation at Top Level of Hierarchical Wallet
	Manipulating System Time Allows Unlimited QR Scanning Retries
	Incorrect Path Used In Hierarchical Key Derivation
	Non-Standard BIP-0032 Derivation
	Vulnerable and Outdated Dependencies

	Finding Field Definitions
	Risk Scale
	Category

	Engagement Notes

