keyfork-shard: begin work on (re)provisioning shardholder keys

This commit is contained in:
Ryan Heywood 2024-02-20 05:26:00 -05:00
parent 752138bd35
commit 960f098b95
Signed by: ryan
GPG Key ID: 8E401478A3FBEF72
6 changed files with 680 additions and 4 deletions

1
Cargo.lock generated
View File

@ -1839,6 +1839,7 @@ dependencies = [
"hkdf",
"keyfork-bug",
"keyfork-derive-openpgp",
"keyfork-derive-util",
"keyfork-mnemonic-util",
"keyfork-prompt",
"keyfork-qrcode",

View File

@ -78,9 +78,7 @@ fn validate(
subkey_format: &str,
default_userid: &str,
) -> Result<(DerivationPath, Vec<KeyType>, UserID), Box<dyn std::error::Error>> {
let mut pgp_u32 = [0u8; 4];
pgp_u32[1..].copy_from_slice(&"pgp".bytes().collect::<Vec<u8>>());
let index = DerivationIndex::new(u32::from_be_bytes(pgp_u32), true)?;
let index = DerivationIndex::new(u32::from_be_bytes(*b"\x00pgp"), true)?;
let path = DerivationPath::from_str(path)?;
assert_eq!(2, path.len(), "Expected path of m/{index}/account_id'");

View File

@ -37,3 +37,4 @@ card-backend-pcsc = { version = "0.5.0", optional = true }
openpgp-card-sequoia = { version = "0.2.0", optional = true, default-features = false }
openpgp-card = { version = "0.4.0", optional = true }
sequoia-openpgp = { version = "1.17.0", optional = true, default-features = false }
keyfork-derive-util = { version = "0.1.0", path = "../derive/keyfork-derive-util", default-features = false }

View File

@ -12,6 +12,7 @@ use aes_gcm::{
};
use hkdf::Hkdf;
use keyfork_bug::{bug, POISONED_MUTEX};
use keyfork_derive_util::{DerivationIndex, DerivationPath};
use keyfork_mnemonic_util::{English, Mnemonic};
use keyfork_prompt::{
validators::{mnemonic::MnemonicSetValidator, Validator},
@ -65,6 +66,52 @@ pub trait Format {
/// A type representing the parsed, but encrypted, Shard data.
type EncryptedData;
/// Provision hardware with a deterministic key based on a shardholder's DerivationIndex.
///
/// The derivation path for provisioned shardholder keys is built using the following template:
/// `m / purpose ' / shard_index ' / shardholder_index '`.
///
/// Purpose is defined by the Format, and can be a four-byte sequence transformed into a u32
/// using `u32::from_be_bytes(*purpose)`. For OpenPGP, for legacy reasons, this purpose is
/// "\x00pgp". The purpose can be _any_ sequence of four bytes so long as the _first_ byte is
/// not higher than 0x80 (meaning, all ASCII / 7-bit characters are allowed).
///
/// The shard index is provided by Keyfork, and is equivalent to b"shrd".
///
/// The shardholder index is how Keyfork is able to recreate keys for specific shardholders -
/// the only necessary information is which shardholder is not accounted for. Shardholders are
/// encouraged to mark hardware with the shardholder number so shardholders can verify their
/// index.
fn provision_shardholder_key(
&self,
derivation_path: DerivationPath,
seed: &[u8],
) -> Result<(), Self::Error>;
/// Return a DerivationIndex for the Format.
///
/// The derivation path for provisioned shardholder keys is built using the following template:
/// `m / purpose ' / shard_index ' / shardholder_index '`.
///
/// Purpose is defined by the Format, and can be a four-byte sequence transformed into a u32
/// using `u32::from_be_bytes(*purpose)`. For OpenPGP, for legacy reasons, this purpose is
/// "\x00pgp". The purpose can be _any_ sequence of four bytes so long as the _first_ byte is
/// not higher than 0x80 (meaning, all ASCII / 7-bit characters are allowed).
fn purpose_derivation_index(&self) -> DerivationIndex;
/// Create a shardholder derivation path for the given format.
///
/// The derivation path for provisioned shardholder keys is built using the following template:
/// `m / purpose ' / shard_index ' / shardholder_index '`.
fn create_derivation_path(&self, shardholder_index: DerivationIndex) -> DerivationPath {
let purpose = self.purpose_derivation_index();
let shard_index = DerivationIndex::new(u32::from_be_bytes(*b"shrd"), true).unwrap();
DerivationPath::default()
.chain_push(purpose)
.chain_push(shard_index)
.chain_push(shardholder_index)
}
/// Derive a signer
fn derive_signing_key(&self, seed: &[u8]) -> Self::SigningKey;

View File

@ -0,0 +1,617 @@
#![doc = include_str!("../README.md")]
#![allow(clippy::expect_fun_call)]
use std::{
io::{stdin, stdout, Read, Write},
sync::{Arc, Mutex},
};
use aes_gcm::{
aead::{consts::U12, Aead, AeadCore, OsRng},
Aes256Gcm, KeyInit, Nonce,
};
use hkdf::Hkdf;
<<<<<<< HEAD
use keyfork_bug::{bug, POISONED_MUTEX};
||||||| parent of 1b30b17 (keyfork-shard: begin work on (re)provisioning shardholder keys)
=======
use keyfork_derive_util::{DerivationIndex, DerivationPath};
>>>>>>> 1b30b17 (keyfork-shard: begin work on (re)provisioning shardholder keys)
use keyfork_mnemonic_util::{English, Mnemonic};
use keyfork_prompt::{
validators::{mnemonic::MnemonicSetValidator, Validator},
Message as PromptMessage, PromptHandler, Terminal,
};
use sha2::Sha256;
use sharks::{Share, Sharks};
use x25519_dalek::{EphemeralSecret, PublicKey};
// 256 bit share encrypted is 49 bytes, couple more bytes before we reach max size
const ENC_LEN: u8 = 4 * 16;
#[cfg(feature = "openpgp")]
pub mod openpgp;
/// A trait to specify where keys can be discovered from, such as a Rust-native type or a path on
/// the filesystem that keys may be read from.
pub trait KeyDiscovery<F: Format + ?Sized> {
/// Discover public keys for the associated format.
///
/// # Errors
/// The method may return an error if public keys could not be loaded from the given discovery
/// mechanism. A discovery mechanism _must_ be able to detect public keys.
fn discover_public_keys(&self) -> Result<Vec<F::PublicKey>, F::Error>;
/// Discover private keys for the associated format.
///
/// # Errors
/// The method may return an error if private keys could not be loaded from the given
/// discovery mechanism. Keys may exist off-system (such as with smartcards), in which case the
/// PrivateKeyData type of the asssociated format should be either `()` (if the keys may never
/// exist on-system) or an empty container (such as an empty Vec); in either case, this method
/// _must not_ return an error if keys are accessible but can't be transferred into memory.
fn discover_private_keys(&self) -> Result<F::PrivateKeyData, F::Error>;
}
/// A format to use for splitting and combining secrets.
pub trait Format {
/// The error type returned from any failed operations.
type Error: std::error::Error + 'static;
/// A type encapsulating a single public key recipient.
type PublicKey;
/// A type encapsulating the private key recipients of shards.
type PrivateKeyData;
/// A type representing a Signer derived from the secret.
type SigningKey;
/// A type representing the parsed, but encrypted, Shard data.
type EncryptedData;
/// Provision hardware with a deterministic key based on a shardholder's DerivationIndex.
///
/// The derivation path for provisioned shardholder keys is built using the following template:
/// `m / purpose ' / shard_index ' / shardholder_index '`.
///
/// Purpose is defined by the Format, and can be a four-byte sequence transformed into a u32
/// using `u32::from_be_bytes(*purpose)`. For OpenPGP, for legacy reasons, this purpose is
/// "\x00pgp". The purpose can be _any_ sequence of four bytes so long as the _first_ byte is
/// not higher than 0x80 (meaning, all ASCII / 7-bit characters are allowed).
///
/// The shard index is provided by Keyfork, and is equivalent to b"shrd".
///
/// The shardholder index is how Keyfork is able to recreate keys for specific shardholders -
/// the only necessary information is which shardholder is not accounted for. Shardholders are
/// encouraged to mark hardware with the shardholder number so shardholders can verify their
/// index.
fn provision_shardholder_key(
&self,
derivation_path: DerivationPath,
seed: &[u8],
) -> Result<(), Self::Error>;
/// Return a DerivationIndex for the Format.
///
/// The derivation path for provisioned shardholder keys is built using the following template:
/// `m / purpose ' / shard_index ' / shardholder_index '`.
///
/// Purpose is defined by the Format, and can be a four-byte sequence transformed into a u32
/// using `u32::from_be_bytes(*purpose)`. For OpenPGP, for legacy reasons, this purpose is
/// "\x00pgp". The purpose can be _any_ sequence of four bytes so long as the _first_ byte is
/// not higher than 0x80 (meaning, all ASCII / 7-bit characters are allowed).
fn purpose_derivation_index(&self) -> DerivationIndex;
/// Create a shardholder derivation path for the given format.
///
/// The derivation path for provisioned shardholder keys is built using the following template:
/// `m / purpose ' / shard_index ' / shardholder_index '`.
fn create_derivation_path(&self, shardholder_index: DerivationIndex) -> DerivationPath {
let purpose = self.purpose_derivation_index();
let shard_index = DerivationIndex::new(u32::from_be_bytes(*b"shrd"), true).unwrap();
DerivationPath::default()
.chain_push(purpose)
.chain_push(shard_index)
.chain_push(shardholder_index)
}
/// Derive a signer
fn derive_signing_key(&self, seed: &[u8]) -> Self::SigningKey;
/// Format a header containing necessary metadata. Such metadata contains a version byte, a
/// threshold byte, a public version of the [`Format::SigningKey`], and the public keys used to
/// encrypt shards. The public keys must be kept _in order_ to the encrypted shards. Keyfork
/// will use the same key_data for both, ensuring an iteration of this method will match with
/// iterations in methods called later.
///
/// # Errors
/// The method may return an error if encryption to any of the public keys fails.
fn format_encrypted_header(
&self,
signing_key: &Self::SigningKey,
key_data: &[Self::PublicKey],
threshold: u8,
) -> Result<Self::EncryptedData, Self::Error>;
/// Format a shard encrypted to the given public key, signing with the private key.
///
/// # Errors
/// The method may return an error if the public key used to encrypt the shard is unsuitable
/// for encryption, or if an error occurs while encrypting.
fn encrypt_shard(
&self,
shard: &[u8],
public_key: &Self::PublicKey,
signing_key: &mut Self::SigningKey,
) -> Result<Self::EncryptedData, Self::Error>;
/// Parse the Shard file into a processable type.
///
/// # Errors
/// The method may return an error if the Shard file could not be read from or if the Shard
/// file could not be properly parsed.
fn parse_shard_file(
&self,
shard_file: impl Read + Send + Sync,
) -> Result<Vec<Self::EncryptedData>, Self::Error>;
/// Write the Shard data to a Shard file.
///
/// # Errors
/// The method may return an error if the Shard data could not be properly serialized or if the
/// Shard file could not be written to.
fn format_shard_file(
&self,
encrypted_data: &[Self::EncryptedData],
shard_file: impl Write + Send + Sync,
) -> Result<(), Self::Error>;
/// Decrypt shares and associated metadata from a readable input. For the current version of
/// Keyfork, the only associated metadata is a u8 representing the threshold to combine
/// secrets.
///
/// # Errors
/// The method may return an error if the shardfile couldn't be read from, if all shards
/// could not be decrypted, or if a shard could not be parsed from the decrypted data.
fn decrypt_all_shards(
&self,
private_keys: Option<Self::PrivateKeyData>,
encrypted_messages: &[Self::EncryptedData],
prompt: Arc<Mutex<impl PromptHandler>>,
) -> Result<(Vec<Share>, u8), Self::Error>;
/// Decrypt a single share and associated metadata from a reaable input. For the current
/// version of Keyfork, the only associated metadata is a u8 representing the threshold to
/// combine secrets.
///
/// # Errors
/// The method may return an error if the shardfile couldn't be read from, if a shard could not
/// be decrypted, or if a shard could not be parsed from the decrypted data.
fn decrypt_one_shard(
&self,
private_keys: Option<Self::PrivateKeyData>,
encrypted_data: &[Self::EncryptedData],
prompt: Arc<Mutex<impl PromptHandler>>,
) -> Result<(Share, u8), Self::Error>;
/// Decrypt multiple shares and combine them to recreate a secret.
///
/// # Errors
/// The method may return an error if the shares can't be decrypted or if the shares can't
/// be combined into a secret.
fn decrypt_all_shards_to_secret(
&self,
private_key_discovery: Option<impl KeyDiscovery<Self>>,
reader: impl Read + Send + Sync,
prompt: impl PromptHandler,
) -> Result<Vec<u8>, Box<dyn std::error::Error>> {
let private_keys = private_key_discovery
.map(|p| p.discover_private_keys())
.transpose()?;
let encrypted_messages = self.parse_shard_file(reader)?;
let (shares, threshold) = self.decrypt_all_shards(
private_keys,
&encrypted_messages,
Arc::new(Mutex::new(prompt)),
)?;
let secret = Sharks(threshold)
.recover(&shares)
.map_err(|e| SharksError::CombineShare(e.to_string()))?;
Ok(secret)
}
/// Establish an AES-256-GCM transport key using ECDH, decrypt a single shard, and encrypt the
/// shard to the AES key.
///
/// # Errors
/// The method may return an error if a share can't be decrypted. The method will not return an
/// error if the camera is inaccessible or if a hardware error is encountered while scanning a
/// QR code; instead, a mnemonic prompt will be used.
fn decrypt_one_shard_for_transport(
&self,
private_key_discovery: Option<impl KeyDiscovery<Self>>,
reader: impl Read + Send + Sync,
prompt: impl PromptHandler,
) -> Result<(), Box<dyn std::error::Error>> {
let prompt = Arc::new(Mutex::new(prompt));
// parse input
let private_keys = private_key_discovery
.map(|p| p.discover_private_keys())
.transpose()?;
let encrypted_messages = self.parse_shard_file(reader)?;
// establish AES-256-GCM key via ECDH
let mut nonce_data: Option<[u8; 12]> = None;
let mut pubkey_data: Option<[u8; 32]> = None;
// receive remote data via scanning QR code from camera
#[cfg(feature = "qrcode")]
{
prompt
.lock()
.expect(bug!(POISONED_MUTEX))
.prompt_message(PromptMessage::Text(QRCODE_PROMPT.to_string()))?;
if let Ok(Some(hex)) =
keyfork_qrcode::scan_camera(std::time::Duration::from_secs(30), 0)
{
let decoded_data = smex::decode(&hex)?;
nonce_data = Some(decoded_data[..12].try_into().map_err(|_| InvalidData)?);
pubkey_data = Some(decoded_data[12..].try_into().map_err(|_| InvalidData)?)
} else {
prompt
.lock()
.expect(bug!(POISONED_MUTEX))
.prompt_message(PromptMessage::Text(QRCODE_ERROR.to_string()))?;
};
}
// if QR code scanning failed or was unavailable, read from a set of mnemonics
let (nonce, their_pubkey) = match (nonce_data, pubkey_data) {
(Some(nonce), Some(pubkey)) => (nonce, pubkey),
_ => {
let validator = MnemonicSetValidator {
word_lengths: [9, 24],
};
let [nonce_mnemonic, pubkey_mnemonic] = prompt
.lock()
.expect(bug!(POISONED_MUTEX))
.prompt_validated_wordlist::<English, _>(
QRCODE_COULDNT_READ,
3,
validator.to_fn(),
)?;
let nonce = nonce_mnemonic
.as_bytes()
.try_into()
.map_err(|_| InvalidData)?;
let pubkey = pubkey_mnemonic
.as_bytes()
.try_into()
.map_err(|_| InvalidData)?;
(nonce, pubkey)
}
};
// create our shared key
let our_key = EphemeralSecret::random();
let our_pubkey_mnemonic = Mnemonic::from_bytes(PublicKey::from(&our_key).as_bytes())?;
let shared_secret = our_key
.diffie_hellman(&PublicKey::from(their_pubkey))
.to_bytes();
let hkdf = Hkdf::<Sha256>::new(None, &shared_secret);
let mut hkdf_output = [0u8; 256 / 8];
hkdf.expand(&[], &mut hkdf_output)?;
let shared_key = Aes256Gcm::new_from_slice(&hkdf_output)?;
// decrypt a single shard and create the payload
let (share, threshold) =
self.decrypt_one_shard(private_keys, &encrypted_messages, prompt.clone())?;
let mut payload = Vec::from(&share);
payload.insert(0, HUNK_VERSION);
payload.insert(1, threshold);
assert!(
payload.len() <= ENC_LEN as usize,
"invalid share length (too long, max {ENC_LEN} bytes)"
);
// encrypt data
let nonce = Nonce::<U12>::from_slice(&nonce);
let payload_bytes = shared_key.encrypt(nonce, payload.as_slice())?;
// convert data to a static-size payload
// NOTE: Padding length is less than u8::MAX because ENC_LEN < u8::MAX
#[allow(clippy::assertions_on_constants)]
{
assert!(ENC_LEN < u8::MAX, "padding byte can be u8");
}
#[allow(clippy::cast_possible_truncation)]
let mut out_bytes = [payload_bytes.len() as u8; ENC_LEN as usize];
assert!(
payload_bytes.len() < out_bytes.len(),
"encrypted payload larger than acceptable limit"
);
out_bytes[..payload_bytes.len()].clone_from_slice(&payload_bytes);
// NOTE: This previously used a single repeated value as the padding byte, but resulted in
// difficulty when entering in prompts manually, as one's place could be lost due to
// repeated keywords. This is resolved below by having sequentially increasing numbers up to
// but not including the last byte.
#[allow(clippy::cast_possible_truncation)]
for (i, byte) in (out_bytes[payload_bytes.len()..(ENC_LEN as usize - 1)])
.iter_mut()
.enumerate()
{
*byte = (i % u8::MAX as usize) as u8;
}
// safety: size of out_bytes is constant and always % 4 == 0
let payload_mnemonic = unsafe { Mnemonic::from_raw_bytes(&out_bytes) };
#[cfg(feature = "qrcode")]
{
use keyfork_qrcode::{qrencode, ErrorCorrection};
let mut qrcode_data = our_pubkey_mnemonic.to_bytes();
qrcode_data.extend(payload_mnemonic.as_bytes());
if let Ok(qrcode) = qrencode(&smex::encode(&qrcode_data), ErrorCorrection::Highest) {
prompt
.lock()
.expect(bug!(POISONED_MUTEX))
.prompt_message(PromptMessage::Text(
concat!(
"A QR code will be displayed after this prompt. ",
"Send the QR code back to the operator combining the shards. ",
"Nobody else should scan this QR code."
)
.to_string(),
))?;
prompt
.lock()
.expect(bug!(POISONED_MUTEX))
.prompt_message(PromptMessage::Data(qrcode))?;
}
}
prompt
.lock()
.expect(bug!(POISONED_MUTEX))
.prompt_message(PromptMessage::Text(format!(
"Upon request, these words should be sent: {our_pubkey_mnemonic} {payload_mnemonic}"
)))?;
Ok(())
}
/// Split a secret into a shard for every shard in keys, with the given Shamir's Secret Sharing
/// threshold.
///
/// # Errors
/// The method may return an error if the shares can't be encrypted.
fn shard_and_encrypt(
&self,
threshold: u8,
max: u8,
secret: &[u8],
public_key_discovery: impl KeyDiscovery<Self>,
writer: impl Write + Send + Sync,
) -> Result<(), Box<dyn std::error::Error>> {
let mut signing_key = self.derive_signing_key(secret);
let sharks = Sharks(threshold);
let dealer = sharks.dealer(secret);
let public_keys = public_key_discovery.discover_public_keys()?;
assert!(
public_keys.len() < u8::MAX as usize,
"must have less than u8::MAX public keys"
);
assert_eq!(
max,
public_keys.len() as u8,
"max must be equal to amount of public keys"
);
let max = public_keys.len() as u8;
assert!(max >= threshold, "threshold must not exceed max keys");
let header = self.format_encrypted_header(&signing_key, &public_keys, threshold)?;
let mut messages = vec![header];
for (pk, share) in public_keys.iter().zip(dealer) {
let shard = Vec::from(&share);
messages.push(self.encrypt_shard(&shard, pk, &mut signing_key)?);
}
self.format_shard_file(&messages, writer)?;
Ok(())
}
}
/// Errors encountered while creating or combining shares using Shamir's Secret Sharing.
#[derive(thiserror::Error, Debug)]
pub enum SharksError {
/// A Shamir Share could not be created.
#[error("Error creating share: {0}")]
Share(String),
/// The Shamir shares could not be combined.
#[error("Error combining shares: {0}")]
CombineShare(String),
}
/// The mnemonic or QR code used to transport an encrypted shard did not store the correct amount
/// of data.
#[derive(thiserror::Error, Debug)]
#[error("Mnemonic or QR code did not store enough data")]
pub struct InvalidData;
/// Decrypt hunk version 1:
/// 1 byte: Version
/// 1 byte: Threshold
/// Data: &[u8]
pub(crate) const HUNK_VERSION: u8 = 1;
pub(crate) const HUNK_OFFSET: usize = 2;
const QRCODE_PROMPT: &str = "Press enter, then present QR code to camera.";
const QRCODE_TIMEOUT: u64 = 60; // One minute
const QRCODE_COULDNT_READ: &str = "A QR code could not be scanned. Please enter their words: ";
const QRCODE_ERROR: &str = "Unable to scan a QR code. Falling back to text entry.";
/// Establish ECDH transport for remote operators, receive transport-encrypted shares, decrypt the
/// shares, and combine them.
///
/// # Errors
/// The function may error if:
/// * Prompting for transport-encrypted shards fails.
/// * Decrypting shards fails.
/// * Combining shards fails.
///
/// # Panics
/// The function may panic if it is given payloads generated using a version of Keyfork that is
/// incompatible with the currently running version.
pub fn remote_decrypt(w: &mut impl Write) -> Result<(), Box<dyn std::error::Error>> {
let mut pm = Terminal::new(stdin(), stdout())?;
let mut iter_count = None;
let mut shares = vec![];
let mut threshold = 0;
let mut iter = 0;
while iter_count.is_none() || iter_count.is_some_and(|i| i > 0) {
iter += 1;
let nonce = Aes256Gcm::generate_nonce(&mut OsRng);
let nonce_mnemonic = unsafe { Mnemonic::from_raw_bytes(nonce.as_slice()) };
let our_key = EphemeralSecret::random();
let key_mnemonic = Mnemonic::from_bytes(PublicKey::from(&our_key).as_bytes())?;
#[cfg(feature = "qrcode")]
{
use keyfork_qrcode::{qrencode, ErrorCorrection};
let mut qrcode_data = nonce_mnemonic.to_bytes();
qrcode_data.extend(key_mnemonic.as_bytes());
if let Ok(qrcode) = qrencode(&smex::encode(&qrcode_data), ErrorCorrection::Highest) {
pm.prompt_message(PromptMessage::Text(format!(
concat!(
"A QR code will be displayed after this prompt. ",
"Send the QR code to only shardholder {iter}. ",
"Nobody else should scan this QR code."
),
iter = iter
)))?;
pm.prompt_message(PromptMessage::Data(qrcode))?;
}
}
pm.prompt_message(PromptMessage::Text(format!(
concat!(
"Upon request, these words should be sent to shardholder {iter}: ",
"{nonce_mnemonic} {key_mnemonic}"
),
iter = iter,
nonce_mnemonic = nonce_mnemonic,
key_mnemonic = key_mnemonic,
)))?;
let mut pubkey_data: Option<[u8; 32]> = None;
let mut payload_data = None;
#[cfg(feature = "qrcode")]
{
pm.prompt_message(PromptMessage::Text(QRCODE_PROMPT.to_string()))?;
if let Ok(Some(hex)) =
keyfork_qrcode::scan_camera(std::time::Duration::from_secs(QRCODE_TIMEOUT), 0)
{
let decoded_data = smex::decode(&hex)?;
let _ = pubkey_data.insert(decoded_data[..32].try_into().map_err(|_| InvalidData)?);
let _ = payload_data.insert(decoded_data[32..].to_vec());
} else {
pm.prompt_message(PromptMessage::Text(QRCODE_ERROR.to_string()))?;
};
}
let (pubkey, payload) = match (pubkey_data, payload_data) {
(Some(pubkey), Some(payload)) => (pubkey, payload),
_ => {
let validator = MnemonicSetValidator {
word_lengths: [24, 48],
};
let [pubkey_mnemonic, payload_mnemonic] = pm
.prompt_validated_wordlist::<English, _>(
QRCODE_COULDNT_READ,
3,
validator.to_fn(),
)?;
let pubkey = pubkey_mnemonic
.as_bytes()
.try_into()
.map_err(|_| InvalidData)?;
let payload = payload_mnemonic.to_bytes();
(pubkey, payload)
}
};
let shared_secret = our_key.diffie_hellman(&PublicKey::from(pubkey)).to_bytes();
let hkdf = Hkdf::<Sha256>::new(None, &shared_secret);
let mut hkdf_output = [0u8; 256 / 8];
hkdf.expand(&[], &mut hkdf_output)?;
let shared_key = Aes256Gcm::new_from_slice(&hkdf_output)?;
let payload =
shared_key.decrypt(&nonce, &payload[..payload[payload.len() - 1] as usize])?;
assert_eq!(HUNK_VERSION, payload[0], "Incompatible hunk version");
match &mut iter_count {
Some(n) => {
// Must be > 0 to start loop, can't go lower
*n -= 1;
}
None => {
// NOTE: Should always be >= 1, < 256 due to Shamir constraints
threshold = payload[1];
let _ = iter_count.insert(threshold - 1);
}
}
shares.push(payload[HUNK_OFFSET..].to_vec());
}
let shares = shares
.into_iter()
.map(|s| Share::try_from(s.as_slice()))
.collect::<Result<Vec<_>, &str>>()
.map_err(|e| SharksError::Share(e.to_string()))?;
let secret = Sharks(threshold)
.recover(&shares)
.map_err(|e| SharksError::CombineShare(e.to_string()))?;
/*
* Verification would take up too much size, mnemonic would be very large
let userid = UserID::from("keyfork-sss");
let kdr = DerivationRequest::new(
DerivationAlgorithm::Ed25519,
&DerivationPath::from_str("m/7366512'/0'")?,
)
.derive_with_master_seed(secret.to_vec())?;
let derived_cert = keyfork_derive_openpgp::derive(
kdr,
&[KeyFlags::empty().set_certification().set_signing()],
userid,
)?;
// NOTE: Signatures on certs will be different. Compare fingerprints instead.
let derived_fp = derived_cert.fingerprint();
let expected_fp = root_cert.fingerprint();
if derived_fp != expected_fp {
return Err(Error::InvalidSecret(derived_fp, expected_fp));
}
*/
w.write_all(&secret)?;
Ok(())
}

View File

@ -13,7 +13,7 @@ use std::{
use keyfork_bug::bug;
use keyfork_derive_openpgp::{
derive_util::{DerivationPath, VariableLengthSeed},
derive_util::{DerivationIndex, DerivationPath, VariableLengthSeed},
XPrv,
};
use keyfork_prompt::PromptHandler;
@ -233,6 +233,18 @@ impl<P: PromptHandler> Format for OpenPGP<P> {
type SigningKey = Cert;
type EncryptedData = EncryptedMessage;
fn provision_shardholder_key(
&self,
derivation_path: DerivationPath,
seed: &[u8],
) -> Result<(), Self::Error> {
todo!()
}
fn purpose_derivation_index(&self) -> DerivationIndex {
DerivationIndex::new(u32::from_be_bytes(*b"\x00pgp"), true).unwrap()
}
/// Derive an OpenPGP Shard certificate from the given seed.
fn derive_signing_key(&self, seed: &[u8]) -> Self::SigningKey {
let seed = VariableLengthSeed::new(seed);