//! OpenPGP Shard functionality. use std::{ collections::HashMap, io::{Read, Write}, path::Path, str::FromStr, }; use keyfork_derive_openpgp::{ derive_util::{DerivationPath, VariableLengthSeed}, XPrv, }; use openpgp::{ armor::{Kind, Writer}, cert::{Cert, CertParser, ValidCert}, packet::{Packet, Tag, UserID, PKESK, SEIP}, parse::{ stream::{DecryptionHelper, DecryptorBuilder, VerificationHelper}, Parse, }, policy::{NullPolicy, Policy, StandardPolicy}, serialize::{ stream::{ArbitraryWriter, Encryptor2, LiteralWriter, Message, Recipient, Signer}, Marshal, }, types::KeyFlags, KeyID, PacketPile, }; pub use sequoia_openpgp as openpgp; use sharks::Share; mod keyring; use keyring::Keyring; mod smartcard; use smartcard::SmartcardManager; /// Shard metadata verson 1: /// 1 byte: Version /// 1 byte: Threshold /// Packet Pile of Certs const SHARD_METADATA_VERSION: u8 = 1; const SHARD_METADATA_OFFSET: usize = 2; use super::{Format, KeyDiscovery, SharksError}; /// Errors encountered while performing operations using OpenPGP. #[derive(Debug, thiserror::Error)] pub enum Error { /// Errors encountered while creating or combining shares. #[error("{0}")] Sharks(#[from] SharksError), /// An error occurred while performing an OpenPGP operation. #[error("OpenPGP error: {0}")] Sequoia(#[source] anyhow::Error), /// An IO error occurred while performing an OpenPGP operation. #[error("OpenPGP IO error: {0}")] SequoiaIo(#[source] std::io::Error), /// An error occurred while using a keyring. #[error("Keyring error: {0}")] Keyring(#[from] keyring::Error), /// An error occurred while using a smartcard. #[error("Smartcard error: {0}")] Smartcard(#[from] smartcard::Error), /// An IO error occurred. #[error("IO error: {0}")] Io(#[source] std::io::Error), } #[allow(missing_docs)] pub type Result = std::result::Result; /// An OpenPGP encrypted message and public-key-encrypted-secret-key packets. #[derive(Debug, Clone)] pub struct EncryptedMessage { pkesks: Vec, message: SEIP, } impl EncryptedMessage { /// Create a new EncryptedMessage from known parts. pub fn new(pkesks: &mut Vec, seip: SEIP) -> Self { Self { pkesks: std::mem::take(pkesks), message: seip, } } /// Parse OpenPGP packets for encrypted messages. /// /// # Errors /// The function may return an error if Sequoia is unable to parse packets. /// /// # Panics /// The function may panic if an unexpected packet is encountered. pub fn from_reader(input: impl Read + Send + Sync) -> openpgp::Result> { let mut pkesks = Vec::new(); let mut encrypted_messages = vec![]; for packet in PacketPile::from_reader(input) .map_err(Error::Sequoia)? .into_children() { match packet { Packet::PKESK(p) => pkesks.push(p), Packet::SEIP(s) => { encrypted_messages.push(EncryptedMessage::new(&mut pkesks, s)); } s => { panic!("Invalid variant found: {}", s.tag()); } } } Ok(encrypted_messages) } /// Serialize all contents of the message to a writer. /// /// # Errors /// The function may error for any condition in Sequoia's Serialize trait. fn serialize(&self, mut o: impl std::io::Write + Send + Sync) -> openpgp::Result<()> { for pkesk in &self.pkesks { let mut packet = vec![]; pkesk.serialize(&mut packet).map_err(Error::Sequoia)?; let message = Message::new(&mut o); let mut message = ArbitraryWriter::new(message, Tag::PKESK).map_err(Error::Sequoia)?; message.write_all(&packet).map_err(Error::SequoiaIo)?; message.finalize().map_err(Error::Sequoia)?; } let mut packet = vec![]; self.message .serialize(&mut packet) .map_err(Error::Sequoia)?; let message = Message::new(&mut o); let mut message = ArbitraryWriter::new(message, Tag::SEIP).map_err(Error::Sequoia)?; message.write_all(&packet).map_err(Error::SequoiaIo)?; message.finalize().map_err(Error::Sequoia)?; Ok(()) } /// Decrypt the message with a Sequoia policy and decryptor. /// /// This method creates a container containing the packets and passes the serialized container /// to a DecryptorBuilder, which is used to decrypt the message. /// /// # Errors /// The method may return an error if it is unable to rebuild the message to decrypt or if it /// is unable to decrypt the message. pub fn decrypt_with(&self, policy: &'_ dyn Policy, decryptor: H) -> Result> where H: VerificationHelper + DecryptionHelper, { let mut packets = vec![]; self.serialize(&mut packets).map_err(Error::Sequoia)?; let mut decryptor = DecryptorBuilder::from_bytes(&packets) .map_err(Error::Sequoia)? .with_policy(policy, None, decryptor) .map_err(Error::Sequoia)?; let mut content = vec![]; decryptor .read_to_end(&mut content) .map_err(Error::SequoiaIo)?; Ok(content) } } /// pub struct OpenPGP; impl OpenPGP { /// Read all OpenPGP certificates in a path and return a [`Vec`] of them. Certificates are read /// from a file, or from files one level deep in a directory. /// /// # Errors /// The function may return an error if it is unable to read the directory or if Sequoia is unable /// to load certificates from the file. pub fn discover_certs(path: impl AsRef) -> Result> { let path = path.as_ref(); if path.is_file() { let mut vec = vec![]; for cert in CertParser::from_file(path).map_err(Error::Sequoia)? { vec.push(cert.map_err(Error::Sequoia)?); } Ok(vec) } else { let mut vec = vec![]; for entry in path .read_dir() .map_err(Error::Io)? .filter_map(Result::ok) .filter(|p| p.path().is_file()) { vec.push(Cert::from_file(entry.path()).map_err(Error::Sequoia)?); } Ok(vec) } } } impl Format for OpenPGP { type Error = Error; type PublicKey = Cert; type PrivateKeyData = Vec; type SigningKey = Cert; type EncryptedData = EncryptedMessage; /// Derive an OpenPGP Shard certificate from the given seed. fn derive_signing_key(&self, seed: &[u8]) -> Self::SigningKey { let seed = VariableLengthSeed::new(seed); // build cert to sign encrypted shares let userid = UserID::from("keyfork-sss"); let path = DerivationPath::from_str("m/7366512'/0'").expect("valid derivation path"); let xprv = XPrv::new(seed) .derive_path(&path) .expect("valid derivation"); keyfork_derive_openpgp::derive( xprv, &[KeyFlags::empty().set_certification().set_signing()], &userid, ) .expect("valid cert creation") } fn format_encrypted_header( &self, signing_key: &Self::SigningKey, key_data: &[Self::PublicKey], threshold: u8, ) -> Result { let policy = StandardPolicy::new(); let mut pp = vec![SHARD_METADATA_VERSION, threshold]; // Note: Sequoia does not export private keys on a Cert, only on a TSK signing_key .serialize(&mut pp) .expect("serialize cert into bytes"); for cert in key_data { cert.serialize(&mut pp) .expect("serialize pubkey into bytes"); } // verify packet pile let mut iter = openpgp::cert::CertParser::from_bytes(&pp[SHARD_METADATA_OFFSET..]) .expect("should have certs"); let first_cert = iter.next().transpose().ok().flatten().expect("first cert"); assert_eq!(signing_key, &first_cert); for (packet_cert, cert) in iter.zip(key_data) { assert_eq!( &packet_cert.expect("parsed packet cert"), cert, "packet pile could not recreate cert: {}", cert.fingerprint(), ); } let valid_certs = key_data .iter() .map(|c| c.with_policy(&policy, None)) .collect::>>() .map_err(Error::Sequoia)?; let recipients = valid_certs.iter().flat_map(|vc| { get_encryption_keys(vc).map(|key| Recipient::new(KeyID::wildcard(), key.key())) }); // Process is as follows: // * Any OpenPGP message // * An encrypted message // * A literal message // * The packet pile // // When decrypting, OpenPGP will see: // * A message, and parse it // * An encrypted message, and decrypt it // * A literal message, and extract it // * The packet pile let mut output = vec![]; let message = Message::new(&mut output); let encrypted_message = Encryptor2::for_recipients(message, recipients) .build() .map_err(Error::Sequoia)?; let mut literal_message = LiteralWriter::new(encrypted_message) .build() .map_err(Error::Sequoia)?; literal_message.write_all(&pp).map_err(Error::SequoiaIo)?; literal_message.finalize().map_err(Error::Sequoia)?; // Parse it into an EncryptedMessage. Yes, this takes a serialized message // and deserializes it. Don't think about it too hard. It's easier this way. let mut pkesks = vec![]; for packet in PacketPile::from_reader(output.as_slice()) .map_err(Error::Sequoia)? .into_children() { match packet { Packet::PKESK(p) => pkesks.push(p), Packet::SEIP(s) => return Ok(EncryptedMessage::new(&mut pkesks, s)), s => panic!("Invalid variant found: {}", s.tag()), } } panic!("Unable to build EncryptedMessage from PacketPile"); } fn encrypt_shard( &self, shard: &[u8], public_key: &Cert, signing_key: &mut Self::SigningKey, ) -> Result { let policy = StandardPolicy::new(); let valid_cert = public_key .with_policy(&policy, None) .map_err(Error::Sequoia)?; let encryption_keys = get_encryption_keys(&valid_cert).collect::>(); let signing_key = signing_key .primary_key() .parts_into_secret() .map_err(Error::Sequoia)? .key() .clone() .into_keypair() .map_err(Error::Sequoia)?; // Process is as follows: // * Any OpenPGP message // * An encrypted message // * A signed message // * A literal message // * The shard itself // // When decrypting, OpenPGP will see: // * A message, and parse it // * An encrypted message, and decrypt it // * A signed message, and verify it // * A literal message, and extract it // * The shard itself let mut message_output = vec![]; let message = Message::new(&mut message_output); let encrypted_message = Encryptor2::for_recipients( message, encryption_keys .iter() .map(|k| Recipient::new(KeyID::wildcard(), k.key())), ) .build() .map_err(Error::Sequoia)?; let signed_message = Signer::new(encrypted_message, signing_key) .build() .map_err(Error::Sequoia)?; let mut message = LiteralWriter::new(signed_message) .build() .map_err(Error::Sequoia)?; message.write_all(shard).map_err(Error::SequoiaIo)?; message.finalize().map_err(Error::Sequoia)?; let message = EncryptedMessage::from_reader(message_output.as_slice()) .map_err(Error::Sequoia)? .into_iter() .next() .expect("serialized message should be parseable"); Ok(message) } fn parse_shard_file( &self, shard_file: impl Read + Send + Sync, ) -> Result, Self::Error> { EncryptedMessage::from_reader(shard_file).map_err(Error::Sequoia) } fn format_shard_file( &self, encrypted_data: &[Self::EncryptedData], shard_file: impl Write + Send + Sync, ) -> Result<(), Self::Error> { let mut writer = Writer::new(shard_file, Kind::Message).map_err(Error::SequoiaIo)?; for message in encrypted_data { message.serialize(&mut writer).map_err(Error::Sequoia)?; } writer.finalize().map_err(Error::SequoiaIo)?; Ok(()) } fn decrypt_all_shards( &self, private_keys: Option, encrypted_data: &[Self::EncryptedData], ) -> std::result::Result<(Vec, u8), Self::Error> { // Be as liberal as possible when decrypting. // We don't want to invalidate someone's keys just because the old sig expired. let policy = NullPolicy::new(); let mut keyring = Keyring::new(private_keys.unwrap_or_default())?; let mut manager = SmartcardManager::new()?; let mut encrypted_messages = encrypted_data.iter(); let metadata = encrypted_messages.next().expect("metdata"); let metadata_content = decrypt_metadata(metadata, &policy, &mut keyring, &mut manager)?; let (threshold, root_cert, certs) = decode_metadata_v1(&metadata_content)?; keyring.set_root_cert(root_cert.clone()); manager.set_root_cert(root_cert.clone()); // Generate a controlled binding from certificates to encrypted messages. This is stable // because we control the order packets are encrypted and certificates are stored. // TODO: remove alloc, convert EncryptedMessage to &EncryptedMessage let mut messages: HashMap = certs .iter() .map(Cert::keyid) .zip(encrypted_messages.cloned()) .collect(); let mut decrypted_messages = decrypt_with_keyring(&mut messages, &certs, &policy, &mut keyring)?; // clean decrypted messages from encrypted messages messages.retain(|k, _v| !decrypted_messages.contains_key(k)); let left_from_threshold = threshold as usize - decrypted_messages.len(); if left_from_threshold > 0 { #[allow(clippy::cast_possible_truncation)] let new_messages = decrypt_with_manager( left_from_threshold as u8, &mut messages, &certs, &policy, &mut manager, )?; decrypted_messages.extend(new_messages); } let shares = decrypted_messages .values() .map(|message| Share::try_from(message.as_slice())) .collect::, &str>>() .map_err(|e| SharksError::Share(e.to_string()))?; Ok((shares, threshold)) } fn decrypt_one_shard( &self, private_keys: Option, encrypted_data: &[Self::EncryptedData], ) -> std::result::Result<(Share, u8), Self::Error> { let policy = NullPolicy::new(); let mut keyring = Keyring::new(private_keys.unwrap_or_default())?; let mut manager = SmartcardManager::new()?; let mut encrypted_messages = encrypted_data.iter(); let metadata = encrypted_messages.next().expect("metadata"); let metadata_content = decrypt_metadata(metadata, &policy, &mut keyring, &mut manager)?; let (threshold, root_cert, certs) = decode_metadata_v1(&metadata_content)?; keyring.set_root_cert(root_cert.clone()); manager.set_root_cert(root_cert.clone()); let mut messages: HashMap = certs .iter() .map(Cert::keyid) .zip(encrypted_messages.cloned()) .collect(); let decrypted_messages = decrypt_with_keyring(&mut messages, &certs, &policy, &mut keyring)?; if let Some(message) = decrypted_messages.into_values().next() { let share = Share::try_from(message.as_slice()) .map_err(|e| SharksError::Share(e.to_string()))?; return Ok((share, threshold)); } let decrypted_messages = decrypt_with_manager(1, &mut messages, &certs, &policy, &mut manager)?; if let Some(message) = decrypted_messages.into_values().next() { let share = Share::try_from(message.as_slice()) .map_err(|e| SharksError::Share(e.to_string()))?; return Ok((share, threshold)); } panic!("unable to decrypt shard"); } } impl KeyDiscovery for &Path { fn discover_public_keys(&self) -> Result::PublicKey>> { OpenPGP::discover_certs(self) } fn discover_private_keys(&self) -> Result<::PrivateKeyData> { todo!() } } impl KeyDiscovery for &[Cert] { fn discover_public_keys(&self) -> Result::PublicKey>> { Ok(self.to_vec()) } fn discover_private_keys(&self) -> Result<::PrivateKeyData> { Ok(self.to_vec()) } } fn get_encryption_keys<'a>( cert: &'a ValidCert, ) -> openpgp::cert::prelude::ValidKeyAmalgamationIter< 'a, openpgp::packet::key::PublicParts, openpgp::packet::key::UnspecifiedRole, > { cert.keys() .alive() .revoked(false) .supported() .for_storage_encryption() } fn get_decryption_keys<'a>( cert: &'a ValidCert, ) -> openpgp::cert::prelude::ValidKeyAmalgamationIter< 'a, openpgp::packet::key::SecretParts, openpgp::packet::key::UnspecifiedRole, > { cert.keys() /* .alive() .revoked(false) .supported() */ .for_storage_encryption() .secret() } fn decode_metadata_v1(buf: &[u8]) -> Result<(u8, Cert, Vec)> { assert_eq!( SHARD_METADATA_VERSION, buf[0], "Incompatible metadata version" ); let threshold = buf[1]; let mut cert_parser = CertParser::from_bytes(&buf[SHARD_METADATA_OFFSET..]).map_err(Error::Sequoia)?; let root_cert = match cert_parser.next() { Some(Ok(c)) => c, Some(Err(e)) => return Err(Error::Sequoia(e)), None => panic!("No data found"), }; let certs = cert_parser .collect::>>() .map_err(Error::Sequoia)?; Ok((threshold, root_cert, certs)) } // NOTE: When using single-decryptor mechanism, use this method with `threshold = 1` to return a // single message. fn decrypt_with_manager( threshold: u8, messages: &mut HashMap, certs: &[Cert], policy: &dyn Policy, manager: &mut SmartcardManager, ) -> Result>> { let mut decrypted_messages = HashMap::new(); while threshold as usize - decrypted_messages.len() > 0 { // Build list of fingerprints that haven't yet been used for decrypting let mut cert_by_fingerprint = HashMap::new(); let mut unused_fingerprints = vec![]; for valid_cert in certs .iter() .filter(|cert| !decrypted_messages.contains_key(&cert.keyid())) .map(|cert| cert.with_policy(policy, None)) { let valid_cert = valid_cert.map_err(Error::Sequoia)?; let fp = valid_cert .keys() .for_storage_encryption() .map(|k| k.fingerprint()) .collect::>(); for fp in &fp { cert_by_fingerprint.insert(fp.clone(), valid_cert.keyid()); } unused_fingerprints.extend(fp.into_iter()); } // Iterate over all fingerprints and use key_by_fingerprints to assoc with Enc. Message if let Some(fp) = manager.load_any_fingerprint(unused_fingerprints)? { let cert_keyid = cert_by_fingerprint.get(&fp).unwrap().clone(); if let Some(message) = messages.remove(&cert_keyid) { let message = message.decrypt_with(policy, &mut *manager)?; decrypted_messages.insert(cert_keyid, message); } } } Ok(decrypted_messages) } // NOTE: When using single-decryptor mechanism, only a single key should be provided in Keyring to // decrypt messages with. fn decrypt_with_keyring( messages: &mut HashMap, certs: &[Cert], policy: &NullPolicy, keyring: &mut Keyring, ) -> Result>, Error> { let mut decrypted_messages = HashMap::new(); for valid_cert in certs.iter().map(|cert| cert.with_policy(policy, None)) { let valid_cert = valid_cert.map_err(Error::Sequoia)?; let Some(secret_cert) = keyring.get_cert_for_primary_keyid(&valid_cert.keyid()) else { continue; }; let secret_cert = secret_cert .with_policy(policy, None) .map_err(Error::Sequoia)?; let keys = get_decryption_keys(&secret_cert).collect::>(); if !keys.is_empty() { if let Some(message) = messages.get_mut(&valid_cert.keyid()) { for (pkesk, key) in message.pkesks.iter_mut().zip(keys) { pkesk.set_recipient(key.keyid()); } // we have a pkesk, decrypt via keyring decrypted_messages.insert( valid_cert.keyid(), message.decrypt_with(policy, &mut *keyring)?, ); } } } Ok(decrypted_messages) } fn decrypt_metadata( message: &EncryptedMessage, policy: &NullPolicy, keyring: &mut Keyring, manager: &mut SmartcardManager, ) -> Result> { Ok(if keyring.is_empty() { manager.load_any_card()?; message.decrypt_with(policy, manager)? } else { message.decrypt_with(policy, keyring)? }) }