
Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Audit-Report Distrust Keyfork Toolkit & Library 04.2024
Cure53, Dr.-Ing. M. Heiderich, Dr. M. Conde, Dr. D. Bleichenbacher, Dr. N. Kobeissi, C. Lüders

Index
Introduction

Scope

Test Methodology

Identified Vulnerabilities

DIS-01-006 WP1: Easily guessable numeric sequences accepted as PINs (Low)

Miscellaneous Issues

DIS-01-001 WP1: Mnemonic system seed source platform-dependent (Info)

DIS-01-002 WP1: Bias of polynomial coefficients in secret sharing (Low)

DIS-01-003 WP1: Unclear security model for kernel & network safety (Info)

DIS-01-004 WP1: Minor safety improvement for signature parsing logic (Info)

DIS-01-005 WP1: Public key discovery fails to ensure key distinction (Low)

DIS-01-007 WP1: Robustness improvement for shard transport shared key (Info)

Conclusions

Cure53, Berlin · Apr 29, 24 1/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction
This report describes the results of a cryptography review and source code audit against the
Distrust Keyfork Toolkit, which was performed by Cure53 in April 2024.

In context, the customer invested a total of twenty-five days for extended coverage over the
targets. A team comprising five experienced pentesters was assembled to fulfill all stages of
the examination, from preparation through to execution and finalization. A single Work
Package (WP) was created entitled WP1: Cryptography reviews & code audits against
Distrust Keyfork Toolkit. Materials such as sources, a list of key focus areas, and other
access points were handed over in advance. The provision of sources meant that the
pentesting methodology conformed with a white-box approach.

A number of preliminary actions were undertaken during the week prior to the engagement
(CW14 2024) to foster a hindrance-free environment for the testers to operate in.

Communications between the maintainers and Cure53 were facilitated through the creation
of a dedicated and shared Slack channel. All personnel that played an active role in this
exercise were invited to join the channel. Both parties contributed to clear and consistent
communication. The well-defined scope of the assessment minimized the need for
clarification, further streamlining the testing process. Cure53 kept all stakeholders informed
by providing frequent status updates on testing progress and any associated findings. Live
reporting was offered as an additional service and conducted via the aforementioned
medium.

Regarding the findings, after achieving satisfactory coverage during the prescribed time
frame, seven findings were encountered and documented. Fortunately, only one of those
was categorized as a security vulnerability, while the other six were tagged with an impact
score of Low or Info, denoting manageable threats or general weaknesses.

The overall number of findings is relatively moderate for a scope of this magnitude, which
certainly reflects favorably on the security premise offered by the Distrust Keyfork library. It
is additionally positive to note that this review identified no critical cryptographic or general
security vulnerabilities.

Cure53, Berlin · Apr 29, 24 2/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The overall positive final verdict stands as a testament to the proactive approach taken
towards secure cryptographic engineering practices within the Keyfork codebase.
Nonetheless, Cure53 recommends committing to ongoing security improvements as well as
performing regular external pentests in order to maintain this foundational layer of defense.

The report will now shed more light on the scope and testing setup, as well as provide a
comprehensive breakdown of the available materials. This will be followed by a chapter
outlining the Test Methodology, which serves to provide greater clarity on the techniques
applied and coverage achieved throughout this audit. Subsequently, the report will list all
findings identified in chronological order, starting with the Identified Vulnerabilities and
followed by the Miscellaneous Issues unearthed. Each finding will be accompanied by a
technical description and Proof of Concepts (PoCs) where applicable, plus any relevant
mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
elaborate on the impressions gained toward the general security posture of the Distrust
Keyfork Toolkit, giving high-level hardening advice where applicable.

Cure53, Berlin · Apr 29, 24 3/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope
• Cryptography reviews & code audits against Distrust Keyfork Toolkit & library

◦ WP1: Cryptography reviews & code audits against Distrust Keyfork Toolkit
▪ Source code:

• https://git.distrust.co/public/keyfork
▪ Key focus areas:

• Does Keyfork generate secure entropy?
• Does Keyfork derive new keys from this seed securely?
• Does Keyfork provision derived keys to Yubikeys securely?
• Does Keyfork support securely splitting the key as an M-of-N set encrypted to

each Yubikey?
• Does Keyfork support the secure transmission of key shards back to a central

offline machine, with only offline systems granted access to secrets?
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Apr 29, 24 4/22

https://cure53.de/
https://git.distrust.co/public/keyfork
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Test Methodology
This section documents the testing methodology applied by Cure53 during this project and
discusses the resulting coverage, shedding light on how various components were
examined. Further clarification concerning areas of investigation subjected to deep-dive
assessment is offered, especially in the absence of significant security vulnerabilities
detected.

The assignment consisted of a single work package that was dedicated to cryptography
reviews and a source code audit against the Distrust Keyfork Toolkit. The customer provided
the source code and supporting documentation, as well as pinpointed several key focus
areas for investigation, including the entropy generation, key derivation, smartcard
provisioning (Yubikeys in particular), the process of splitting a key into shares and
encrypting them, and the secure transmission of the encrypted shares for remote recovery
of the secret in the use case of a disaster recovery.

The first aspect explored by Cure53 was the generation of initial entropy and a
corresponding mnemonic, as mandated by BIP39. The generation of the initial entropy,
which is directly gathered from /dev/urandom, was found to be secure. However, the
protocol limits code portability across different operating systems (see DIS-01-001).
Abstracting this functionality into a dedicated module or using a library could improve
maintainability, reduce error handling repetition, and streamline device management. While
auditing the process of entropy generation, the test team observed the presence of initial
safety checks for network connection and kernel version. However, these checks lack a
clear security model to effectively gauge their relevance or the security proficiency they
provide. In this regard, DIS-01-003 recommends establishing a formal threat model that
clearly defines the security objectives and threats these checks aim to mitigate. This model
would contextualize the security measures, acknowledge limitations, and help refine or
justify future security enhancements based on a structured framework. Besides this, Cure53
was unable to detect any flaws in the process of generating a mnemonic from the entropy.

Next, the key derivation process was extensively studied. Since Keyfork follows BIP32 to
derive deterministic keys, the implementation was audited for common vulnerabilities such
as incorrect handling of the indices of hardened and non-hardened child keys, malformed
paths, and unbounded depth. Positively, the testing team found that these undesirable
situations were avoided. The only noteworthy observation in this area is that the
implementation is not fully compliant with BIP32, as some derived keys are declared as
invalid, which BIP39 accepts. However, the developer team is already aware1 of this
weakness and thus it was not re-documented in this report, since it occurs with a negligible
probability and hence will likely never be encountered in practice.

1 This issue is mentioned in a report from NCC Group shared by the customer at the beginning of the audit.

Cure53, Berlin · Apr 29, 24 5/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The process of splitting a secret into shares via Shamir’s secret sharing scheme, as well as
the encryption of the resulting shares, was systematically analyzed. The team’s
undertakings here confirmed the presence of a flaw in the library used for sharding, as
reported in ticket DIS-01-002. This issue cannot be exploited in Keyfork under the current
implementation, since a secret is randomly generated and split, hence re-splitting a fixed
secret is not supported. Nevertheless, the flaw in the underlying library exists and may result
in a leakage that allows reconstructing secrets in future evolutions of the software.
Moreover, while reviewing the shard encryption procedure, Cure53 found that the OpenPGP
location public keys that the shards are encrypted to are retrieved from within a file or
directory. However, the uniqueness of these public keys is not guaranteed (see DIS-01-
005), which can result in two different shards being encrypted to the same public key.

Subsequently, the assessment team vetted the disaster recovery mechanism, which was
considered the most complex use case. Regarding Yubikey provisioning, Cure53 noticed
that easily-guessable numeric PINs are permitted for configuration, as reported in DIS-01-
006. This constitutes insufficient protection of the private keys contained in the smartcard
should an attacker obtain physical access to the smartcards, even temporarily. Furthermore,
the confirmation was made that the implementation of signature verification iterates through
all signatures without ensuring that only one valid signature exists, potentially allowing
multiple valid signatures and introducing timing side channels, as discussed in ticket DIS-01-
004. This behavior could be exploited to glean insight into signature processing, particularly
as the software evolves. As such, a major proportion of the secret reconstruction is the
protocol utilized to transport the shares to the operator reconstructing the secret. To the
testing team’s knowledge, the protocol employs well-established cryptographic primitives
(XDH, HKDF, AES-GCM). However, since it is custom-made, Cure53 deemed it appropriate
to scrutinize this aspect extensively. The protocol was compared with similar established
protocols, such as NIST SP 800-56a2 and the ISO proposal for ECIES by Shoup3. The
testers were unable to detect an attack strategy against the shard transport protocol during
the assignment time frame, though ticket DIS-01-007 provides a recommendation for
improving the robustness of the shard transport mirroring ECIES.

Finally, the Rust implementation was audited from a wider perspective, abstracting it from
the use case. This review process commenced by checking all application dependencies,
whereby the team verified that the RSA crate exhibits an advisory that is unpatched and
ignored on the source’s configuration (namely RUSTSEC-2023-0071). However, the
vulnerability does not directly impact the application and is already known by the developer
team. Rust’s unsafe keyword usage was thoroughly analyzed since it remains a critical
feature of the source code. Most references were related to terminal handling input/output
and QR code parsing that relies on low-level libraries. An unsafe from_raw_bytes function is
defined on keyfork-mnemonic-util, though no memory-related flaw was identified. The
unsafe keyword is only used to express that non-compliant results may be produced, which
is a sound development practice.

2 https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
3 https://www.shoup.net/papers/iso-2_1.pdf

Cure53, Berlin · Apr 29, 24 6/22

https://cure53.de/
https://www.shoup.net/papers/iso-2_1.pdf
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The possibility of command and argument injection vulnerabilities was considered, since
some application features rely on calling external commands/binaries, such as qrencode
and tput. Cure53 confirmed the inability to inject or modify either the arguments or the binary
called from user-controlled input. All possible inputs originating from external sources were
tested to ensure that the application was not vulnerable to any form of injection. Here, the
application demonstrated commendable reliability to malformed, large, and malicious inputs
in various areas, exiting successfully and avoiding undefined behaviors.

Cure53, Berlin · Apr 29, 24 7/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., DIS-01-001) to
facilitate any future follow-up correspondence.

DIS-01-006 WP1: Easily guessable numeric sequences accepted as PINs (Low)
Fix note: This issue has been mitigated by the maintainer team and subsequently fix-
verified by Cure53 by inspecting a PR/diff.

When provisioning smartcards handed out to shareholders, a user PIN and an administrator
PIN are configured. Each shareholder’s smartcard contains the OpenPGP location private
key required to decrypt the share. Thus, the PIN is the only layer that protects the private
key in the event an attacker is able to obtain physical access to the smartcard.

When auditing the process of configuring smartcard PINs, the test team found that these
PINs are actually validated, as indicated by the following code excerpt.

Affected file:
crates/keyfork/src/cli/wizard.rs

Affected code:
fn generate_shard_secret(
 threshold: u8,
 max: u8,
 keys_per_shard: u8,
 output_file: &Option<PathBuf>,
) -> Result<()> {
 let seed = keyfork_entropy::generate_entropy_of_const_size::<{256 /
8}>()?;
 let mut pm = default_terminal()?;
 let mut certs = vec![];
 let mut seen_cards: HashSet<String> = HashSet::new();
 let stdout = std::io::stdout();
 if output_file.is_none() {
 assert!(
 !stdout.is_terminal(),
 "not printing shard to terminal, redirect output"
);
 }

 let user_pin_validator = PinValidator {
 min_length: Some(6),

Cure53, Berlin · Apr 29, 24 8/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 ..Default::default()
 }
 .to_fn();
 let admin_pin_validator = PinValidator {
 min_length: Some(8),
 ..Default::default()
 }
 .to_fn();

 for index in 0..max {
 let cert = derive_key(seed, index)?;
 for i in 0..keys_per_shard {
 pm.prompt_message(Message::Text(format!(
 "Please remove all keys and insert key #{} for user #{}",
 i + 1,
 index + 1,
)))?;
 let card_backend = loop {
 [...]
 };
 let user_pin = pm.prompt_validated_passphrase(
 "Please enter the new smartcard User PIN: ",
 3,
 &user_pin_validator,
)?;
 let admin_pin = pm.prompt_validated_passphrase(
 "Please enter the new smartcard Admin PIN: ",
 3,
 &admin_pin_validator,
)?;
 factory_reset_current_card(
 &mut seen_cards,
 user_pin.trim(),
 admin_pin.trim(),
 &cert,
 card_backend,
)?;
 }
 certs.push(cert);
 }

 [...]
}

This validator ensures that the PIN’s length lies within the range of a hardcoded minimum
(variable depending on whether it constitutes a user or admin PIN) and a maximum. It also
ensures that the PIN consists only of numeric characters, which is essential toward
preventing injection attacks.

Cure53, Berlin · Apr 29, 24 9/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected file:
crates/util/keyfork-prompt/src/validators.rs

Affected code:
impl Validator for PinValidator {
 type Output = String;
 type Error = PinError;

 fn to_fn(&self) -> Box<dyn Fn(String) -> Result<String, Box<dyn
std::error::Error>>> {
 let min_len = self.min_length.unwrap_or(usize::MIN);
 let max_len = self.max_length.unwrap_or(usize::MAX);
 let range = self.range.clone().unwrap_or('0'..='9');
 Box::new(move |mut s: String| {
 s.truncate(s.trim_end().len());
 let len = s.len();
 if len < min_len {
 return Err(Box::new(PinError::TooShort(len, min_len)));
 }
 if len > max_len {
 return Err(Box::new(PinError::TooLong(len, max_len)));
 }
 for (index, ch) in s.chars().enumerate() {
 if !range.contains(&ch) {
 return Err(Box::new(PinError::InvalidCharacters(ch,
index)));
 }
 }
 Ok(s)
 })
 }
}

However, the implementation does not provide additional logic that prevents easily-
guessable numeric sequences (such as 00…00) from being configured as PINs for the
smartcards. Limiting the number of attempts generally contributes to smartcard security,
though this should be complemented with the rejection of trivially-guessable PINs, which
would provide another safeguard layer if a smartcard is stolen.

To mitigate this issue, Cure53 recommends preventing easily-guessable patterns from being
configured as the user/admin PIN, as implemented for other correlatory systems4.

4 https://learn.microsoft.com/en-us/windows/security/identity-protection/hello-for-business/faq#[...]-pins

Cure53, Berlin · Apr 29, 24 10/22

https://cure53.de/
https://learn.microsoft.com/en-us/windows/security/identity-protection/hello-for-business/faq#does-windows-hello-for-business-prevent-the-use-of-simple-pins
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

DIS-01-001 WP1: Mnemonic system seed source platform-dependent (Info)
The codebase’s generate_entropy_of_size and generate_entropy_of_const_size Rust
functions directly access the /dev/urandom device to retrieve random data. This direct
access poses negligible security concern and remains viable from a security perspective.
However, potential areas of improvement regarding eventual portability and maintainability
are introduced as a result:

• Portability: The direct use of /dev/urandom limits the code's portability across
different operating systems. While /dev/urandom is commonly available on Unix-like
systems, this approach does not inherently support other platforms such as
Windows, which uses different mechanisms for secure randomness.

• Error handling: The current implementation opens and reads from the device
directly within each function call. This approach can lead to repeated error handling
and device management overhead, which could be streamlined through abstraction.

Affected file:
crates/util/keyfork-entropy/src/lib.rs

Affected code:
pub fn generate_entropy_of_size(byte_count: usize) -> Result<Vec<u8>,
std::io::Error> {
 ensure_safe();
 let mut vec = vec![0u8; byte_count];
 let mut entropy_file = File::open("/dev/urandom")?;
 entropy_file.read_exact(&mut vec[..])?;
 Ok(vec)
}

pub fn generate_entropy_of_const_size<const N: usize>() -> Result<[u8; N],
std::io::Error> {
 let mut output = [0u8; N];
 let mut entropy_file = File::open("/dev/urandom")?;
 entropy_file.read_exact(&mut output[..])?;
 Ok(output)
}

Cure53, Berlin · Apr 29, 24 11/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

To enhance the code's robustness, portability, and maintainability, it is recommended to
abstract the randomness source via a library or a dedicated module. This abstraction can
provide several advantages:

• Cross-platform support: Utilizing a library such as rand or ring in Rust, which
abstracts over the OS-specific mechanisms to generate random numbers, can
facilitate code functionality across multiple platforms without any additional burden
on the end developer.

• Centralized error handling: By abstracting the randomness generation, error
handling can be centralized in a single location, improving the reliability and
readability of the code. This will also reduce redundancy and facilitate easier
updates or fixes related to random number generation.

DIS-01-002 WP1: Bias of polynomial coefficients in secret sharing (Low)
While investigating the process of splitting a secret into shares via Shamir’s secret sharing
scheme (SSS), Cure53 observed that an underlying library named sharks handles this
operation. Since secret sharing is crucial to the overall security of the system, Cure53
deemed it apt to inspect this library. Here, the team determined that the coefficients of the
polynomial involved in the SSS are not fully selected at random; specifically, the coefficients
cannot constitute zero. This behavior introduces a slight bias.

Affected file:
sharks/src/math.rs

Affected code:
pub fn random_polynomial<R: rand::Rng>(s: GF256, k: u8, rng: &mut R) ->
Vec<GF256> {

let k = k as usize;
let mut poly = Vec::with_capacity(k);
let between = Uniform::new_inclusive(1, 255);

for _ in 1..k {
 poly.push(GF256(between.sample(rng)));

}
poly.push(s);

poly
}

The correct method to select a random polynomial would be to select all coefficients
(including the most significant coefficient) uniformly in the range 0..255 (inclusive).
Otherwise, knowledge that a coefficient in a polynomial cannot be 0 permits the exclusion of
single byte values for the shared secret given one share less than required.

Cure53, Berlin · Apr 29, 24 12/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Notably, the information leaked via the biased generation is minimal and does not pose a
threat for the current implementation, due to the fact that each seed is generated randomly
and shared only once. However, exploiting this weakness necessitates sharing the same
secret multiple times. In this scenario, an attacker could exclude an exponential number of
values for each of the shared bytes until sufficiently few values remain for brute forcing.
Cure53 estimates that under ideal circumstances (e.g., a 2-out-of-N scheme) a shared
secret can be reconstructed if the same secret has been distributed 500-1500 times.

DIS-01-003 WP1: Unclear security model for kernel & network safety (Info)
Keyfork implements two safety checks on initialization that are designed to verify the
baseline of security for the endpoint it is operating on. The first involves the network
connection, which validates that the endpoint is not connected to a network, and the second
entails the kernel version, which ensures that the system is running a kernel version
considered relatively modern.

While the intentions behind these safety checks are commendable and their respective
implementations are correct, it is unclear how their overall effectiveness and relevance could
be evaluated within a structured security model.

Firstly, the mere absence of an active network connection does not inherently secure a
device. Malicious actions can occur offline and other network interfaces (e.g., virtual network
interfaces not considered in the check) may still compromise the system. Relying solely on
network disconnection can lead to overlooking other critical security aspects such as
physical access security, local data storage vulnerabilities, and the integrity of the running
applications.

Secondly, the kernel version alone is a poor proxy for security. Newer kernels can be
affected by unpatched vulnerabilities, while older kernels may offer sufficient security if
properly patched and configured.

Affected file:
crates/util/keyfork-entropy/src/lib.rs

The aforementioned safety checks implemented in the smartcard API library are
fundamentally sound in their intent to enhance the system’s robustness. However, the
effectiveness and clarity of these checks can be substantially improved by formally defining
a threat model. This threat model should outline the specific security goals that these checks
aim to accomplish, as well as the threats they are designed to mitigate.

The definition of a clear threat model can introduce a number of benefits, including:

• Check contextualization, i.e., clarifying the necessity of each check and
determining how they contribute to the system’s security posture. This helps in

Cure53, Berlin · Apr 29, 24 13/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

understanding the role of each security measure within the broader security
framework.

• Limitations and assumption identification, i.e., acknowledging the limitations of
each check under the defined threat model and specifying the assumptions (for
instance, the absence of physical tampering or the level of user privilege required).

• Guidance for future security measures, i.e. providing a baseline for evaluating
whether additional security checks are needed or if the existing checks should be
modified in response to evolving threats.

Cure53 must reiterate that amending or expanding the existing checks at this stage is not
strictly necessary. Alternatively, the developer team could define a detailed threat model in
order to provide the necessary clarity and justification for these checks, ensuring that they
are both adequate and appropriate for the intended security objectives.

DIS-01-004 WP1: Minor safety improvement for signature parsing logic (Info)
Fix note: This issue has been mitigated by the maintainer team and subsequently fix-
verified by Cure53 by inspecting a PR/diff.

The current implementation for the signature verification interface, namely VerificationHelper
across both Keyring and SmartCartManager types, iterates through all signatures within a
SignatureGroup and checks them one by one. However, only one valid signature was
expected here, as confirmed in discussions with the maintainer team. As such, this method
raises the following issues:

• Multiple valid signatures: The loop allows for multiple signatures to be checked
without validating if more than one valid signature should be acceptable. For fortified
security, particularly in environments where strict signature policies are enforced,
the system should verify that exactly one valid signature is present and all others are
either absent or explicitly flagged as invalid.

• Potential for timing side channels: The loop through all signatures introduces a
potential timing side channel, as the time taken to verify signatures may correlate
with the number of signatures or their validity states. An attacker could potentially
leverage this information to infer aspects of the signature processing, such as the
number of valid or invalid signatures. A timing side channel is likely inexploitable in
the current software use case; however, fixing the code early could avoid this code
pattern generalizing across different novel use cases that may be introduced in the
future.

Affected files:
• keyfork-shard/src/openpgp/keyring.rs
• src/openpgp/smartcard.rs

Cure53, Berlin · Apr 29, 24 14/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Affected code:
impl<P: PromptHandler> VerificationHelper for &mut Keyring<P> {
 fn get_certs(&mut self, ids: &[KeyHandle]) ->
openpgp::Result<Vec<Cert>> {
 Ok(ids
 .iter()
 .flat_map(|kh| {
 self.root
 .iter()
 .filter(move |cert| &cert.key_handle() == kh)
 })
 .cloned()
 .collect())
 }
 fn check(&mut self, structure: MessageStructure) -> openpgp::Result<()>
{
 for layer in structure {
 #[allow(unused_variables)]
 match layer {
 MessageLayer::Compression { algo } => {}
 MessageLayer::Encryption {
 sym_algo,
 aead_algo,
 } => {}
 MessageLayer::SignatureGroup { results } => {
 for result in results {
 if let Err(e) = result {
 // FIXME: anyhow leak: VerificationError impl

std::error::Error
 // return Err(e.context("Invalid signature"));
 return Err(anyhow::anyhow!("Invalid signature:

{e}"));
 }
 }
 }
 }
 }
 Ok(())
 }
}

impl<P: PromptHandler> VerificationHelper for &mut SmartcardManager<P> {
 fn get_certs(&mut self, ids: &[openpgp::KeyHandle]) ->
openpgp::Result<Vec<Cert>> {
 #[allow(clippy::flat_map_option)]
 Ok(ids
 .iter()

Cure53, Berlin · Apr 29, 24 15/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 .flat_map(|kh| self.root.as_ref().filter(|cert|
cert.key_handle() == *kh))
 .cloned()
 .collect())
 }

 fn check(&mut self, structure: MessageStructure) -> openpgp::Result<()>
{
 for layer in structure {
 #[allow(unused_variables)]
 match layer {
 MessageLayer::Compression { algo } => {}
 MessageLayer::Encryption {
 sym_algo,
 aead_algo,
 } => {}
 MessageLayer::SignatureGroup { results } => {
 for result in results {
 if let Err(e) = result {
 // FIXME: anyhow leak
 return Err(anyhow::anyhow!("Verification error:

{}", e.to_string()));
 }
 }
 }
 }
 }
 Ok(())
 }
}

To mitigate these issues, Cure53 advises incorporating the following improvements. Firstly,
the dev team should enforce single signatures by modifying the signature verification logic to
ensure that exactly one valid signature is required and processed. This can be achieved by
counting the number of valid signatures and returning an error if the count does not equal
one. This check should be performed after all signatures have been processed to avoid
early exits that could affect timing.

Secondly, constant time operations can be adopted, which requires refactoring the signature
checking to execute in constant time with respect to the number of signatures. This can
typically be managed by using fixed-time comparison functions and ensuring that the code
path (including time taken for memory accesses, CPU cycles, and so on) is identical
regardless of the signature count or validity.

Cure53, Berlin · Apr 29, 24 16/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

DIS-01-005 WP1: Public key discovery fails to ensure key distinction (Low)
Fix note: This issue has been mitigated by the maintainer team and subsequently fix-
verified by Cure53 by inspecting a PR/diff.

Cure53 noted that the shard_and_encrypt function splits a secret into shares and
subsequently locates OpenPGP public keys within a file or directory. Once it is ensured that
the number of identified public keys is equal to the number of shares, the function iterates
the tuples (pk, share) and encrypts each share to the corresponding public key. This logic
can be observed in the following code excerpt.

Affected file:
crates/keyfork-shard/src/lib.rs

Affected code:
fn shard_and_encrypt(
 &self,
 threshold: u8,
 max: u8,
 secret: &[u8],
 public_key_discovery: impl KeyDiscovery<Self>,
 writer: impl Write + Send + Sync,
) -> Result<(), Box<dyn std::error::Error>> {
 let mut signing_key = self.derive_signing_key(secret);

 let sharks = Sharks(threshold);
 let dealer = sharks.dealer(secret);

 let public_keys = public_key_discovery.discover_public_keys()?;
 assert!(
 public_keys.len() < u8::MAX as usize,
 "must have less than u8::MAX public keys"
);
 assert_eq!(
 max,
 public_keys.len() as u8,
 "max must be equal to amount of public keys"
);
 let max = public_keys.len() as u8;
 assert!(max >= threshold, "threshold must not exceed max keys");

 [...]
 for (pk, share) in public_keys.iter().zip(dealer) {
 let shard = Vec::from(&share);
 messages.push(self.encrypt_shard(&shard, pk, &mut signing_key)?);
 }

Cure53, Berlin · Apr 29, 24 17/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 self.format_shard_file(&messages, writer)?;

 Ok(())
}

While auditing the function that handles public key discovery, the test team confirmed it
simply collects every OpenPGP public key that can be correctly parsed. However, this
process does not verify that all public keys are distinct. Therefore, any configuration errors
whereby the OpenPGP keys are not correctly loaded into the directory or file would remain
unnoticed, causing two different shards to be encrypted to the same public key.

Affected file:
crates/keyfork-shard/src/openpgp.rs

Affected code:
impl<P: PromptHandler> KeyDiscovery<OpenPGP<P>> for &Path {
 fn discover_public_keys(&self) -> Result<Vec<<OpenPGP<P> as
Format>::PublicKey>> {
 OpenPGP::<P>::discover_certs(self)
 }
 [...]
}

impl<P: PromptHandler> OpenPGP<P> {
 pub fn discover_certs(path: impl AsRef<Path>) -> Result<Vec<Cert>> {
 let path = path.as_ref();

 if path.is_file() {
 let mut vec = vec![];
 for cert in
CertParser::from_file(path).map_err(Error::Sequoia)? {
 vec.push(cert.map_err(Error::Sequoia)?);
 }
 Ok(vec)
 } else {
 let mut vec = vec![];
 for entry in path
 .read_dir()
 .map_err(Error::Io)?
 .filter_map(Result::ok)
 .filter(|p| p.path().is_file())
 {

vec.push(Cert::from_file(entry.path()).map_err(Error::Sequoia)?);
 }
 Ok(vec)

Cure53, Berlin · Apr 29, 24 18/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 }
 }
}

To mitigate this issue, Cure53 recommends ensuring that the public keys discovered within
the given file or directory during the sharding and encryption process are all distinct.

DIS-01-007 WP1: Robustness improvement for shard transport shared key (Info)
Note: Following discussions with the customer, it became apparent that the user IDs of the
involved parties are unknown to the combiner of the shares. As such, the proposal (which
assumes known user IDs) unnecessarily complicates the protocol and can be disregarded in
the current setup.

The shard transport protocol utilizes an encryption mode that resembles ECIES5. ECIES
includes additional steps that safeguard against certain attack strategies; however, these
steps are not present in Keyfork's implementation.

In particular, ECIES includes the ephemeral key as a parameter of the key derivation
function, which prevents a rather benign form of malleability. Moreover, ECIES facilitates
integrating additional context data in the integrity check of the symmetric encryption, which
prevents replaying ciphertexts out of context.

Affected file:
crates/keyfork-shard/src/lib.rs

Affected code:
pub fn remote_decrypt(w: &mut impl Write) -> Result<(), Box<dyn
std::error::Error>> {
 [...]
 while iter_count.is_none() || iter_count.is_some_and(|i| i > 0) {
 let shared_secret =
our_key.diffie_hellman(&PublicKey::from(pubkey)).to_bytes();
 let hkdf = Hkdf::<Sha256>::new(None, &shared_secret);
 let mut hkdf_output = [0u8; 256 / 8];
 hkdf.expand(&[], &mut hkdf_output)?;
 let shared_key = Aes256Gcm::new_from_slice(&hkdf_output)?;
 [...]
 }
 [...]
}

Even though the key shard transport did not yield any vulnerabilities during the time frame of
the assignment and is generally considered secure, the maintainer team can add context to
cryptographic protocols and improve their robustness by mirroring the ECIES proposal with

5 https://www.shoup.net/papers/iso-2_1.pdf

Cure53, Berlin · Apr 29, 24 19/22

https://cure53.de/
https://www.shoup.net/papers/iso-2_1.pdf
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

minimal expense required. To achieve this, firstly one could include the ephemeral key in the
info string of the HKDF. Secondly, the index i of the shareholder could be included as
additional authenticated data (AAD) in the AES-GCM encryption.

Cure53, Berlin · Apr 29, 24 20/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions
This project’s test initiatives comprised a single work package consisting of a cryptography
review and code audit of the Distrust Keyfork Toolkit. The customer provided the source
code and several key targets for the audit team to prioritize, which were validated as integral
components by Cure53 following further reviews of the codebase, while effective cross-
organization communication was enabled through the use of a shared Slack channel.

The generation of the initial entropy and associated mnemonic (as dictated by BIP39) was
subjected to stringent analysis. Simultaneously, the team audited the deterministic derivation
of keys as in BIP32. The codebase was found to avoid pitfalls that are commonly
encountered in other implementations of these standards, including (but not limited to) out-
of-bounds indices or depth of the child keys, malformed paths, and seeds generated from a
weak source of entropy. The discoveries reported in these areas merely constitute
hardening recommendations and should be relatively straightforward to administer (see DIS-
01-001 and DIS-01-003).

Next, Cure53’s assessment of the process of splitting a secret into shards and the ensuing
encryption revealed the presence of a flaw in the library that implements Shamir’s secret
sharing scheme leveraged by Keyfork, as described in ticket DIS-01-002. However, since a
secret is not re-split in the current implementation except with negligible probability, the flaw
remains unexploitable at present. Nevertheless, the recommended guidance should be
considered to avoid potential erroneous behaviors in future use cases.

Additionally, the assessors found that the shards are encrypted to public keys retrieved from
a file or directory, though their distinction is not ensured (see DIS-01-005). As a
consequence, a shareholder or attacker could ultimately decrypt two distinct shares. Another
correlating limitation in this area pertains to the fact that signature verification iterates
through all signatures without ensuring that only one valid signature exists, potentially
allowing multiple valid signatures and introducing timing side channels (see DIS-01-004).

Concerning the disaster recovery use case, the review of smartcard provisioning uncovered
that extremely weak numeric patterns are configurable as PINs (see DIS-01-006), which is
wholly insufficient from a security perspective should an attacker gain physical access to any
of the smartcards. The protocol that transports the encrypted shards to an operator, which
performs the remote decryption and reconstruction of the secret, was verified to be custom-
made. Cure53 therefore honed in on this specific facet for thorough evaluation, though no
prevalent weaknesses were acknowledged except for a minor hardening improvement (see
DIS-01-007).

As discussed in the Test Methodology chapter, the Rust codebase was also reviewed from a
general perspective, which remained unaffected by common drawbacks. The
implementation’s adherence to optimal coding practices when dealing with untrusted data
serves to both reduce the attack surface and foster a sound overarching security posture.

Cure53, Berlin · Apr 29, 24 21/22

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

All in all, Cure53 is pleased to confirm that the Keyfork codebase successfully avoids all
major cryptographic and general security shortcomings. The codebase exhibited a proactive
approach towards secure cryptographic engineering, as substantiated by the scant volume
of findings and minor median severity rating on the whole.

Cure53 would like to thank Lance Vick, and Ryan Heywood as well as the Distrust team for
their excellent project coordination, support, and assistance, both before and during this
assignment.

Cure53, Berlin · Apr 29, 24 22/22

https://cure53.de/
mailto:mario@cure53.de

	Audit-Report Distrust Keyfork Toolkit & Library 04.2024
	Index
	Introduction
	Scope
	Test Methodology
	Identified Vulnerabilities
	DIS-01-006 WP1: Easily guessable numeric sequences accepted as PINs (Low)

	Miscellaneous Issues
	DIS-01-001 WP1: Mnemonic system seed source platform-dependent (Info)
	DIS-01-002 WP1: Bias of polynomial coefficients in secret sharing (Low)
	DIS-01-003 WP1: Unclear security model for kernel & network safety (Info)
	DIS-01-004 WP1: Minor safety improvement for signature parsing logic (Info)
	DIS-01-005 WP1: Public key discovery fails to ensure key distinction (Low)
	DIS-01-007 WP1: Robustness improvement for shard transport shared key (Info)

	Conclusions

