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Introduction
This report describes the results of a cryptography review and source code audit against the
Distrust Keyfork Toolkit, which was performed by Cure53 in April 2024.

In context, the customer invested a total of twenty-five days for extended coverage over the
targets. A team comprising five experienced pentesters was assembled to fulfill all stages of
the  examination,  from preparation  through  to  execution  and  finalization.  A  single  Work
Package (WP)  was created  entitled  WP1:  Cryptography reviews &  code audits  against
Distrust Keyfork Toolkit.  Materials such as sources, a list  of key focus areas, and other
access  points  were  handed  over  in  advance.  The  provision  of  sources  meant  that  the
pentesting methodology conformed with a white-box approach.

A number of preliminary actions were undertaken during the week prior to the engagement
(CW14 2024) to foster a hindrance-free environment for the testers to operate in.

Communications between the maintainers and Cure53 were facilitated through the creation
of a dedicated and shared Slack channel. All personnel that played an active role in this
exercise were invited to join the channel. Both parties contributed to clear and consistent
communication.  The  well-defined  scope  of  the  assessment  minimized  the  need  for
clarification, further streamlining the testing process. Cure53 kept all stakeholders informed
by providing frequent status updates on testing progress and any associated findings. Live
reporting  was  offered  as  an  additional  service  and  conducted  via  the  aforementioned
medium.

Regarding  the findings,  after  achieving satisfactory  coverage  during the prescribed  time
frame, seven findings were encountered and documented. Fortunately, only one of those
was categorized as a security vulnerability, while the other six were tagged with an impact
score of Low or Info, denoting manageable threats or general weaknesses.

The overall number of findings is relatively moderate for a scope of this magnitude, which
certainly reflects favorably on the security premise offered by the Distrust Keyfork library. It
is additionally positive to note that this review identified no critical cryptographic or general
security vulnerabilities.
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The overall  positive final  verdict  stands as a testament to the proactive approach taken
towards  secure  cryptographic  engineering  practices  within  the  Keyfork  codebase.
Nonetheless, Cure53 recommends committing to ongoing security improvements as well as
performing regular external pentests in order to maintain this foundational layer of defense.

The report will now shed more light on the scope and testing setup, as well as provide a
comprehensive breakdown of  the available materials.  This  will  be followed by a chapter
outlining the  Test Methodology, which serves to provide greater clarity on the techniques
applied and coverage achieved throughout this audit. Subsequently, the report will  list all
findings  identified  in  chronological  order,  starting  with  the  Identified  Vulnerabilities and
followed by the  Miscellaneous Issues unearthed. Each finding will  be accompanied by a
technical  description and Proof  of  Concepts (PoCs) where applicable,  plus any relevant
mitigatory or preventative advice to action.

In  summation,  the  report  will  finalize  with  a  conclusion  in  which  the  Cure53  team will
elaborate on the impressions gained toward the general  security posture of  the Distrust
Keyfork Toolkit, giving high-level hardening advice where applicable.
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Scope
• Cryptography reviews & code audits against Distrust Keyfork Toolkit & library

◦ WP1: Cryptography reviews & code audits against Distrust Keyfork Toolkit
▪ Source code:

• https://git.distrust.co/public/keyfork  
▪ Key focus areas:

• Does Keyfork generate secure entropy?
• Does Keyfork derive new keys from this seed securely?
• Does Keyfork provision derived keys to Yubikeys securely?
• Does Keyfork support securely splitting the key as an M-of-N set encrypted to

each Yubikey?
• Does Keyfork support the secure transmission of key shards back to a central

offline machine, with only offline systems granted access to secrets?
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53
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Test Methodology
This section documents the testing methodology applied by Cure53 during this project and
discusses  the  resulting  coverage,  shedding  light  on  how  various  components  were
examined.  Further  clarification  concerning  areas  of  investigation  subjected  to  deep-dive
assessment  is  offered,  especially  in  the  absence  of  significant  security  vulnerabilities
detected.

The assignment consisted of a single work package that was dedicated to cryptography
reviews and a source code audit against the Distrust Keyfork Toolkit. The customer provided
the source code and supporting documentation, as well as pinpointed several key focus
areas  for  investigation,  including  the  entropy  generation,  key  derivation,  smartcard
provisioning  (Yubikeys  in  particular),  the  process  of  splitting  a  key  into  shares  and
encrypting them, and the secure transmission of the encrypted shares for remote recovery
of the secret in the use case of a disaster recovery.

The  first  aspect  explored  by  Cure53  was  the  generation  of  initial  entropy  and  a
corresponding  mnemonic,  as  mandated by  BIP39.  The generation  of  the initial  entropy,
which  is  directly  gathered  from  /dev/urandom, was  found  to  be  secure.  However,  the
protocol  limits  code  portability  across  different  operating  systems  (see  DIS-01-001).
Abstracting  this  functionality  into  a  dedicated  module  or  using  a  library  could  improve
maintainability, reduce error handling repetition, and streamline device management. While
auditing the process of entropy generation, the test team observed the presence of initial
safety checks for network connection and kernel version.  However,  these checks lack a
clear  security  model to effectively  gauge their  relevance or  the security proficiency they
provide.  In this regard,  DIS-01-003 recommends establishing a formal  threat  model  that
clearly defines the security objectives and threats these checks aim to mitigate. This model
would  contextualize  the  security  measures,  acknowledge  limitations,  and  help  refine  or
justify future security enhancements based on a structured framework. Besides this, Cure53
was unable to detect any flaws in the process of generating a mnemonic from the entropy.

Next, the key derivation process was extensively studied. Since Keyfork follows BIP32 to
derive deterministic keys, the implementation was audited for common vulnerabilities such
as incorrect handling of the indices of hardened and non-hardened child keys, malformed
paths,  and  unbounded  depth.  Positively,  the  testing  team found  that  these  undesirable
situations  were  avoided.  The  only  noteworthy  observation  in  this  area  is  that  the
implementation is not fully compliant with BIP32, as some derived keys are declared as
invalid,  which  BIP39  accepts.  However,  the  developer  team  is  already  aware1 of  this
weakness and thus it was not re-documented in this report, since it occurs with a negligible
probability and hence will likely never be encountered in practice.

1 This issue is mentioned in a report from NCC Group shared by the customer at the beginning of the audit.
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The process of splitting a secret into shares via Shamir’s secret sharing scheme, as well as
the  encryption  of  the  resulting  shares,  was  systematically  analyzed.  The  team’s
undertakings here confirmed the presence of  a flaw in the library  used for sharding,  as
reported in ticket  DIS-01-002. This issue cannot be exploited in Keyfork under the current
implementation, since a secret is randomly generated and split, hence re-splitting a fixed
secret is not supported. Nevertheless, the flaw in the underlying library exists and may result
in  a  leakage  that  allows  reconstructing  secrets  in  future  evolutions  of  the  software.
Moreover, while reviewing the shard encryption procedure, Cure53 found that the OpenPGP
location public  keys that  the shards are encrypted to  are  retrieved from within  a file  or
directory. However,  the uniqueness of these public keys is not guaranteed (see DIS-01-
005), which can result in two different shards being encrypted to the same public key.

Subsequently, the assessment team vetted the disaster recovery mechanism, which was
considered the most complex use case. Regarding Yubikey provisioning, Cure53 noticed
that easily-guessable numeric PINs are permitted for configuration, as reported in  DIS-01-
006. This constitutes insufficient protection of the private keys contained in the smartcard
should an attacker obtain physical access to the smartcards, even temporarily. Furthermore,
the confirmation was made that the implementation of signature verification iterates through
all  signatures  without  ensuring  that  only  one  valid  signature  exists,  potentially  allowing
multiple valid signatures and introducing timing side channels, as discussed in ticket DIS-01-
004. This behavior could be exploited to glean insight into signature processing, particularly
as the software evolves.  As such,  a major proportion of the secret  reconstruction is the
protocol utilized to transport the shares to the operator reconstructing the secret. To the
testing team’s  knowledge,  the protocol  employs well-established cryptographic  primitives
(XDH, HKDF, AES-GCM). However, since it is custom-made, Cure53 deemed it appropriate
to scrutinize this aspect extensively. The protocol was compared with similar established
protocols,  such as NIST SP 800-56a2 and the ISO proposal for ECIES by Shoup3.  The
testers were unable to detect an attack strategy against the shard transport protocol during
the  assignment  time  frame,  though  ticket  DIS-01-007 provides  a  recommendation  for
improving the robustness of the shard transport mirroring ECIES.

Finally, the Rust implementation was audited from a wider perspective, abstracting it from
the use case. This review process commenced by checking all application dependencies,
whereby the team verified that the RSA crate exhibits an advisory that is unpatched and
ignored  on  the  source’s  configuration  (namely  RUSTSEC-2023-0071).  However,  the
vulnerability does not directly impact the application and is already known by the developer
team. Rust’s  unsafe keyword usage was thoroughly  analyzed since it  remains a critical
feature of the source code. Most references were related to terminal handling input/output
and QR code parsing that relies on low-level libraries. An unsafe from_raw_bytes function is
defined  on  keyfork-mnemonic-util,  though  no  memory-related  flaw  was  identified.  The
unsafe keyword is only used to express that non-compliant results may be produced, which
is a sound development practice. 

2 https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
3 https://www.shoup.net/papers/iso-2_1.pdf
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The possibility  of command and argument injection vulnerabilities was considered, since
some application features rely on calling external  commands/binaries, such as  qrencode
and tput. Cure53 confirmed the inability to inject or modify either the arguments or the binary
called from user-controlled input. All possible inputs originating from external sources were
tested to ensure that the application was not vulnerable to any form of injection. Here, the
application demonstrated commendable reliability to malformed, large, and malicious inputs
in various areas, exiting successfully and avoiding undefined behaviors.
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Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact,  with  the  severity  rank  offered  in  brackets  following  the  title  heading  for  each
vulnerability.  Furthermore,  all  tickets  are  given  a  unique  identifier  (e.g.,  DIS-01-001)  to
facilitate any future follow-up correspondence.

DIS-01-006 WP1: Easily guessable numeric sequences accepted as PINs (Low)
Fix  note: This  issue has been mitigated  by  the  maintainer  team and subsequently  fix-
verified by Cure53 by inspecting a PR/diff.

When provisioning smartcards handed out to shareholders, a user PIN and an administrator
PIN are configured. Each shareholder’s smartcard contains the OpenPGP location private
key required to decrypt the share. Thus, the PIN is the only layer that protects the private
key in the event an attacker is able to obtain physical access to the smartcard.

When auditing the process of configuring smartcard PINs, the test team found that these
PINs are actually validated, as indicated by the following code excerpt.

Affected file:
crates/keyfork/src/cli/wizard.rs

Affected code:
fn generate_shard_secret(
    threshold: u8,
    max: u8,
    keys_per_shard: u8,
    output_file: &Option<PathBuf>,
) -> Result<()> {
    let seed = keyfork_entropy::generate_entropy_of_const_size::<{256 / 
8}>()?;
    let mut pm = default_terminal()?;
    let mut certs = vec![];
    let mut seen_cards: HashSet<String> = HashSet::new();
    let stdout = std::io::stdout();
    if output_file.is_none() {
        assert!(
            !stdout.is_terminal(),
            "not printing shard to terminal, redirect output"
        );
    }

    let user_pin_validator = PinValidator {
        min_length: Some(6),
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        ..Default::default()
    }
    .to_fn();
    let admin_pin_validator = PinValidator {
        min_length: Some(8),
        ..Default::default()
    }
    .to_fn();

    for index in 0..max {
        let cert = derive_key(seed, index)?;
        for i in 0..keys_per_shard {
            pm.prompt_message(Message::Text(format!(
                "Please remove all keys and insert key #{} for user #{}",
                i + 1,
                index + 1,
            )))?;
            let card_backend = loop {
                [...]
            };
            let user_pin = pm.prompt_validated_passphrase(
                "Please enter the new smartcard User PIN: ",
                3,
                &user_pin_validator,
            )?;
            let admin_pin = pm.prompt_validated_passphrase(
                "Please enter the new smartcard Admin PIN: ",
                3,
                &admin_pin_validator,
            )?;
            factory_reset_current_card(
                &mut seen_cards,
                user_pin.trim(),
                admin_pin.trim(),
                &cert,
                card_backend,
            )?;
        }
        certs.push(cert);
    }

    [...]
}

This validator ensures that the PIN’s length lies within the range of a hardcoded minimum
(variable depending on whether it constitutes a user or admin PIN) and a maximum. It also
ensures  that  the  PIN  consists  only  of  numeric  characters,  which  is  essential  toward
preventing injection attacks.
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Affected file:
crates/util/keyfork-prompt/src/validators.rs

Affected code:
impl Validator for PinValidator {
    type Output = String;
    type Error = PinError;

    fn to_fn(&self) -> Box<dyn Fn(String) -> Result<String, Box<dyn 
std::error::Error>>> {
        let min_len = self.min_length.unwrap_or(usize::MIN);
        let max_len = self.max_length.unwrap_or(usize::MAX);
        let range = self.range.clone().unwrap_or('0'..='9');
        Box::new(move |mut s: String| {
            s.truncate(s.trim_end().len());
            let len = s.len();
            if len < min_len {
                return Err(Box::new(PinError::TooShort(len, min_len)));
            }
            if len > max_len {
                return Err(Box::new(PinError::TooLong(len, max_len)));
            }
            for (index, ch) in s.chars().enumerate() {
                if !range.contains(&ch) {
                    return Err(Box::new(PinError::InvalidCharacters(ch, 
index)));
                }
            }
            Ok(s)
        })
    }
}

However,  the  implementation  does  not  provide  additional  logic  that  prevents  easily-
guessable  numeric  sequences (such as  00…00)  from being configured as PINs for  the
smartcards.  Limiting the number of  attempts generally  contributes to  smartcard security,
though this should be complemented with the rejection of trivially-guessable PINs, which
would provide another safeguard layer if a smartcard is stolen.

To mitigate this issue, Cure53 recommends preventing easily-guessable patterns from being
configured as the user/admin PIN, as implemented for other correlatory systems4.

4 https://learn.microsoft.com/en-us/windows/security/identity-protection/hello-for-business/faq#[...]-pins
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Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

DIS-01-001 WP1: Mnemonic system seed source platform-dependent (Info)
The  codebase’s  generate_entropy_of_size and  generate_entropy_of_const_size Rust
functions  directly  access  the  /dev/urandom device  to  retrieve  random  data.  This  direct
access poses negligible security concern and remains viable from a security perspective.
However, potential areas of improvement regarding eventual portability and maintainability
are introduced as a result:

• Portability: The  direct  use  of  /dev/urandom limits  the  code's  portability  across
different operating systems. While /dev/urandom is commonly available on Unix-like
systems,  this  approach  does  not  inherently  support  other  platforms  such  as
Windows, which uses different mechanisms for secure randomness.

• Error  handling:  The  current  implementation  opens  and  reads  from the  device
directly within each function call. This approach can lead to repeated error handling
and device management overhead, which could be streamlined through abstraction.

Affected file:
crates/util/keyfork-entropy/src/lib.rs

Affected code:
pub fn generate_entropy_of_size(byte_count: usize) -> Result<Vec<u8>, 
std::io::Error> {
    ensure_safe();
    let mut vec = vec![0u8; byte_count];
    let mut entropy_file = File::open("/dev/urandom")?;
    entropy_file.read_exact(&mut vec[..])?;
    Ok(vec)
}

pub fn generate_entropy_of_const_size<const N: usize>() -> Result<[u8; N], 
std::io::Error> {
    let mut output = [0u8; N];
    let mut entropy_file = File::open("/dev/urandom")?;
    entropy_file.read_exact(&mut output[..])?;
    Ok(output)
}
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To enhance the code's robustness,  portability,  and maintainability,  it  is  recommended to
abstract the randomness source via a library or a dedicated module. This abstraction can
provide several advantages:

• Cross-platform support: Utilizing a  library  such as  rand or  ring in  Rust,  which
abstracts  over  the  OS-specific  mechanisms  to  generate  random  numbers,  can
facilitate code functionality across multiple platforms without any additional burden
on the end developer.

• Centralized  error  handling: By  abstracting  the  randomness  generation,  error
handling  can  be  centralized  in  a  single  location,  improving  the  reliability  and
readability  of  the  code.  This  will  also  reduce  redundancy  and  facilitate  easier
updates or fixes related to random number generation.

DIS-01-002 WP1: Bias of polynomial coefficients in secret sharing (Low)
While investigating the process of splitting a secret into shares via Shamir’s secret sharing
scheme (SSS),  Cure53  observed  that  an  underlying  library  named  sharks handles  this
operation.  Since  secret  sharing  is  crucial  to  the  overall  security  of  the  system,  Cure53
deemed it apt to inspect this library. Here, the team determined that the coefficients of the
polynomial involved in the SSS are not fully selected at random; specifically, the coefficients
cannot constitute zero. This behavior introduces a slight bias.

Affected file:
sharks/src/math.rs

Affected code:
pub fn random_polynomial<R: rand::Rng>(s: GF256, k: u8, rng: &mut R) -> 
Vec<GF256> {

let k = k as usize;
let mut poly = Vec::with_capacity(k);
let between = Uniform::new_inclusive(1, 255);

for _ in 1..k {
    poly.push(GF256(between.sample(rng)));

}
poly.push(s);

poly
}

The  correct  method  to  select  a  random  polynomial  would  be  to  select  all  coefficients
(including  the  most  significant  coefficient)  uniformly  in  the  range  0..255  (inclusive).
Otherwise, knowledge that a coefficient in a polynomial cannot be 0 permits the exclusion of
single byte values for the shared secret given one share less than required.

Cure53, Berlin · Apr 29, 24  12/22

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de  · mario@cure53.de

Notably, the information leaked via the biased generation is minimal and does not pose a
threat for the current implementation, due to the fact that each seed is generated randomly
and shared only once. However, exploiting this weakness necessitates sharing the same
secret multiple times. In this scenario, an attacker could exclude an exponential number of
values for each of the shared bytes until  sufficiently few values remain for brute forcing.
Cure53  estimates  that  under  ideal  circumstances  (e.g.,  a  2-out-of-N  scheme)  a  shared
secret can be reconstructed if the same secret has been distributed 500-1500 times.

DIS-01-003 WP1: Unclear security model for kernel & network safety (Info)
Keyfork  implements  two  safety  checks  on  initialization  that  are  designed  to  verify  the
baseline  of  security  for  the  endpoint  it  is  operating  on.  The  first  involves  the  network
connection, which validates that the endpoint is not connected to a network, and the second
entails  the  kernel  version,  which  ensures  that  the  system  is  running  a  kernel  version
considered relatively modern.

While  the  intentions  behind these  safety  checks are  commendable  and their  respective
implementations are correct, it is unclear how their overall effectiveness and relevance could
be evaluated within a structured security model.

Firstly,  the mere absence of  an active network connection does not  inherently  secure a
device. Malicious actions can occur offline and other network interfaces (e.g., virtual network
interfaces not considered in the check) may still compromise the system. Relying solely on
network  disconnection  can  lead  to  overlooking  other  critical  security  aspects  such  as
physical access security, local data storage vulnerabilities, and the integrity of the running
applications.

Secondly,  the  kernel  version  alone  is  a  poor  proxy  for  security.  Newer  kernels  can  be
affected  by  unpatched  vulnerabilities,  while  older  kernels  may  offer  sufficient  security  if
properly patched and configured.

Affected file:
crates/util/keyfork-entropy/src/lib.rs

The  aforementioned  safety  checks  implemented  in  the  smartcard  API  library  are
fundamentally  sound  in  their  intent  to  enhance  the  system’s  robustness.  However,  the
effectiveness and clarity of these checks can be substantially improved by formally defining
a threat model. This threat model should outline the specific security goals that these checks
aim to accomplish, as well as the threats they are designed to mitigate.

The definition of a clear threat model can introduce a number of benefits, including:

• Check  contextualization,  i.e.,  clarifying  the  necessity  of  each  check  and
determining  how they  contribute  to  the  system’s  security  posture.  This  helps  in
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understanding  the  role  of  each  security  measure  within  the  broader  security
framework.

• Limitations and assumption identification, i.e., acknowledging the limitations of
each check under the defined threat  model  and specifying the assumptions (for
instance, the absence of physical tampering or the level of user privilege required).

• Guidance for future security measures, i.e. providing a baseline for evaluating
whether additional security checks are needed or if the existing checks should be
modified in response to evolving threats.

Cure53 must reiterate that amending or expanding the existing checks at this stage is not
strictly necessary. Alternatively, the developer team could define a detailed threat model in
order to provide the necessary clarity and justification for these checks, ensuring that they
are both adequate and appropriate for the intended security objectives.

DIS-01-004 WP1: Minor safety improvement for signature parsing logic (Info)
Fix  note: This  issue has been mitigated  by  the  maintainer  team and subsequently  fix-
verified by Cure53 by inspecting a PR/diff.

The current implementation for the signature verification interface, namely VerificationHelper
across both  Keyring  and SmartCartManager types, iterates through all signatures within a
SignatureGroup and  checks  them one  by  one.  However,  only  one  valid  signature  was
expected here, as confirmed in discussions with the maintainer team. As such, this method
raises the following issues:

• Multiple valid signatures: The loop allows for multiple signatures to be checked
without validating if more than one valid signature should be acceptable. For fortified
security, particularly in environments where strict  signature policies are enforced,
the system should verify that exactly one valid signature is present and all others are
either absent or explicitly flagged as invalid.

• Potential for timing side channels: The loop through all signatures introduces a
potential timing side channel, as the time taken to verify signatures may correlate
with the number of signatures or their validity states. An attacker could potentially
leverage this information to infer aspects of the signature processing, such as the
number of valid or invalid signatures. A timing side channel is likely inexploitable in
the current software use case; however, fixing the code early could avoid this code
pattern generalizing across different novel use cases that may be introduced in the
future.

Affected files:
• keyfork-shard/src/openpgp/keyring.rs
• src/openpgp/smartcard.rs
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Affected code:
impl<P: PromptHandler> VerificationHelper for &mut Keyring<P> {
    fn get_certs(&mut self, ids: &[KeyHandle]) -> 
openpgp::Result<Vec<Cert>> {
        Ok(ids
            .iter()
            .flat_map(|kh| {
                self.root
                    .iter()
                    .filter(move |cert| &cert.key_handle() == kh)
            })
            .cloned()
            .collect())
    }
    fn check(&mut self, structure: MessageStructure) -> openpgp::Result<()>
{
        for layer in structure {
            #[allow(unused_variables)]
            match layer {
                MessageLayer::Compression { algo } => {}
                MessageLayer::Encryption {
                    sym_algo,
                    aead_algo,
                } => {}
                MessageLayer::SignatureGroup { results } => {
                    for result in results {
                        if let Err(e) = result {
                            // FIXME: anyhow leak: VerificationError impl 

std::error::Error
                            // return Err(e.context("Invalid signature"));
                            return Err(anyhow::anyhow!("Invalid signature: 

{e}"));
                        }
                    }
                }
            }
        }
        Ok(())
    }
}

impl<P: PromptHandler> VerificationHelper for &mut SmartcardManager<P> {
    fn get_certs(&mut self, ids: &[openpgp::KeyHandle]) -> 
openpgp::Result<Vec<Cert>> {
        #[allow(clippy::flat_map_option)]
        Ok(ids
            .iter()
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            .flat_map(|kh| self.root.as_ref().filter(|cert| 
cert.key_handle() == *kh))
            .cloned()
            .collect())
    }

    fn check(&mut self, structure: MessageStructure) -> openpgp::Result<()>
{
        for layer in structure {
            #[allow(unused_variables)]
            match layer {
                MessageLayer::Compression { algo } => {}
                MessageLayer::Encryption {
                    sym_algo,
                    aead_algo,
                } => {}
                MessageLayer::SignatureGroup { results } => {
                    for result in results {
                        if let Err(e) = result {
                            // FIXME: anyhow leak
                            return Err(anyhow::anyhow!("Verification error:

{}", e.to_string()));
                        }
                    }
                }
            }
        }
        Ok(())
    }
}

To mitigate these issues, Cure53 advises incorporating the following improvements. Firstly,
the dev team should enforce single signatures by modifying the signature verification logic to
ensure that exactly one valid signature is required and processed. This can be achieved by
counting the number of valid signatures and returning an error if the count does not equal
one. This check should be performed after all  signatures have been processed to avoid
early exits that could affect timing.

Secondly, constant time operations can be adopted, which requires refactoring the signature
checking to execute in constant time with respect to the number of signatures. This can
typically be managed by using fixed-time comparison functions and ensuring that the code
path  (including  time  taken  for  memory  accesses,  CPU cycles,  and  so  on)  is  identical
regardless of the signature count or validity.
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DIS-01-005 WP1: Public key discovery fails to ensure key distinction (Low)
Fix  note: This  issue has been mitigated  by  the  maintainer  team and subsequently  fix-
verified by Cure53 by inspecting a PR/diff.

Cure53  noted  that  the  shard_and_encrypt function  splits  a  secret  into  shares  and
subsequently locates OpenPGP public keys within a file or directory. Once it is ensured that
the number of identified public keys is equal to the number of shares, the function iterates
the tuples (pk, share) and encrypts each share to the corresponding public key. This logic
can be observed in the following code excerpt.

Affected file:
crates/keyfork-shard/src/lib.rs

Affected code:
fn shard_and_encrypt(
    &self,
    threshold: u8,
    max: u8,
    secret: &[u8],
    public_key_discovery: impl KeyDiscovery<Self>,
    writer: impl Write + Send + Sync,
) -> Result<(), Box<dyn std::error::Error>> {
    let mut signing_key = self.derive_signing_key(secret);

    let sharks = Sharks(threshold);
    let dealer = sharks.dealer(secret);

    let public_keys = public_key_discovery.discover_public_keys()?;
    assert!(
        public_keys.len() < u8::MAX as usize,
        "must have less than u8::MAX public keys"
    );
    assert_eq!(
        max,
        public_keys.len() as u8,
        "max must be equal to amount of public keys"
    );
    let max = public_keys.len() as u8;
    assert!(max >= threshold, "threshold must not exceed max keys");

    [...]
    for (pk, share) in public_keys.iter().zip(dealer) {
        let shard = Vec::from(&share);
        messages.push(self.encrypt_shard(&shard, pk, &mut signing_key)?);
    }

Cure53, Berlin · Apr 29, 24  17/22

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de  · mario@cure53.de

    self.format_shard_file(&messages, writer)?;

    Ok(())
}

While auditing the function that handles public key discovery, the test  team confirmed it
simply  collects  every  OpenPGP public  key  that  can  be  correctly  parsed.  However,  this
process does not verify that all public keys are distinct. Therefore, any configuration errors
whereby the OpenPGP keys are not correctly loaded into the directory or file would remain
unnoticed, causing two different shards to be encrypted to the same public key.

Affected file:
crates/keyfork-shard/src/openpgp.rs

Affected code:
impl<P: PromptHandler> KeyDiscovery<OpenPGP<P>> for &Path {
    fn discover_public_keys(&self) -> Result<Vec<<OpenPGP<P> as 
Format>::PublicKey>> {
        OpenPGP::<P>::discover_certs(self)
    }
    [...]
}

impl<P: PromptHandler> OpenPGP<P> {
    pub fn discover_certs(path: impl AsRef<Path>) -> Result<Vec<Cert>> {
        let path = path.as_ref();

        if path.is_file() {
            let mut vec = vec![];
            for cert in 
CertParser::from_file(path).map_err(Error::Sequoia)? {
                vec.push(cert.map_err(Error::Sequoia)?);
            }
            Ok(vec)
        } else {
            let mut vec = vec![];
            for entry in path
                .read_dir()
                .map_err(Error::Io)?
                .filter_map(Result::ok)
                .filter(|p| p.path().is_file())
            {
                
vec.push(Cert::from_file(entry.path()).map_err(Error::Sequoia)?);
            }
            Ok(vec)
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        }
    }
}

To mitigate this issue, Cure53 recommends ensuring that the public keys discovered within
the given file or directory during the sharding and encryption process are all distinct.

DIS-01-007 WP1: Robustness improvement for shard transport shared key (Info)
Note: Following discussions with the customer, it became apparent that the user IDs of the
involved parties are unknown to the combiner of the shares. As such, the proposal (which
assumes known user IDs) unnecessarily complicates the protocol and can be disregarded in
the current setup.

The shard transport protocol utilizes an encryption mode that resembles ECIES5.  ECIES
includes additional steps that safeguard against certain attack strategies; however, these
steps are not present in Keyfork's implementation.

In  particular,  ECIES  includes  the  ephemeral  key  as  a  parameter  of  the  key  derivation
function, which prevents a rather benign form of malleability. Moreover, ECIES facilitates
integrating additional context data in the integrity check of the symmetric encryption, which
prevents replaying ciphertexts out of context.

Affected file:
crates/keyfork-shard/src/lib.rs

Affected code:
pub fn remote_decrypt(w: &mut impl Write) -> Result<(), Box<dyn 
std::error::Error>> {
    [...]
    while iter_count.is_none() || iter_count.is_some_and(|i| i > 0) {
        let shared_secret = 
our_key.diffie_hellman(&PublicKey::from(pubkey)).to_bytes();
        let hkdf = Hkdf::<Sha256>::new(None, &shared_secret);
        let mut hkdf_output = [0u8; 256 / 8];
        hkdf.expand(&[], &mut hkdf_output)?;
        let shared_key = Aes256Gcm::new_from_slice(&hkdf_output)?;
        [...]
    }
    [...]
}

Even though the key shard transport did not yield any vulnerabilities during the time frame of
the assignment and is generally considered secure, the maintainer team can add context to
cryptographic protocols and improve their robustness by mirroring the ECIES proposal with

5 https://www.shoup.net/papers/iso-2_1.pdf
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minimal expense required. To achieve this, firstly one could include the ephemeral key in the
info string of  the HKDF.  Secondly,  the index  i of  the shareholder  could  be included as
additional authenticated data (AAD) in the AES-GCM encryption.
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Conclusions
This project’s test initiatives comprised a single work package consisting of a cryptography
review and code audit of the Distrust Keyfork Toolkit. The customer provided the source
code and several key targets for the audit team to prioritize, which were validated as integral
components by Cure53 following further reviews of  the codebase,  while  effective cross-
organization communication was enabled through the use of a shared Slack channel.

The generation of the initial entropy and associated mnemonic (as dictated by BIP39) was
subjected to stringent analysis. Simultaneously, the team audited the deterministic derivation
of  keys  as  in  BIP32.  The  codebase  was  found  to  avoid  pitfalls  that  are  commonly
encountered in other implementations of these standards, including (but not limited to) out-
of-bounds indices or depth of the child keys, malformed paths, and seeds generated from a
weak  source  of  entropy.  The  discoveries  reported  in  these  areas  merely  constitute
hardening recommendations and should be relatively straightforward to administer (see DIS-
01-001 and DIS-01-003).

Next, Cure53’s assessment of the process of splitting a secret into shards and the ensuing
encryption revealed the presence of a flaw in the library that implements Shamir’s secret
sharing scheme leveraged by Keyfork, as described in ticket DIS-01-002. However, since a
secret is not re-split in the current implementation except with negligible probability, the flaw
remains  unexploitable  at  present.  Nevertheless,  the  recommended  guidance  should  be
considered to avoid potential erroneous behaviors in future use cases.

Additionally, the assessors found that the shards are encrypted to public keys retrieved from
a  file  or  directory,  though  their  distinction  is  not  ensured  (see  DIS-01-005).  As  a
consequence, a shareholder or attacker could ultimately decrypt two distinct shares. Another
correlating  limitation  in  this  area  pertains  to  the  fact  that  signature  verification  iterates
through  all  signatures  without  ensuring  that  only  one  valid  signature  exists,  potentially
allowing multiple valid signatures and introducing timing side channels (see DIS-01-004).

Concerning the disaster recovery use case, the review of smartcard provisioning uncovered
that extremely weak numeric patterns are configurable as PINs (see DIS-01-006), which is
wholly insufficient from a security perspective should an attacker gain physical access to any
of the smartcards. The protocol that transports the encrypted shards to an operator, which
performs the remote decryption and reconstruction of the secret, was verified to be custom-
made. Cure53 therefore honed in on this specific facet for thorough evaluation, though no
prevalent weaknesses were acknowledged except for a minor hardening improvement (see
DIS-01-007).

As discussed in the Test Methodology chapter, the Rust codebase was also reviewed from a
general  perspective,  which  remained  unaffected  by  common  drawbacks.  The
implementation’s adherence to optimal coding practices when dealing with untrusted data
serves to both reduce the attack surface and foster a sound overarching security posture.
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All in all, Cure53 is pleased to confirm that the Keyfork codebase successfully avoids all
major cryptographic and general security shortcomings. The codebase exhibited a proactive
approach towards secure cryptographic engineering, as substantiated by the scant volume
of findings and minor median severity rating on the whole.

Cure53 would like to thank Lance Vick, and Ryan Heywood as well as the Distrust team for
their  excellent  project  coordination,  support,  and assistance, both before and during this
assignment.

Cure53, Berlin · Apr 29, 24  22/22

https://cure53.de/
mailto:mario@cure53.de

	Audit-Report Distrust Keyfork Toolkit & Library 04.2024
	Index
	Introduction
	Scope
	Test Methodology
	Identified Vulnerabilities
	DIS-01-006 WP1: Easily guessable numeric sequences accepted as PINs (Low)

	Miscellaneous Issues
	DIS-01-001 WP1: Mnemonic system seed source platform-dependent (Info)
	DIS-01-002 WP1: Bias of polynomial coefficients in secret sharing (Low)
	DIS-01-003 WP1: Unclear security model for kernel & network safety (Info)
	DIS-01-004 WP1: Minor safety improvement for signature parsing logic (Info)
	DIS-01-005 WP1: Public key discovery fails to ensure key distinction (Low)
	DIS-01-007 WP1: Robustness improvement for shard transport shared key (Info)

	Conclusions


